Abstract
During visual search, task-relevant representations in visual working memory (VWM), known as attentional templates, are assumed to guide attention. A current debate concerns whether only one (Single-Item-Template hypothesis, or SIT) or multiple (Multiple-Item-Template hypothesis, or MIT) items can serve as attentional templates simultaneously. The current study was designed to test these two hypotheses. Participants memorized two colors, prior to a visual-search task in which the target and the distractor could match or not match the colors held in VWM. Robust attentional guidance was observed when one of the memory colors was presented as the target (reduced response times [RTs] on target-match trials) or the distractor (increased RTs on distractor-match trials). We constructed two drift-diffusion models that implemented the MIT and SIT hypotheses, which are similar in their predictions about overall RTs, but differ in their predictions about RTs on individual trials. Critically, simulated RT distributions and error rates revealed a better match of the MIT hypothesis to the observed data than the SIT hypothesis. Taken together, our findings provide behavioral and computational evidence for the concurrent guidance of attention by multiple items in VWM.
Significance statement Theories differ in how many items within visual working memory can guide attention at the same time. This question is difficult to address, because multiple- and single-item-template theories make very similar predictions about average response times. Here we use drift-diffusion modeling in addition to behavioral data, to model response times at an individual level. Crucially, we find that our model of the multiple-item-template theory predicts human behavior much better than our model of the single-item-template theory; that is, modeling of behavioral data provides compelling evidence for multiple attentional templates that are simultaneously active.
Footnotes
This research was supported by the Chinese Scholarship Council to Cherie Zhou and a Innovational Research Incentives Scheme VENI (Grant 016.Veni.175.078) by the Netherlands Organisation for Scientific Research (NWO) to Sebastiaan Mathôt.