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Summary 
 
The hippocampus supports memory encoding and retrieval, with distinct phases of theta 
oscillations modulating the amplitude of gamma-band activity during each process. Encoding 
and retrieval operations dynamically interact over rapid timescales, especially when sensory 
information conflicts with memory. The ability to link hippocampal dynamics to specific 
memory-guided behaviors has been limited by experiments that lack the temporal resolution to 
segregate when encoding and retrieval occur. To resolve this issue, we simultaneously tracked 
eye movements and hippocampal field potentials while neurosurgical patients performed a 
spatial memory task. Novelty-driven fixations increased phase-locking to the theta rhythm, 
which predicted successful memory performance. Theta to gamma phase amplitude coupling 
increased during these viewing behaviors and predicted forgetting of conflicting memories. In 
contrast, theta phase-locking preceded fixations initiated by memory retrieval, indicating that the 
hippocampus coordinates memory-guided eye movements. These findings suggest that theta 
oscillations in the hippocampus support learning through two interleaved processes: 
strengthening the encoding of novel information and guiding exploration based on prior 
experience. 
 
Introduction 
 
Hippocampal theta rhythms are prominent during active exploration of novel environments, 
perhaps due to encoding and retrieval processes necessary to guide ongoing behavior. 
Interactions between encoding and retrieval support many important functions, including 
memory updating, which requires comparing novel sensory inputs to prior memories and 
integrating the new content into the memory representation (Bridge and Paller, 2012; Bridge and 
Voss, 2014b). Retrieval-mediated reconsolidation requires the presence of novel information 
during reactivation, suggesting that this hippocampal-dependent learning process is sensitive to 
mismatch (associative novelty) between the retrieved content and sensory input (Morris et al., 
2006; Winters et al., 2011). Some studies have even demonstrated hippocampal involvement in 
associative novelty (Bridge and Voss, 2014a; Chen et al., 2013; Duncan et al., 2009; Duncan et 
al., 2012; Honey et al., 1998; Howard et al., 2011; Kumaran and Maguire, 2007a, 2009; Long et 
al., 2016; Thakral et al., 2015). However, the underlying novelty and retrieval processes have not 
been segregated as they unfold, in part because it is difficult to segregate these mechanisms in 
real time, as they interact continuously during learning.  Many experimental designs capitalize 
on an artificial separation between encoding and retrieval phases, but these designs do not 
capture the natural interplay between these states that guides exploratory behavior and informs 
decision-making. Here, we assayed the engagement of encoding and retrieval processing in real 
time by designing a task to link memory-guided eye movements to intracranial recordings of 
hippocampal activity, and aimed to identify how theta oscillations are distinctly involved in 
encoding and retrieval processes in real time. 
 
Eye movements provide rich temporal information regarding the focus of attention and the 
specific cognitive processes engaged at any given moment  (Bridge et al., 2017; Bridge and 
Voss, 2014b, 2015; Voss et al., 2011). In human and non-human primates, learning through 
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exploration heavily depends on the visual system (Meister and Buffalo, 2016), with eye 
movements resetting the phase of theta during learning of novel visual information (Hoffman et 
al., 2013; Jutras et al., 2013). Eye movements are also deployed rapidly, with median saccade 
rates of 3-5 Hz during visual exploration tasks (Wilming et al., 2017). Thus, eye movements 
provide an ideal behavioral measure to dissect learning processes on a moment-to-moment basis. 
 
The interaction of fast gamma-band and theta oscillations in the hippocampus could play a key 
role in coordinating interactions between encoding and retrieval during exploration. The 
amplitude of gamma increases at specific phases of the theta cycle to support memory processing 
(Axmacher et al., 2010; Lega et al., 2016). Computational models of hippocampal function 
suggest that gamma activity associated with encoding and retrieval preferentially occurs at the 
trough and peak of the theta rhythm, respectively (Hasselmo et al., 2002). Task-based 
observations of hippocampal firing support this idea, showing that novel stimulus encoding and 
memory retrieval are enhanced at distinct phases of the theta cycle (Douchamps et al., 2013; 
Lever et al., 2010; Manns et al., 2007; Newman et al., 2013). In addition, closed-loop 
optogenetic stimulation of inhibitory neurons aligned to the peak of theta improves encoding, 
whereas stimulation aligned to the trough improves retrieval (Siegle and Wilson, 2014).  
 
In rodents, theta-modulated gamma band activity has also distinguished encoding from retrieval 
(Bragin et al., 1995; Colgin, 2015). Distinct slow (~30 to 50 Hz) and mid (~50 Hz to 100 Hz) 
gamma oscillations are observed and generated by separate neural circuits, with maximal 
amplitudes at the peak and trough of the theta rhythm, respectively (Colgin, 2016). Recent work 
has also identified unique theta-nested gamma oscillations observed within individual theta 
cycles (Lopes-Dos-Santos et al., 2018), providing support for the notion that fast and slow 
gamma separately mediate encoding of novel information and memory retrieval. Intracranial 
recordings in humans have identified ripple oscillations (~80 to 100 Hz) that are involved in 
memory retrieval and consolidation (Axmacher et al., 2008; Staresina et al., 2015; Vaz et al., 
2019) and exhibit phase amplitude coupling (PAC) with hippocampal theta phase (Staresina et 
al., 2015). Similar ripple oscillations are also prevalent in nonhuman primates during visual 
search (Leonard and Hoffman, 2017; Leonard et al., 2015), raising the possibility that they play 
an active role in exploration. Because evidence for memory-related hippocampal theta to gamma 
PAC in humans has primarily focused on verbal learning tasks (Lega et al., 2016; Mormann et 
al., 2005), it is not known how changes in PAC during exploration translate from animal models 
to similar behaviors in humans.  
 
Here, we recorded eye movements and intracranial hippocampal recordings as neurosurgical 
patients performed an associative spatial memory task. We hypothesized that theta oscillations 
would modulate distinct gamma frequencies when eye movements were driven by either 
associative novelty or retrieval. Indeed, previous work in humans has examined the relation 
between theta oscillations and memory in verbal recall tasks (Kahana et al., 2001; Lega et al., 
2012; Sederberg et al., 2003), including theta-gamma phase amplitude coupling (Lega et al., 
2016; Mormann et al., 2005; Vaz et al., 2017). These studies examined encoding and retrieval in 
isolated task epochs, raising the question of how theta supports these memory processes when 
they rapidly co-occur. In our spatial memory task, subjects encountered previously studied 
objects in either their original or updated spatial locations. When an object appeared in an 
updated location, subjects directed viewing to both the updated and original locations iteratively 
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over the course of the trial. Simultaneous acquisition of eye movements and intracranial EEG 
allowed us to relate theta to the timing of encoding and retrieval processes with exceptional 
temporal resolution. In doing so, we systematically tested the hypothesis that hippocampal theta 
influences when different memory processes occur during exploratory viewing. If the strength of 
encoding and retrieval are modulated by theta phase, fixations driven by each process should be 
phase-locked to the theta rhythm. In addition, eye-movements tied to distinct encoding and 
retrieval processes should be accompanied by distinct states of hippocampal PAC. As such, this 
experiment determines how the hippocampus contributes to learning and coordinates dynamic 
encoding and retrieval operations during visual exploration in humans. 
 
Results 
 
Direct brain recordings linked to memory-driven eye movements 
Patients performed an associative spatial memory task (Fig. 1a), consisting of three phases, while 
we simultaneously acquired recordings of eye movements and local field potentials from the 
hippocampus (Fig. 1b). During the study phase, patients learned the spatial location of 16 objects 
presented sequentially on a background scene. Next, during a refresh phase, objects were re-
presented in either their original (Match) or updated (Mismatch) spatial locations, with two 
visual cues (small red dots) indicating potential alternate locations. One visual cue always 
indicated the object’s original location during Mismatch trials. After viewing each stimulus, 
patients determined via button press whether each object was presented in its original or updated 
location. During a final recognition phase, patients viewed each object in three locations and 
attempted to identify the object’s original location.  
 
During the refresh phase, subjects were encouraged to visually explore the three cued locations 
to help inform their memory decision. Our primary analyses focused on the interplay of 
associative novelty and retrieval processes during these Mismatch trials, by linking hippocampal 
activity to eye movements directed to the original and updated locations. This approach enabled 
us to identify distinct hippocampal mechanisms linked to these cognitive processes. In addition, 
we evaluated the impact of viewing behaviors and electrophysiological states on final 
recognition performance.  
 
We measured overall task performance by computing accuracy on the final recognition test. 
Patients performed the task well, with the original object location remembered on 82 (± 6 SEM) 
percent of recognition trials (Fig. 1c). Recognition accuracy was significantly impaired on 
Mismatch relative to Match trials (paired t-test, t4 = 9.83, P = 0.0006). To confirm that eye 
movements during the refresh phase were tied to memory processes, we examined the changes in 
viewing behaviors and memory outcomes on the final recognition test (Table 1). On average, 
participants made more fixations to the presented object during Match (paired t-test, t4 = 12.9, P 
= 0.0002) and Mismatch (paired t-test, t4 = 17.7, P = 0.0001) trials than to the other two cued 
locations. Notably, the number of fixations to the object was reduced on Mismatch relative to 
Match trials (paired t-test, t4 = -8.6, P = 0.0009), indicating that subjects explored additional 
visual features during Mismatch. In addition, fixation durations to objects were longer than 
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matched spatial cues (paired t-test, all t4 > 3.39, Ps < 0.023) and were comparable between 
Match and Mismatch trials (paired t-test, t4 = 1.49, P = 0.21).  
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Figure 1. Direct brain recordings during memory-driven eye movements. (a) Spatial memory task. Example stimuli presented 
during each phase of the task. Viewing regions of interest (ROIs) for each trial type are indicated by circles on the Refresh phase. 
(b) Simultaneous recording of gaze position and hippocampal field potential during an example trial. Above, viewing scan path 
overlaid on the stimulus display for a Mismatch trial. Below, gaze position and concurrent signal for a bipolar pair in the 
hippocampus. The onset of fixations to viewing ROIs are denoted by colored circles. (c) Behavioral performance. Response 
proportions on the final recognition test for each viewing condition. Each point denotes a subject average; lines denote one SEM. 
(d) Viewing behavior on Mismatch trials predicts memory outcomes. The probability of viewing the novel (left) or original (right) 
object-location was compared on trials in which the original location was subsequently remembered or forgotten. Below, a 
subsequent memory effect was computed as the difference in viewing probability. Shaded areas depict ±SEM. Lines depict 
significant clusters (PFWE < 0.05). 
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Viewing behavior on Match and Mismatch trials predicted final recognition performance. On 
Match trials the number of fixations to the repeated object predicted better memory for the 
original location, whereas the number of fixations to the updated location on Mismatch trials 
predicted memory updating (see Table 1 for details). To break down the timing of these memory-
guided eye movements, we examined the proportion of time spent viewing each ROI across trials 
(Fig. 1d). We found that viewing preferences on Mismatch trials, but not Match trials, predicted 
later memory for the original object-locations. Following initial visual orienting to the novel 
stimulus, prolonged viewing of the novel object-location (738 to 2188 ms after object 
presentation) was associated with memory updating (nonparametric cluster test, PFWE < 0.05). 
Viewing the original object-location during this time period (from 998 to 1584 ms) led to better 
memory for the original location (nonparametric cluster test, PFWE < 0.05). Proportion of viewing 
over time during Match trials was not a significant predictor of final memory performance (PFWE 
> 0.05). These findings suggest that interplay between memory processes and visual sampling 
during Mismatch trials determined whether memory updating would occur. 
 
Theta dependence of memory-guided eye movements 
We analyzed direct recordings from 32 electrodes from 5 patients (Fig. 2a), focusing on depth 
electrodes in the hippocampus. We measured spectral power and phase from 1 Hz to 10 Hz, 
which includes both theta and low-theta (Jacobs, 2014; Watrous et al., 2013a) frequency bands 
previously associated with visual exploration and memory encoding (Jutras et al., 2013; Lega et 
al., 2012). We linked measures of spectral power and phase to individual fixation events to 
identify hippocampal states reflecting retrieval and novelty detection. We reasoned that 
hippocampal signaling prior to fixations would reflect a memory-guided initiation of the 
upcoming eye movement, whereas signaling following fixations would reflect a memory-based 
reaction to the visual input. 
 
To assess whether retrieval-guided eye movements during Mismatch trials occurred at specific 
phases of hippocampal oscillations, we compared the consistency of phase angles in the 
moments leading up to fixations to the original and updated locations using inter-trial phase 
coherence (ITC; Fig. 2b). We observed significantly greater phase-locking around 5 Hz prior to 
fixations to the original compared to the updated object-location on Mismatch trials (PFWE < 
0.05, nonparametric cluster correction). Importantly, the lack of theta phase-locking preceding 
fixations to the updated location could not be accounted for by decreased power of hippocampal 
theta oscillations (Fig. S1).  
 
As fixations to the original object-location were frequently preceded by novelty-driven fixations 
(Fig. 1d), it is possible that the observed phase-locking effect resulted from novelty detection 
rather than retrieval. Two control analyses suggested this was not the case. First, ITC measured 
during fixations to the updated location did not differ depending on the target of the next saccade 
(i.e., either to the original or updated location; all PFWE > 0.05). Second, we observed 
significantly increased theta phase-locking across subjects (one sample t-test, t4 = 2.95, P = 0.04) 
during the same time interval when we excluded retrieval-guided fixations that were preceded by 
fixations to the updated object-location (and may be confounded by novelty detection). Taken 
together, these results implicate hippocampal theta oscillations in guiding eye movements via 
memory retrieval. 
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We next asked whether theta phase was modulated following fixation onset. If theta phase is 
generally modulated by fixations during memory updating (i.e., during Mismatch trials), 
consistent phase-locking could occur irrespective of the viewing location. To test this possibility, 
we contrasted ITC between each type of fixation (to the original or updated location) on 
Mismatch trials with fixations to the repeated location on Match trials. We observed significantly 
(PFWE < 0.05, nonparametric cluster correction) greater phase clustering following fixations to 
updated compared to repeated object-locations (Fig. 2c). We only observed this post-saccade 
phase-locking effect following fixations to updated locations, as ITC did not significantly differ 
between fixations to the Mismatch-original and Match-repeated locations. In addition, we did not 
find any significant differences between phase-locking during fixations to original and updated 
locations during Mismatch trials. The time course of theta clustering (Fig. 2d) reveals the timing 
of hippocampal retrieval and novelty processes; a pre-fixation retrieval effect and a reset of theta 
phase due to fixations to updated object-locations.  
 

Figure 2. Phase-locking of memory-dependent eye movements to hippocampal theta. (a) Location of hippocampal electrodes in 
MNI space. (b) Increased phase locking precedes retrieval-dependent fixations. Significant differences (cluster PFWE<0.05) in 
inter-trial phase clustering (ITC) between fixations (indicated by the dashed line) to original vs. updated object-locations on 
Mismatch trials are highlighted. See Figure S1 for related changes in theta power. (c) Novelty related modulations in 
hippocampal phase. Significant differences in ITC following fixations to the updated object-location on Mismatch trials and the 
repeated object-location on Match trials. (d) Left, timecourse of ITC for phase at 5 Hz. Polar plots depict the magnitude of ITC 
and preferred phase for fixations to either the original or updated object-locations on Mismatch trials. Right, alignment of phase 
angles prior to fixations on Mismatch trials. Shaded regions depict ±SEM. 
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We next determined whether theta phase dynamics predicted memory performance on the final 
recognition test. We found that phase-locking following fixations to updated locations during 
Mismatch trials predicted subsequent memory performance (Fig. 3). Greater ITC at frequencies 
ranging from 3 to 10 Hz following fixations to the updated location was associated with better 
memory stability on the final recognition test. The ability of hippocampal phase-locking to 
predict memory outcomes was specific to viewing updated object-locations; we observed no 
significant subsequent memory effects following fixations to either original or repeated object-
locations. Furthermore, these differences could not be accounted for by differences in power (all 
PFWE > 0.05, nonparametric cluster correction; data not shown). Taken together, these results 
demonstrate that hippocampal theta oscillations are tightly coupled to distinct viewing behaviors 
driven by associative novelty and memory retrieval. 

 
Theta to gamma phase amplitude coupling predicts memory updating 
Having identified a consistent relationship between theta phase and specific viewing behaviors, 
we examined the relationship between theta phase and the amplitude of high frequency (80-200 
Hz) gamma band activity. Phase-amplitude coupling (PAC) between theta and gamma has been 
proposed as a mechanism for separating memory representations (Hasselmo and Eichenbaum, 
2005), with supporting evidence in both animal models (Tort et al., 2009) and humans 
(Axmacher et al., 2010; Heusser et al., 2016; Lega et al., 2016; Lisman and Jensen, 2013; Vaz et 
al., 2017). We used the modulation index (MI) to quantify PAC between the phase of theta 
(ranging from 1 to 10 Hz) and gamma amplitude (Tort et al., 2010).  
 
We focused our PAC analyses on two comparisons of interest: associative novelty and memory 
retrieval. Results from an example electrode are depicted in Figure 4, showing increases in PAC 
related to associative novelty. For a given bipolar recording pair (Fig. 4a), we computed gamma 
amplitude as a function of theta phase during each trial type of interest. These measures were 
used to compute the MI, which measures PAC as the difference between the observed amplitude 
distribution and a uniform distribution (Fig. 4b, dashed line). To make sure observed differences 
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Figure 3. Phase locking of hippocampal theta predicts subsequent memory. Phase-locking of hippocampal theta 
predicts subsequent memory. Time-frequency plots depict differences is inter-trial phase coherence (ITC) between 
fixations to subsequently remembered and forgotten Mismatch trials. Significant (PFWE < 0.05, nonparametric 
cluster corrected) increases in phase-locking were observed following the fixation onset. 
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in PAC did not result from non-stationarities in the data or common task-evoked changes in 
amplitude and phase (Aru et al., 2015), we permuted phase information across trials for each 
condition and computed a normalized score (MIZ) based on this null distribution. We assessed 
changes in MIZ across conditions (Fig. 4c) to identify memory-related changes in PAC. Across 
subjects, we found 25% of hippocampal electrodes exhibited significant differences in PAC 
driven by associative novelty (i.e., differences between fixations to updated or repeated 
locations), significantly more than expected by chance (P < 0.001, binomial test). Only 9% of 
electrodes exhibited significant differences in PAC preceding fixations to the original versus 
updated locations on Mismatch trials (P = 0.14, binomial test).  

 

Next, we tested for group-level differences in PAC during specific viewing behaviors. To 
account for variability in theta frequency across subjects and electrodes, we selected the theta 
frequency that exhibited the greatest magnitude MIZ from 4 to 6 Hz, irrespective of condition. 

Figure 4. Representative theta to gamma phase amplitude coupling at an individual electrode.  (a) Re-
referenced bipolar recording from contacts in the left hippocampus and adjacent white matter. (b) 
Normalized amplitude distributions reveal novelty-related modulation of gamma (140 Hz) amplitude 
by theta (6 Hz) phase at this recording site. MI, modulation index. Dashed line denotes normalized 
gamma amplitude under a uniform distribution. (c) Left, comodulograms depict increased PAC (z-
scored MI, constructed from trial-shuffled surrogate data) during fixations to updated compared to 
repeated object-locations. Right, the statistical map depicts a cluster of significant (PFWE < 0.05, 
nonparametric cluster corrected) cross-frequency interactions. 
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We first examined if theta to gamma PAC was sensitive to associative novelty by contrasting 
PAC following fixations to updated versus repeated objects. We found significantly increased 
theta to gamma (80 to 100 Hz) PAC during fixations to updated objects, indicating that gamma 
amplitude was more dependent on theta phase when visual stimuli conflicted with memory (Fig. 
5a).  
 

Given significant PAC effects during updated fixations, we evaluated whether PAC during these 
fixations predicted subsequent memory performance. We found that increases in theta to high-
gamma (130 to 150 Hz) PAC were significantly greater on trials where the original object 
location was subsequently forgotten (Fig. 5b), suggesting that increased theta-high gamma PAC 
corresponded to enhanced encoding of the updated location. Consistent with electrode-level 
analyses, we did not observe a consistent relationship between PAC and retrieval-related eye 
movements (Fig. 5c). We examined the specificity of these effects to different frequency ranges 
by repeating this analysis for low-theta (1-3 Hz) and faster theta/alpha frequencies (7-10 Hz). We 
did not observe significant differences in PAC in these ranges, suggesting specificity of memory-
related PAC in the 4-6 Hz theta range. The observed differences in theta to gamma PAC reflect 
different processing states in hippocampal networks, wherein asynchronous local activity is 
necessary to segregate novel perceptual information from previously encoded memories. 
 
Discussion 
 
We set out to examine the relationship between hippocampal theta oscillations and memory-
driven viewing behaviors during visual exploration. To achieve this goal, we examined 
simultaneously recorded hippocampal potentials and eye movements while neurosurgical 

Figure 5. Hippocampal phase amplitude coupling predicts novelty detection and memory updating. (a) Top, post-saccade 
changes in PAC during fixations to updated and repeated object-locations are displayed for a range of gamma amplitudes. 
Below, significant (PFWE < 0.05, nonparametric cluster corrected) increases in PAC during related to novelty are indicated. (b) 
Theta to gamma PAC during object fixations on Mismatch trials varies with memory outcome. A significant (PFWE < 0.05, 
nonparametric cluster corrected), negative subsequent memory effects is depicted in the bottom panel. (c) PAC did not differ in 
the moments leading up to fixations to updated and original object-locations during Mismatch trials. 
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patients performed a spatial memory task. This paradigm allowed the disambiguation of eye 
movements driven by associative novelty (i.e., objects presented in updated spatial locations) and 
memory retrieval. We discovered that these two distinct viewing behaviors were uniquely tied to 
theta: phase locking preceded retrieval-guided eye movements and followed novelty-driven 
fixations, predicting memory performance. Analysis of theta to gamma PAC confirmed a 
potential mechanism by which the theta rhythm supports both encoding and retrieval. 
Modulation of gamma (80-100 Hz) amplitude by the theta rhythm increased during detection of 
updated object locations. Further, increased theta to high-gamma PAC predicted memory 
updating, as determined by a subsequent memory test. These data support theories of active 
hippocampal involvement in visual exploration (Voss et al., 2017) and provide novel evidence 
that theta oscillations support both retrieval- and novelty-dependent viewing behaviors. 
 
Based upon electrophysiological studies in humans and primates (Hoffman et al., 2013; Jutras et 
al., 2013) it has become apparent that hippocampal memory representations are used to guide 
saccades to behaviorally relevant locations (Meister and Buffalo, 2016). Of particular relevance 
to the present work, visual exploration of novel, but not repeated, scenes leads to a reset of 
hippocampal theta oscillations (Jutras et al., 2013). The consistency of this hippocampal phase 
reset predicts the success of novel encoding. In the present work, we provide evidence for 
conserved hippocampal processing in humans, by demonstrating increased phase consistency of 
theta oscillations following fixations to novel locations, which were further associated with 
improved memory performance. Recent work using fMRI (Liu et al., 2017) also suggests that 
visual exploration of scenes is associated with hippocampal function, as the number of fixations 
during encoding predicted both hippocampal activity and subsequent memory. This relationship 
between hippocampal activity and viewing behavior was limited to novel stimuli (but not 
repeated stimuli), suggesting hippocampal activity and exploratory eye movements are linked 
specifically when encoding novel content. Using our spatial memory paradigm to identify 
retrieval-dependent eye movements, we found theta phase-locking occurred prior to saccade 
onset. Taken together with previous studies that have tied hippocampal activity to retrieval-
guided eye movements (Bridge et al., 2017; Hannula and Ranganath, 2009) these results provide 
evidence that visual exploration is dependent upon the interplay of separate retrieval and 
novelty-detection mechanisms that underpin learning. 
 
With the high temporal resolution eye movements and hippocampal potentials, our data are 
uniquely suited to clarify the hippocampal mechanisms that drive learning under associative 
novelty. Notably, we found increased theta phase-locking and power following fixations to 
mismatched spatial locations, consistent with previous hippocampal recordings in humans (Chen 
et al., 2013). The consistent timing of these effects following fixation onset provide further 
evidence that hippocampal theta is involved in the computation of mismatch signals, as opposed 
to providing signals of perceptual familiarity that could guide viewing to novel locations. This 
extends previous fMRI work which has established the involvement of the hippocampus in 
associative novelty detection (Kumaran and Maguire, 2006, 2007a) and binding (Bridge and 
Voss, 2014b), specifically supporting the idea that the hippocampus acts as a comparator 
between new sensory inputs and prior memory (Kumaran and Maguire, 2007b; Lisman, 1999; 
Lisman and Grace, 2005; Vinogradova, 2001).  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/629451doi: bioRxiv preprint 

https://doi.org/10.1101/629451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

The observed relationship between the phase of theta oscillations and gamma amplitude provides 
insight into the mechanism by which hippocampal theta can promote learning under associative 
novelty. Individual theta cycles have been proposed to segregate neuronal activity into functional 
packets based on coactivation of neuronal populations during distinct time windows (Buzsaki 
and Moser, 2013; Hasselmo et al., 2002; Renno-Costa and Tort, 2017). Studies of rodent 
electrophysiology within the hippocampus have revealed slow (~30 to 50 Hz) and fast (~50 to 
100 Hz) gamma oscillations within area CA1 that exhibit PAC to the theta rhythm, with distinct 
preferred phases (Colgin et al., 2009; Yamamoto et al., 2014). Based on this evidence, it has 
been proposed that distinct phases of the theta rhythm in CA1 reflect different network states that 
differentially support memory encoding and retrieval (Colgin, 2015).  
 
We found a relationship between theta phase and gamma amplitude during fixations to updated 
stimulus locations. Consistent with previous investigations of PAC and memory processing 
(Lega et al., 2016; Vaz et al., 2017), increased PAC was associated with impaired memory 
function. Inspection of raw traces (e.g., Fig. 1b) revealed that the observed differences in PAC 
resulted from nested oscillations, as opposed to the modulation in the amplitude of sharp 
waveforms. Distinct neurophysiological states, defined by theta phase and modulation of 
separate gamma bands, therefore direct viewing from memory as opposed to novel information 
in the environment. While we did not observe theta-dependent modulation of gamma amplitude 
during retrieval, this could result from a number of methodological constrains, such as biased 
sampling to the anterior hippocampus and potential obscuring of narrowband gamma signals 
commonly observed in microelectrodes due to summation across larger diameter electrodes.  
 
Despite the emerging consensus in the rodent that theta oscillations in the hippocampus are 
responsible for segregating neuronal computations involved in encoding and retrieval operations 
(Colgin, 2015, 2016; Hasselmo et al., 2002), translating these findings to observations in humans 
has proven challenging. Comparative studies between rodents and humans suggest that theta 
rhythms in the human are commonly observed at lower frequencies (3 vs. 8 Hz) during 
exploratory behaviors (Watrous et al., 2013a). Additionally, studies have demonstrated multiple 
sources of theta rhythms in the medial temporal lobe (Lega et al., 2012; Mormann et al., 2008), 
including a "low-theta" or delta band (1-4 Hz) in addition to the typical theta band (4-8 Hz). 
Based on observations of encoding-related increases in power (Burke et al., 2013; Lega et al., 
2012; Miller et al., 2018) and PAC during verbal encoding are specific to the "low-theta" band 
(Lega et al., 2016), it has been proposed that lower frequency theta in humans reflects a 
homologue of rodent theta (Jacobs, 2014). In contrast to this body of work, we observed faster 
(i.e., predominantly greater than 4 Hz) memory-related theta dynamics. We believe this 
difference stems from the emphasis on visual information in our task, resulting in a task-
dependence in the frequency of theta oscillations. Higher frequency theta effects have been 
observed during visual search (Hoffman et al., 2013), in which alignment between saccades and 
theta oscillations was focused between 6-8 Hz. Our findings of novelty effects in the 4-10 Hz 
range are consistent with work in nonhuman primates (Jutras et al., 2013), which demonstrated 
that saccades during visual exploration caused resets in hippocampal oscillations predominantly 
in the 8-11 Hz range. As in the present study, the magnitude of these resets predicted the success 
of encoding during memory formation. Multiple factors could account for changes in the speed 
of hippocampal theta, including the type of representation being processed in the medial 
temporal lobe (Watrous et al., 2013b), spatial attention required by a given task, or the rate of 
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fixations. Future studies are necessary to determine what factors determine the speed of 
hippocampal theta oscillations and their relevance to different forms of memory. 
 
While our analysis of theta oscillations was restricted to electrodes in the hippocampus, memory-
guided exploratory behaviors depend upon interactions between distributed cortical systems 
(Voss et al., 2017), particularly those involved in the representing features within a scene, the 
spatial relationships between these features, and transforming these memory representations into 
an oculomotor plan based on current visual input. Kilian et al. (2012) discovered cells within the 
entorhinal cortex of macaques that coded the location of fixations in a grid-like fashion during a 
free-viewing task, serving as a potential mechanism to provide a scale-invariant representation of 
fixation locations within the scene (Bicanski and Burgess, 2019). Similar grid-like modulation of 
entorhinal activity has been observed in humans using fMRI (Julian et al., 2018; Nau et al., 
2018), providing converging evidence across species that the entorhinal system may provide a 
spatial framework for memory-guided viewing. As such, synchronous theta oscillations between 
the hippocampus and entorhinal systems would provide the spatial coding necessary to inform 
the oculomotor system of memory-relevant information. Though we were limited by electrode 
coverage, examining entorhinal-hippocampal synchrony and interactions between the 
hippocampus and other cortical systems should be a key aim for future studies. 
  
One potential caveat is that the observed eye movements in this study do no reflect natural 
exploratory behaviors per-se, but are rather driven by demands to learn and maintain the original 
object location throughout the task. If so, it is unclear how stereotyped these retrieval-dependent 
eye movements would be during unconstrained visual exploration. Free-viewing paradigms 
could build on this theoretical framework, and determine the extent to which hippocampal-
dependent viewing behaviors occur without task constraints. Given the observed retrieval phase-
locking effects occurred well before saccade initiation, it is likely that the hippocampus plays a 
causal role in generating these eye movements. Causal manipulation of hippocampal theta, 
including stimulation-based approaches could be used to test this hypothesis, coupled with 
growing evidence for disruptions in viewing behaviors from amnesic patients with hippocampal 
damage (Hannula et al., 2007; Lucas et al., 2019; Olsen et al., 2016; Ryan et al., 2000; Smith et 
al., 2006). 
 
In conclusion, encoding and retrieval dependent eye movements are time locked to the phase of 
the hippocampal theta rhythm which supports the model that distinct phases of the theta cycle 
segregate neural processing of information related to the present and the past (Colgin, 2016; 
Hasselmo et al., 2002; Hasselmo and Eichenbaum, 2005). Distinct encoding and retrieval states 
at different phases of the theta cycle would allow for structured comparison of the present and 
the past. Akin to spatial attention shifting between multiple locations relevant to a task at hand 
(Landau et al., 2015; Re et al., 2019), hippocampal theta could coordinate visual sampling 
between novel content in the environment and memory-rich spatial locations. The hippocampus 
thereby contributes to memory-guided behaviors through coordinated sampling of current and 
past perceptual states.  
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Table 1. Task-related eye movement behavior. 
 
  Mismatch    Match  
 Original Updated Other  Repeated Other Other 
Fixations per trial (N)  2.4 (0.3) 4.6 (0.4) 1.4 (0.3)  5.3 (0.4) 1.7 (0.4) 1.4 (0.3) 
Count SME (t) 1.4 -4.6* -0.3  3.7* -0.4 -1.7 
        
Fixation duration (ms) 210 (11) 388 (59) 212 (14)  342 (39) 199 (11) 206 (6) 
Duration SME (t) 0.5 1.1 1.4  -1.6 -2.4 -.6 

*p < 0.05, parenthesis denote SEM 
 
 
 
 
Table 2. Subject demographics. 
 
 S1 S2 S3 S4 S5 

Age (years) 20 34 53 25 44 
Sex M M M F F 
Full-scale IQ 94 109 105 121 92 
Implanted 
Hemisphere 

Left Left Right Left Left 

Epileptic 
Focus 

Basal 
temporal 

Basal temporal Middle 
hippocampus 

Basal 
temporal 

Amygdala 

Etiology Cortical 
dysplasia 

Dysembryoplastic 
neuroepithelial 
tumor 

Focal cortical 
dysplasia 

Low 
grade 
glioma 

Mesial 
temporal 
sclerosis 

Duration of 
epilepsy 
(years) 

10 10 8 3 41 

Hippocampal 
contacts (n) 

8 4 6 7 6 
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Methods 
 
Participants 
5 patients (3 male; see Table 1 for demographic information) with refractory epilepsy performed 
our associative memory task during their stay at Northwestern Memorial Hospital (Chicago, IL). 
All patients had depth electrodes implanted in the hippocampus as part of neurosurgical 
monitoring prior to elective surgery. Written informed consent was acquired from all patients 
prior to participation in the research protocol in accordance with the Northwestern University 
Institutional Review Board.  
 
Experimental paradigm 
We tested memory for associations between objects and their spatial locations using a novel 
spatial memory task. This task consisted of 3 distinct phases (Study, Refresh, Recognition), with 
each phase separated by a 60s distractor (presentation of unrelated visual stimuli). Subjects 
performed 8 blocks in which they learned spatial locations for a sequence of 16 objects. Eye 
movements were recorded during each phase of the task, with 5-point gaze calibration performed 
before each phase. Objects were 128 images of real-life objects from the Bank of Standardized 
Stimuli (Brodeur et al., 2010). During each phase of the task, objects were presented at 3º of 
visual angle, with a red square of 0.2º of visual angle centered on each object. Stimuli were 
presented on a 23.6” monitor with a 120 Hz refresh rate from a stimulus control laptop. 
Synchronization pulses were sent from the stimulus control laptop to the clinical recording 
system using a DAQ control board, allowing alignment of electrophysiological and behavioral 
data. 
  
At the beginning of the Study phase, a unique background image appeared for 5s to allow 
familiarization with the scene that could serve as a reference for the spatial location of each 
object. Throughout the remainder of the Study phase, a sequence of 16 objects were presented at 
distinct locations superimposed on the background scene. At the start of each study trial, a 
fixation cross flashed twice on the screen (250 ms per flash, separated by 250 ms of the 
background scene) to cue the location of the next object. The fixation cross remained on the 
screen for a duration of 2s, followed by presentation of the object for 3s. 
  
Next, subjects were tested on their spatial memory for each of the objects during the Refresh 
phase. During this phase of the task, three location cues indicated by small red squares (0.2º of 
visual angle) were presented in an equilateral triangle (randomly selected distance for each 
stimulus, mean distance of 12º and a range of 5.9-21.1º of visual angle across presented arrays). 
The object was presented at one of these three locations. Importantly, one of these locations was 
the object’s original location. On each block, half of the trials were randomly assigned to the 
Mismatch condition, in which the object was presented at one of the two novel locations. On the 
Match trials, the object was presented in its original location. Each trial began with the 
presentation of the background scene for 1s followed by a fixation cross at the center of the 
screen for 1s, at which point the object and location cues appeared for 5s. Following stimulus 
presentation, memory for original location of each item was tested. Subjects identified whether 
the object was in its original location, a new location, or if they were unsure by clicking a box 
that said: Same, Different, or Unsure. 
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Each block concluded with the Recognition phase which served as a final memory test for the 
original object locations. The background scene appeared for 1s, followed by the presentation of 
a fixation cross in the center of the screen for 1s. Then, each object was presented at all three 
locations for a duration of 5s. Following stimulus presentation, subjects selected the original 
object location using a three-button response pad.  
 
Eye tracking 
Eye movements were recorded at 500 Hz using an Eyelink 1000 remote tracking system (SR 
Research, Ontario, Canada). Continuous eye-movement records were parsed into fixation, 
saccade, and blink events. Motion (0.15º), velocity (30º/s) and acceleration (8000º/s2) thresholds 
were used to identify saccade events. Blinks were identified based on pupil size, and remaining 
epochs below detection thresholds were classified as fixations. The location of each fixation 
event was computed as the average gaze position throughout the duration of the fixation. 
Circular viewing regions of interest (ROIs) were constructed based on a distance of 6º from one 
of the three potential object locations. We focused our analysis of hippocampal activity to the 
subset of fixation events greater than 80 ms in duration that occurred 500 ms after object 
presentation and 500 ms prior to the end of each trial to avoid stimulus onset and offset effects.   
 
Intracranial recordings 
A combination of depth electrodes (Integra Life Sciences, Plainsboro NJ; AD-TECH Medical 
Instrument Co., Racine, WI; DIXI Medical, Besançon, France) as well as subdural grids and 
strips. Electrode spacing on hippocampal depths was 5mm. Electrophysiological data were 
recorded to a clinical reference using a Nihon Kohden amplifier with a sample rate of 1-2 kHz 
with a bandpass filter from 0.6 to 600 Hz. Data were re-referenced to a bipolar montage and 
downsampled to 500 Hz as part of preprocessing. Line noise was reduced by application of a 
band-stop 4th order Butterworth filter. To rule out the possibility that epileptiform activity 
influenced our analyses, electrodes that exhibited inter-ictal spiking were excluded from 
analysis. In addition, all analyses were repeated after excluding contacts within the seizure onset 
zone (2 electrodes in S3). There observed results were qualitatively identical, with no statistical 
differences when including all electrodes (all P > 0.05). 
 
Anatomical localization 
Post-implant CT (n=4) or T1 weighted structural images (n=1) were coregistered with 
presurgical T1 weighted structural MRIs using SPM12. Subdural electrodes were localized by 
reconstructing whole-brain cortical surfaces from pre-implant T1-weighted MRIs using the 
computational anatomy toolbox (Dahnke et al., 2013) and snapping electrode centroids to the 
cortical surface based on energy minimization (Dykstra et al., 2012). All T1-weighted MRI scans 
were normalized to MNI space by using a combination of affine and nonlinear registration steps, 
bias correction, and segmentation into grey matter, white matter, and cerebrospinal fluid 
components. Deformations from the normalization procedure were applied to individual 
electrode locations identified on post-implant CT images or structural images using Bioimage 
Suite (https://medicine.yale.edu/bioimaging/suite/).  
 
Spectral decomposition 
To examine oscillatory processes in the hippocampus, we decomposed bipolar recordings into 
measures of spectral phase and power using the continuous Morlet wavelet transform (wave 
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number 5) across 30 logarithmically spaced frequencies from 1 to 10 Hz. We examined 1500 ms 
windows surrounding each fixation event of interest, with a 1250 ms buffer to prevent edge 
artifacts. 
 
Phase-locking analyses 
We examined the relationship between the hippocampal theta rhythm and individual eye 
movements by computing the inter-trial phase coherence (a measure of phase-locking): 
 

𝐼𝑇𝐶$% = 	
1
𝑁
*+𝑒-./01
2

345

* 

 
for a given time (t) and frequency (f), where N is the total number of individual trials, k, and eiφ is 
the polar representation of the phase angle, φ. This measure was computed separately for 
individual conditions of interest (e.g., fixations to a specific region of interest on the display). As 
this measure is biased by the number of observations, with fewer observations leading to inflated 
ITC measures, we used a random subsampling approach to ensure that the number of 
observations were matched prior to statistical testing.  
 
Phase amplitude coupling analyses 
Cross-frequency coupling between the phase of theta and gamma amplitude was computed using 
MI (Tort et al., 2010). MI is defined as the deviation in an amplitude distribution (across phases) 
from a uniform distribution, an adaptation from Kullback-Leibler distance (Kullback and 
Leibler, 1951), DKL, that normalizes the range of the distance between zero and one: 
 

𝑀𝐼 =	
𝐷89(𝑃,𝑈)
log(𝑁)  

 
 
where P is the normalized amplitude distribution as a function of phase, U is a uniform 
distribution, and N is the number of phase bins. For all presented analyses, we used 20 phase bins 
of 18º. MI takes values greater than zero when the observed amplitude varies with phase and is 
equal to zero when the distribution is uniform. 
 
To circumvent the relatively short epochs in which we analyzed cross-frequency coupling 
(constrained by the frequency of eye movements during our task), we computed a standardized 
measure of the modulation index, MIZ, via a surrogate control analysis. Specifically, for each 
trial and frequency combination, we permuted the observed phase timeseries across trials 
(separately for each condition of interest). This procedure was repeated 1000 times, resulting in a 
null distribution of MI values that could be explained by random (or condition-evoked) 
variations in the observed signal rather than true coupling between theta phase and gamma 
amplitude. MIZ was measured as the difference between the observed MI and mean of the 
surrogate distribution, in units of standard deviations. These measures were used for all 
subsequent analysis of cross-frequency coupling. 
 
Statistical analyses 
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We adopted a nonparametric permutation-based approach (Maris and Oostenveld, 2007) to 
correct for multiple comparisons across time and frequencies. When comparing differences in 
ITC or power between different types of fixations, we constructed a null distribution of 
differences by permuting the assignment of condition labels, blocked at the subject level. This 
null distribution was used to define an independent cluster-forming threshold for each observed 
measure (e.g., ITC at a specific time-frequency pair). When measures would be biased by the 
number of observations per condition (e.g., differences in ITC), random subsampling was used to 
equate the number of observations per condition. Individual clusters were considered significant 
(PFWE < 0.05) if the summed statistic within each observed cluster exceeded 95% or 97.5% of 
clusters in the null distribution for one- and two-tailed tests, respectively. For tests comparing the 
relationship between the phase of an oscillation and spectral power, null distributions were 
constructed by permuting the phase timeseries across trials within each condition, per electrode 
and subject. These null distributions were used to standardize measures of phase amplitude 
coupling prior to statistical testing, as described above. 
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Figure S1. Eye-movement related changes in theta power (related to Figure 2). (a) Increased 
theta power precedes (left) and follow (right) fixations to the updated compared to the original 
object-location. (b) Same as a, but a contrast of theta power during fixations to the original 
object-location on Mismatch trials to the repeated object-location on Match trials. (c) Same as in 
a, but focusing on novelty-related changes in power. Increased low frequency power is identified 
following fixations to updated versus repeated object-locations. The vertical dashed line 
indicates the time of fixation onset. Significant clusters (PFWE < 0.05, nonparametric cluster 
correction) are highlighted. 
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