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3

Abstract4

Motivation: Cancer subtype classification has the potential to significantly improve disease prognosis5

and develop individualized patient management. Existing methods are limited by their ability to han-6

dle extremely high-dimensional data and by the influence of misleading, irrelevant factors, resulting in7

ambiguous and overlapping subtypes.8

Results: To address the above issues, we proposed a novel approach to disentangling and eliminating9

irrelevant factors by leveraging the power of deep learning. Specifically, we designed a deep learning10

framework, referred to as DeepType, that performs joint supervised classification, unsupervised clus-11

tering and dimensionality reduction to learn cancer-relevant data representation with cluster structure.12

We applied DeepType to the METABRIC breast cancer dataset and compared its performance to13

state-of-the-art methods. DeepType significantly outperformed the existing methods, identifying more14

robust subtypes while using fewer genes. The new approach provides a framework for the derivation of15

more accurate and robust molecular cancer subtypes by using increasingly complex, multi-source data.16

Availability and implementation: An open-source software package for the proposed method is17

freely available at www.acsu.buffalo.edu/˜yijunsun/lab/DeepType.html.18
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1 Introduction22

Human cancer is a heterogeneous disease initiated by random somatic mutations and driven by multiple23

genomic alterations (Hanahan and Weinberg, 2011; Sun et al., 2017). In order to move towards personal-24

ized treatment regimes, cancers of specific tissues have been divided into subtypes based on the molecular25

profiles of primary tumors (Sørlie et al., 2001; Curtis et al., 2012; Parker et al., 2009). The premise is that26

patients of the same molecular subtypes are likely to have similar disease etiology, responses to therapy,27

and clinical outcomes. Thus, molecular subtyping can reveal information valuable for a range of cancer28

studies from etiology and tumor biology to prognosis and personalized medicine.29

Most early work on molecular subtyping has been performed on data obtained from breast cancer30

tissues (Sørlie et al., 2001, 2003). Typically, breast cancer is not lethal immediately, and thus there31

is an opportunity to assist with prognostication and patient management using molecular information.32

Molecular subtyping of breast cancer initially focused on mRNA data obtained from microarray platforms33

and parsed molecular profiles to stratify patients according to clinical outcomes (Sørlie et al., 2001).34

Refinement of the subtype categories through validation in independent datasets identified five broad35

subtypes, including normal-like, luminal A, luminal B, basal, and HER2+, each with distinct clinical36

outcomes (Sørlie et al., 2003; Parker et al., 2009). These early studies completely altered our views of37

breast cancer and offered a foundation for the development of therapies tailored to specific subtypes.38

However, possibly due to the small number of tumor samples used in initial analyses and the technical39

limitations of the methods used for gene selection and clustering analysis, several large-scale benchmark40

studies have demonstrated that the current stratification of breast cancer is only approximate, and that41

the high degree of ambiguity in existing subtyping systems induces uncertainty in the classification of new42

patients (Weigelt et al., 2010; Mackay et al., 2011).43

The desire for levels of accuracy that can ultimately lead to clinical utility continues to drive the44

field to refine breast cancer subtypes (Parker et al., 2009; Haibe-Kains et al., 2012; Shen et al., 2013; Sun45

et al., 2014, 2017) and to identify molecular subtypes in other cancers (Abeshouse et al., 2015). The recent46

establishment of international cancer genome consortia (Cancer Genome Atlas Network, 2012; Abeshouse47

et al., 2015; Curtis et al., 2012) has generally overcome the sample-size issue. In this paper, we focus mainly48

on developing methods to address the computational challenges associated with detecting cancer related49

genes and biologically meaningful subtypes using high-dimensional genomics data. Molecular subtyping50

can be formulated as a supervised-learning problem, that is, to use established tumor subtypes as class51

labels to perform gene selection and construct a model for the classification of new patients. However, as52

mentioned above, current subtyping systems provide only a rough stratification of cancer, and supervised-53

learning based approaches may not enable us to identify novel subtypes. This is because the primary goal54

of supervised learning is to identify genes to achieve the maximum separation of samples from different55

subtypes, and genes that support novel subtypes can be considered irrelevant and removed. Consequently,56

most existing methods were developed within the unsupervised-learning framework. Representative work57

includes SparseK (Witten and Tibshirani, 2010), iCluster (Shen et al., 2009, 2013) and non-negative58

matrix factorization (Kormaksson et al., 2012). A major issue with existing methods is that there is59

no guarantee that subtypes identified through de novo clustering are biologically relevant. Presumably,60

genomics data records all ongoing biological processes in a cell or tissue, where multiple factors interact61

with each other in a complex and entangled manner. Tumor samples can be grouped based on factors that62

are not related to the actual disease (e.g., race and eye color). A possible way to address the issue is to63

use previously established results to guide the detection of new subtypes. However, as the name suggests,64

de novo clustering completely ignores results from previous efforts. Another major limitation is that65

for computational considerations most existing methods perform data dimensionality reduction through66

linear transformation (e.g., feature weighting used in SparseK (Witten and Tibshirani, 2010)). Thus,67

they cannot adequately deal with complex non-linear data and extract pertinent information to detect68

subtypes residing in non-linear manifolds in a high-dimensional space. Finally, some existing methods do69

not scale well to handle high-dimensional data. For example, iCluster (Shen et al., 2009, 2013) involves70

matrix inversion and thus can only process a few thousands of genes. A commonly used practice is to71
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Figure 1: Overview of the proposed deep learning based method for cancer molecular subtyping. It
consists of three major components: representation learning, prior knowledge integration, and subtyping.
The first part maps raw genomics data onto a representation space, the second part incorporates prior
biological knowledge to guide representation learning, and the third part generates subtyping results. The
network parameters are learned by minimizing a unified objective function consisting of a classification
loss, a clustering loss and a sparsity penalty.

perform preprocessing and retain only the most variant genes (Curtis et al., 2012). However, there is no72

guarantee that low-variant genes contain no information and the cut-offs used to select variant genes were73

usually set somehow arbitrarily.74

The above observations motivated us to develop a novel deep-learning based approach, referred to as75

DeepType, that performs cancer subtyping through joint supervised and unsupervised learning but ad-76

dresses their respective limitations. Due to the ability to learn good data representation, deep learning has77

recently achieved state-of-the-art performance in computer vision, pattern recognition and bioinformatics78

(LeCun et al., 2015; Zheng et al., 2019). For our purpose, by leveraging the power of a multi-layer neural79

network for representation learning, we map raw genomics data into a space where clusters can be easily80

detected. To ensure the biological relevance of detected clusters, we incorporate prior biological knowledge81

to guide representation learning. We train the neural network by minimizing a unified objective function82

consisting of a classification loss, a clustering loss and a sparsity penalty. The training process can be83

easily performed by using a mini-batch gradient descent method. Thus, our method can handle large84

datasets with extremely high dimensionality. Although the idea of using deep learning for clustering is85

not new (see, e.g., Xie et al. (2016)), to the best of our knowledge, this work represents the first attempt to86

use deep learning to perform joint supervised and unsupervised learning for cancer subtype classification.87

A large-scale experiment was performed that demonstrated that DeepType significantly outperformed the88

existing approaches. The new approach provides a framework for the derivation of more accurate and89

robust molecular cancer subtypes by using increasingly complex genomic data.90
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2 Methods91

In this section, we present a detailed description of the proposed method for cancer subtype identification.92

We also propose novel procedures for optimizing the associated objective function and estimating the93

hyper-parameters.94

2.1 Deep Learning for Cancer Subtype Identification95

Let X = [x1, · · · ,xN ] be a cohort of tumor samples and Y = [y1, · · · ,yN ] be a rough stratification of the96

samples (e.g., subtyping results from previous studies), where xn ∈ RD is the n-th sample and yn ∈ RJ is97

the corresponding class label vector with yjn = 1 if xn belongs to the j-th group and 0 otherwise. Our goal98

is to identify a small set of cancer related genes and perform clustering analysis on the detected genes to99

refine existing classification systems and detect novel subtypes. To this end, we utilize the representation100

power of a multi-layer neural network to project raw data onto a representation space where clusters101

can be easily detected. As discussed above, clusters identified through unsupervised learning may not be102

biologically relevant. To address the issue, we impose an additional constraint that the detected clusters103

are concordance with previous results. Specifically, we cast it as a supervised-learning problem, that is,104

to find a representation space where the class labels can be accurately predicted.105

Figure 1 depicts the network structure of the proposed method. It consists of an input layer, M106

hidden layers, a classification layer and a clustering module. The M -th hidden layer is designated as the107

representation layer, the output of which is fed into the classification layer and the clustering module.108

Mathematically, the neural network can be described as follows:109

o1 = sigmoid(W1x + b1) ,

om = sigmoid(Wmom−1 + bm), 2 ≤ m ≤M ,

ȳ = softmax(Wm+1oM + bm+1) ,

(1)

where Wm, bm, and om are the weight matrix, bias term and output of the m-th layer, respectively, and110

ȳ is the output of the classification layer. For the purpose of this study, we use sigmoid and softmax as111

the activation functions for the hidden and classification layers, respectively. For notational convenience,112

let Θ = {(Wm,bm)}Mm=1 and denote f(x|Θ) : RD → RDM as the mapping function that projects raw113

data onto a representation space, where DM is the number of the nodes in the representation layer and114

DM << D.115

We optimize network parameters Θ through joint supervised and unsupervised learning by minimizing116

an objective function that consists of a classification loss, a clustering loss and a regularization term. The117

classification loss measures the discrepancy between the predicted and given class labels. By construction,118

the j-th element of ȳn can be interpreted as the probability of xn belonging to the j-th group. Thus, we119

use the cross entropy to quantify the classification loss:120

Lclassification = −
N∑

n=1

J∑
j=1

yjn log ȳjn . (2)

We use the K-means method (Lloyd, 1982) to detect clusters in the representation space. The loss121

function optimized by K-means is given by122

Lclustering =
N∑

n=1

‖f(xn|Θ)−Csn‖22 , (3)

subject to
∑K

k=1 skn = 1, skn ∈ {0, 1}, ∀k, ∀n, where K is the number of clusters, C is a center matrix123

with each column representing a cluster center, and sn is a binary vector where skn = 1 if xn is assigned124
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to cluster k and 0 otherwise. Finally, we impose an `2,1-norm regularization (Nie et al., 2010) on the125

weight matrix of the first layer to control the model complexity and to select cancer related genes:126

Lsparsity = ‖WT
1 ‖2,1 =

D∑
j=1

√√√√ D2∑
i=1

W 2
1ij , (4)

where W1ij is the ij-th element of W1 and D2 is the number of the nodes in the second layer. The127

`2,1-norm regularization has an effect of automatically determining the number of nodes activated in the128

input layer, and thus the number of genes used in downstream subtyping analysis.129

Combining the above three losses, we obtain the following novel formulation for cancer subtype iden-130

tification:131

min
{Θ,S,C}

N∑
n=1

‖f(xn|Θ)−Csn‖22 + λ‖WT
1 ‖2,1

subject to −
N∑

n=1

J∑
j=1

yjn log ȳjn ≤ ζ,
K∑
k=1

skn = 1, skn ∈ {0, 1}, ∀k, ∀n ,
(5)

where S = [s1, · · · , sN ] and λ is a regularization parameter that controls the sparseness of weight matrix132

W1. The above formulation can be interpreted as finding a representation space to minimize the clustering133

loss while maintaining the classification loss smaller than a user defined upper bound ζ. For ease of134

optimization, we move the classification-loss constraint to the objective function and write the problem135

in the following equivalent form:136

min
{Θ,S,C}

−
N∑

n=1

J∑
j=1

yjn log ȳjn + α
N∑

n=1

‖f(xn|Θ)−Csn‖22 + λ‖WT
1 ‖2,1

subject to

K∑
k=1

skn = 1, skn ∈ {0, 1}, ∀k, ∀n ,

(6)

where α is a tradeoff parameter that controls the balance between the classification and clustering perfor-137

mance. In the following sections, we describe how to solve the above optimization problem and estimate138

the hyper-parameters.139

2.2 Optimization140

The above optimization problem contains three sets of variables, namely, network parameters Θ, assign-141

ment matrix S, and cluster centers C. It is difficult to solve the problem directly since the parameters142

are coupled and S is a binary matrix. To address the issue, we partition the variables into two groups,143

i.e., Θ and (S,C), and employ an alternating optimization strategy to solve the problem. Specifically, we144

first perform pre-training to initialize the network by ignoring the clustering module (i.e., setting α = 0).145

Then, we fix Θ and transform the problem into146

min
{C,S}

N∑
n=1

‖f(xn|Θ)−Csn‖22, subject to

K∑
k=1

skn = 1, skn ∈ {0, 1}, ∀k, ∀n, (7)

which can be readily solved by using the standard K-means method. Then, we fix (S,C) and write the147

problem as148

min
Θ
−

N∑
n=1

J∑
j=1

yjn log ȳjn + α
N∑

n=1

‖f(xn|Θ) + Csn‖22 + λ‖WT
1 ‖2,1 , (8)

which can be optimized through back-propagation by using the mini-batch based stochastic gradient149

descent method (Kingma and Ba, 2014). The above procedures iterate until convergence.150
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2.3 Parameter Estimation151

We describe how to estimate the three hyper-parameters of the proposed method, namely regularization152

parameter λ, tradeoff parameter α, and number of clusters K. In order to avoid a computationally153

expensive three-dimensional grid search, we first ignore the clustering module by setting α = 0 and154

perform supervised learning to estimate λ. The rationale is that previous subtyping results could provide155

us with sufficient information to determine the value of λ. Specifically, we randomly partition training156

data into ten equally-sized sub-datasets, perform ten-fold cross-validation and estimate λ by using the157

one-standard-error rule (Hastie et al., 2009). Once we determine the value of λ, we perform K-means158

analysis on the outputs of the representation layer and pre-estimate the number of clusters, denoted159

as K̃, as the one that maximizes the average silhouette width (Wiwie et al., 2015). Since the data160

representation is obtained through supervised learning, which tends to group samples with the same161

labels together, K̃ is likely to be the lower bound of the true value. Let Ki = K̃ + i, 0 ≤ i ≤ T . For162

each Ki, we train a deep-learning model by using different α values and record the corresponding ten-fold163

cross-validation classification errors. By design, α controls the tradeoff between the classification and164

clustering performance, and the classification error increases with the increase of α. Again, by using the165

one-standard-error rule, for each Ki, we find the largest α, denoted as αi, that results in a classification166

error that is within one standard deviation of the one obtained by setting α = 0 (i.e., we require that the167

obtained classifier does not perform significantly worse than the existing subtyping system), and record168

the corresponding average silhouette width si. Once we run over all possible Ki, we obtain T + 1 triplets169

{Ki, αi, si}Ti=0. Finally, we determine the number of clusters K and the tradeoff parameter α as the pair170

that yields the largest average silhouette width. The pseudo-code of the proposed procedure is given in171

Algorithm S1, and the proposed procedure performed quite well in our numerical experiment (see Figure172

S1).173

3 Experiments174

We conducted a large-scale experiment on breast and bladder cancers to demonstrate the effectiveness of175

the proposed method. Due to space limit, here we report only the results of the breast cancer study and176

present the bladder cancer results in Supplementary Data.177

3.1 Experiment Setting178

The breast cancer dataset was obtained from the METABRIC study (Curtis et al., 2012), which contains179

the expression profiles of 25,160 genes from 1,989 primary breast tumor samples and 144 normal breast180

tissue samples. It is probably the largest single breast cancer dataset assayed to date. For computational181

convenience, we retained only the top 20,000 most variant genes for the downstream analysis. For model182

construction and performance evaluation, we randomly partitioned the data into a training and test183

datasets, containing 80% and 20% of the samples, respectively. In this study, we used the PAM50184

subtypes (Parker et al., 2009) as class labels in the training process. We designed a four-layer neural185

network for the joint supervised and unsupervised learning. The numbers of the nodes in the input186

layer, the two hidden layers and the output layer were set to 20,000, 1,024, 512, and 6, respectively. We187

employed the Adam method (Kingma and Ba, 2014) to tune the parameters of the model. The learning188

rate was set to 1e-3, the numbers of training epochs for model initialization and the joint supervised and189

unsupervised training were set to 300 and 1,500, respectively, and the batch size was set to 256. By190

using the method proposed in Section 2.3, the number of clusters K, the tradeoff parameter α and the191

regularization parameter λ were estimated to be 11, 1.2 and 0.006, respectively (see Figure S1). To ensure192

that the constructed model did not overfit the data, we tracked the training and validation losses in the193

training process (see Figure S2), and no sign of over-fitting was observed.194
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Figure 2: DeepType identified ten clinically relevant breast cancer subtypes. (a) The sample distributions
of the identified clusters visualized by t-SNE. Nearly all of the normal tissue samples were grouped into
a single cluster (i.e., Cluster 0), and the tumor samples were grouped into ten well-separated clusters,
labelled as DeepType 1-10. (b) The PAM50 composition of the identified clusters. (c) Survival data
analysis showed that the ten identified subtypes were associated with distinct clinical outcomes. (d) The
heatmap of the 218 selected genes showed that the identified clusters exhibited distinct transcriptional
characteristics on several gene modules. The samples were arranged by the clustering assignments, and
the expression levels were linearly scaled into [0, 1] across samples.

3.2 Clinically Relevant Subtypes Revealed by DeepType195

By applying the proposed method to the breast cancer dataset, a total of 218 genes were selected and 11196

clusters were detected. To visualize the identified clusters, we applied t-SNE (van der Maaten and Hinton,197

2008) to the outputs of the representation layer. Figure 2(a-b) present the sample distributions of the198

identified clusters and their PAM50 compositions, respectively. We can see that nearly all of the normal199

tissue samples were grouped into a single cluster (i.e., Cluster 0), and the tumor samples were grouped200

into ten well-separated clusters, labelled as DeepType 1-10. To demonstrate the clinical relevance of the201

identified tumor subtypes, a disease-specific survival data analysis was performed. Figure 2(c) shows that202

the ten subtypes were associated with distinct prognostic outcomes (logrank test, p-value < 1.22e-19).203

Further internal and external validation analysis of the detected clusters is presented in Sections 3.3 and204
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Figure 3: Visualization of the sample distributions of the clusters detected by three methods applied to
data containing 10,000 most variant genes. Each sample was color-coded by its clustering assignment
(top) and PAM50 label (bottom). DeepType revealed a clear eleven-cluster structure including a cluster
comprising primarily normal tissue samples.

3.4.205

Figure 2(d) represents the heatmap of the 218 selected genes. The descriptions of the genes are given206

in Table S1. The detected subtypes contain distinct transcriptional characteristics associated with several207

gene co-expression modules and key cancer genes. Most normal-like samples were grouped into DeepType208

1, and have an expression pattern similar to normal samples. The luminal A samples were divided into209

DeepTypes 3, 4 and 8 with low expression on the STIL module (key gene: STIL) and intermediate210

expression on the GATA3 module (key genes: TBX3, GATA3, ESR1, CNTNAP2 and FOXA1). Among211

the three subtypes, the expression of the KRT family (key genes: KRT14, KRT15 and KRT17) were212

highest in DeepType 8, intermediate in DeepType 4, and lowest in DeepType 3. The luminal B samples213

were partitioned into DeepTypes 2, 7 and 10, with intermediate to high expression of the GATA3 and214

STIL gene modules, and low expression of CDH3 and FOXC1. Among the three subtypes, the expression215

of the genes in the STIL module was highest in DeepType 10, intermediate in DeepType 2 and lowest in216

DeepType 7. DeepTypes 5 and 6, which were dominated by mixed HER2+/basal and HER2+ samples,217

respectively, had very high expression on ERBB2 and CDH1 and low expression on TBX3, GATA3 and218

ESR1 genes. DeepType 9, composed entirely of basal samples, had low expression in the GATA3 module219

and high expression in the STIL and KRT modules. The distinct expression patterns and prognostic220

outcomes of the detected clusters suggest that the proposed method is able to detect new breast cancer221

subtypes beyond the PAM50 classification, and a further analysis could reveal information of the breast222

cancer molecular taxonomy in a higher level of resolution.223

3.3 Comparison Study224

To further demonstrate the effectiveness of the proposed method, we compared it with two state-of-the-225

art methods, namely SparseK (Witten and Tibshirani, 2010) and iCluster (Shen et al., 2009). Both226
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Table 1: External evaluation of subtypes identified by three methods applied to datasets with a various
number of input genes. iCluster failed on datasets with 15,000 and 20,000 genes. DeepType significantly
outperformed SparseK (p-value ≤ 7.7e-14) and iCluster (p-value ≤ 1.3e-19, Wilcoxon rank-sum test).

Average Purity NMI
5000 10000 15000 20000 5000 10000 15000 20000

PAM50
DeepType 0.86 0.80 0.85 0.87 0.62 0.56 0.62 0.61
SparseK 0.65 0.68 0.64 0.63 0.39 0.40 0.37 0.38
iCluster 0.43 0.65 / / 0.08 0.34 / /

Histological
Grade

DeepType 0.67 0.67 0.66 0.67 0.12 0.12 0.12 0.13
SparseK 0.63 0.66 0.65 0.63 0.11 0.10 0.12 0.09
iCluster 0.55 0.63 / / 0.04 0.11 / /

NPI
DeepType 0.57 0.55 0.60 0.58 0.08 0.09 0.10 0.07
SparseK 0.56 0.55 0.59 0.58 0.07 0.09 0.07 0.07
iCluster 0.56 0.57 / / 0.04 0.09 / /

GGI
DeepType 0.69 0.68 0.70 0.69 0.15 0.16 0.14 0.13
SparseK 0.69 0.70 0.70 0.69 0.12 0.14 0.13 0.12
iCluster 0.68 0.67 / / 0.04 0.11 / /

Oncotype DX
DeepType 0.88 0.85 0.87 0.86 0.25 0.26 0.27 0.24
SparseK 0.75 0.78 0.78 0.76 0.14 0.16 0.15 0.13
iCluster 0.64 0.74 / / 0.06 0.13 / /

methods perform feature selection and clustering analysis simultaneously, and iCluster was also used in227

the METABRIC study (Curtis et al., 2012). The source code of the two methods was downloaded from228

the CRAN website1,2. Following Shen et al. (2013), we tuned the parameters of iCluster (i.e., the number229

of clusters K and the sparsity penalty coefficient λ) by maximizing the reproducibility index. SparseK230

also contains two parameters, the number of clusters K and the `1 regularization parameter λ. By using231

the method described in Witten and Tibshirani (2010), we first estimated the optimal λ for each K, and232

then determined the value of the optimal K based on gap statistic (Tibshirani et al., 2001). To test the233

ability of the three methods to handle high-dimensional data, we generated four datasets each containing234

a different number of the most variant genes, ranging from 5,000, 10,000, 15,000 and 20,000. Although235

we herein considered only gene expression data, it is possible to perform cancer subtyping by integrating236

genomics data from different platforms. Therefore, the ability to handle high-dimensional data is an237

important consideration in algorithm development. Below, we performed a series of quantitative and238

qualitative analyses to compare the performance of the three methods.239

We first visualized the sample distributions of the clusters detected by the three methods (Figure240

3). Since iCluster failed on the datasets with 15,000 and 20,000 genes due to the need of performing241

matrix inversion of high-dimensional data, we considered only the results generated by using the dataset242

with 10,000 genes. We can see that DeepType identified eleven well-defined clusters, nearly all normal243

tissue samples were grouped into a single cluster, and the clusters that composed of tumor samples were244

well-separated and highly concordant with the PAM50 labels. In contrast, for SparseK and iCluster, the245

normal tissue samples were grouped into multiple clusters, which suggests that genes unrelated to cancer246

were selected. Moreover, the tumor samples with different PAM50 labels overlapped considerably, and247

did not exhibit a clear clustering structure.248

We then performed a series of external and internal evaluations of the clusters detected by the three249

methods. For external evaluation, we assessed the concordance between the identified cancer subtypes and250

some widely used clinical and prognostic characteristics of breast cancer, including the PAM50 subtype251

(Parker et al., 2009), histological grade, Nottingham prognostic index (NPI) (Haybittle et al., 1982),252

1https://cran.r-project.org/web/packages/iCluster/index.html
2https://cran.r-project.org/web/packages/sparcl/index.html
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Table 2: Internal evaluation of subtypes identified by three methods applied to datasets with a various
number of input genes. The Davies–Bouldin index is a value in [0, inf), and a smaller value suggests a
better clustering scheme. DeepType significantly outperformed SparseK (p-value ≤ 7.8e-5) and iCluster
(p-value ≤ 7.8e-5, Wilcoxon rank-sum test).

Silhouette width Davies–Bouldin index

DeepType SparseK iCluster DeepType SparseK iCluster

5000 0.48 0.17 0.33 1.01 1.88 1.79
10000 0.48 0.22 0.33 0.87 1.94 1.23
15000 0.44 0.19 / 0.69 1.92 /
20000 0.63 0.15 / 0.67 2.31 /

Table 3: The numbers of genes selected by DeepType, iCluster and SparseK applied to datasets containing
a various number of input genes.

# of input genes DeepType SparseK iCluster

5000 182 949 521
10000 239 982 728
15000 250 918 /
20000 218 886 /

gene expression grade index (GGI) (Sotiriou et al., 2006) and the Oncotype DX prognostic test (Sparano253

et al., 2018) (see Table S2 for a detailed description). Specifically, we used average purity and normalized254

mutual information (NMI) to evaluate the extent to which the identified subtypes matched the above255

described characteristics. The results are reported in Table 1. Our analysis showed that the subtypes256

identified by DeepType were highly concordant with the clinical variables and prognostic information. In257

all cases, the results generated by DeepType matched the PAM50 labels to the highest degree. This is258

expected since the PAM50 labels were used in training DeepType. Our method also produced the highest259

agreement with the histological grades, NPI and GGI. Notably, when compared with Oncotype DX, the260

average purities and NMI scores of DeepType were much higher than the other two methods. This is261

highly significant since while both NPI and GGI provide some values in predicting the clinical outcomes262

of breast cancer patients, Oncotype DX is the only test supported by level II evidence (Sparano et al.,263

2018). We performed a Wilcoxon rank-sum test to compare the overall performance of DeepType and264

the two competing methods. The p-values are 7.7e-14 (DeepType vs. SparseK) and 1.3e-19 (DeepType265

vs. iCluster).266

We next performed internal evaluation of the subtypes identified by the three methods. Internal267

evaluation utilizes only the intrinsic information of cluster assignments to assess the quality of obtained268

clusters, and compactness and separability are the two most important considerations (Halkidi et al.,269

2001). A compact and separable clustering structure means that samples in each cluster are homogeneous270

and different clusters are far away from each other, allowing new patients to be assigned with high certainty271

and low ambiguity. For the purpose of this study, we used the silhouette width (Wiwie et al., 2015) and the272

Davies–Bouldin index (Davies and Bouldin, 1979) to quantify the cluster compactness and separability.273

The results are reported in Table 2. In all cases, DeepType resulted in the highest silhouette width and274

the lowest Davies–Bouldin index, which is consistent with the visualization result presented in Figure 3.275

To compare the overall performance, the Wilcoxon rank-sum test was performed. Deeptype significantly276

outperformed SparseK (p-value ≤ 7.8e-5) and iCluster (p-value ≤ 7.8e-5). Our analysis suggested that277

our method resulted in subtypes with significantly higher cluster quality than the competing methods.278

Finally, we compared the ability of the three methods to select relevant genes from high-dimensional279

data for clustering analysis. Table 3 reports the numbers of genes selected by the three methods applied to280

the data with a various number of input genes. Notably, while DeepType achieved the best result in terms281
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Figure 4: Results of a validation study performed on the METABRIC and SUPERTAM datasets. (a-d)
The clusters detected in the METABRIC (top row) and SUPERTAM datasets (middle row) were compact
and well-separated and had very similar PAM50 compositions. (e) In-group proportion (IGP) scores and
p-values (computed based on 1,000 permutations) showed that the clusters identified in the METABRIC
data were reproducible in the SUPERTAM data.

of both internal and external criteria, it selected the fewest genes in all cases. For clinical applications, the282

ability to select fewer genes can help to develop a more economic clinical assay for breast cancer subtype283

identification.284

3.4 Validation Study285

To demonstrate the generalization capability of the proposed method, we performed a validation study286

using the METABRIC data for training and SUPERTAM data (Haibe-Kains et al., 2012) for testing. The287

SUPERTAM dataset contains the expression profiles of 13,092 genes from 856 breast tumor samples. Prior288

to the analysis, we identified 10,087 genes present in both datasets and used ComBat (Johnson et al., 2007)289

to remove batch effects. Using the expression measures of the selected genes, we trained a deep-learning290

model using the METABRIC dataset and identified eleven clusters including one comprising dominantly291

normal samples. We then applied the constructed model to the validation dataset and classified each292

sample into one of the eleven clusters using the nearest shrunken centroid classifier (Tibshirani et al.,293

2002). Since the SUPERTAM data does not contain normal samples, only three samples were classified294
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into the normal cluster and thus omitted in the further analysis. Figure 4(a-d) presents the sample295

distributions and PAM50 compositions of the identified clusters. We observed that the clusters detected296

in the two datasets were compact and well-separated and had similar PAM50 compositions. To provide297

a quantitative analysis of the reproducibility of the detected clusters, we employed the strategy proposed298

in Kapp and Tibshirani (2006) and calculated the in-group proportion (IGP) score and p-value for each299

cluster (Figure 4(e)). Our analysis showed that the identified clusters were reproducible (p-value = 0)300

and that the proposed method generalizes well on independent datasets.301

3.5 Robustness Analysis302

DeepType detects disease molecular subtypes through joint supervised and unsupervised learning, where303

the class labels from previous studies are usually error-prone. To investigate how DeepType performs in304

the presence of label noise, we performed a robustness analysis where we corrupted the PAM50 labels305

of a certain percentage of randomly selected samples in the METABRIC training dataset, constructed a306

deep-learning model using the corrupted data, and applied the model to the test dataset. To assess the307

performance of the constructed model, we computed the Rand index by comparing the cluster assignments308

of the test samples with their PAM50 labels and those obtained by using the original training dataset309

(i.e., no corrupted labels). To remove random variations, the experiment was repeated five times. Figure310

S3 presents the results obtained by using the training data containing a varying percentage of corrupted311

labels ranging from 0% to 20%. We can see that DeepType performed similarly with up to 10% label312

errors. Considering that the PAM50 label set itself contains an unknown percentage of errors, our method313

is very robust against label noise.314

4 Discussion315

In this paper, we developed a deep-learning based approach for cancer subtype identification that addresses316

some technical limitations of existing methods. The new method performed significantly better than two317

commonly used approaches in terms of both internal and external evaluation criteria. By leveraging the318

power of deep learning, the new method is able to handle data with extremely high dimensionality. We319

further demonstrated that the method generalizes well on independent datasets and is very robust against320

label noise.321

The proposed method has several limitations that are worthwhile to mention. Usually, training a322

deep-learning model requires a large amount of data. The method is thus not applicable to cancers for323

which only a small number of samples have been assayed. In this study, we applied the method to breast324

and bladder cancers where molecular subtypes are well established and thus can be used to guide the325

detection of new subtypes. However, for many other cancers, molecular subtypes have not yet been well326

established. It is possible to use other clinical variables (e.g., tumor grade) to guide the identification327

of cancer subtypes and we have showed that our approach performed well in the presence of label noise.328

Further investigations are warranted to explore such possibilities.329

In this paper, we presented a proof-of-concept study considering only gene expression data. Several330

studies have recently demonstrated that combining cross-platform data could provide more information331

for cancer subtype identification (see, e.g., Shen et al. (2013) and Zhang et al. (2012)). It is possible to332

use deep learning to integrate genomics data from different platforms, including mRNA, copy number,333

somatic mutation and methylation, for cancer subtyping. However, currently there are debates on how to334

design a network to process multiple data types (Wang et al., 2015). As the future work, we will perform335

a large-scale experiment to look into this issue to identify the optimal network structure for genomics336

data analysis. It is expected that more accurate and robust cancer subtypes would be revealed.337
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Supplementary Data

Deep Learning Approach to Identifying Breast Cancer

Subtypes Using High-Dimensional Genomic Data

Runpu Chen, Le Yang, Steve Goodison, Yijun Sun∗

Algorithm 1: Hyper-parameter estimation (X, Y, A, L, T )

Input: training data X, class labels Y, T , A = {a1, · · · , aJ}, L = {λ1, · · · , λL}
Output: estimated parameters α∗, λ∗, K∗

1 Randomly partition (X,Y) into ten folds {(Xi,Yi)}10i=1;
2 Estimate λ∗ through ten-fold cross validation;
3 Compute average classification error e0 and one standard error σ0;

4 Estimate K̃ by maximizing average silhouette width;
5 for i = 0 to T do

6 Ki = K̃ + i;
7 for j = 1 to J do
8 α = aj ;
9 Solve Problem (6);

10 Compute average classification error ej ;
11 Compute average silhouette width s̃j ;

12 end
13 j∗ = arg max1≤j≤J j, subject to ej ≤ e0 + σ0;

/* one-standard-error rule */

14 αi = aj∗ ;
15 si = s̃j∗ ;

16 end
17 i∗ = arg max0≤i≤T si;
18 K∗ = Ki∗ ;
19 α∗ = αi∗

∗Please address all correspondence to Dr. Yijun Sun (yijunsun@buffalo.edu).
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Table S1: DeepType identified 218 genes to be informative for breast cancer subtyping

See the attached Excel file

Table S2: Clinical and prognostic characteristics of breast cancer

Characteristics Class label

PAM50 subtype basal, HER2+, luminal A/B, normal-like

Histological grade 1, 2, 3

NPI 1, 2, 3, 4

GGI low risk, high risk

Oncotype DX low risk, intermediate risk, high risk

Table S3: Parameters of iCluster and SparseK used in the breast and bladder cancer experiments

breast cancer bladder cancer

iCluster λ = 0.01, K = 10 λ = 0.003, K = 5

SparseK λ = 10, K = 10 λ = 10, K = 3

Table S4: The indexes of the samples in the training and test datasets used in the breast cancer experiment
(for the reproducibility purpose)

See the attached Excel file
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2 Methods
In this section, we give a detailed description of the proposed method
for cancer subtype identification. We also proposed novel procedures for
optimizing the associated objective function and estimating the hyper-
parameters.

2.1 Deep Learning for Cancer Subtype Identification

LetX = [x1, · · · ,xN ] 2 RD⇥N be a cohort of tumor samples and Y =

[y1, · · · ,yN ] 2 RJ⇥N be a rough stratification of the samples (e.g.,
subtyping results from previous studies), where xn is the n-th sample and
yn is the corresponding class label vector with yjn = 1 if xn belongs to
the j-th group and 0 otherwise. Our goal is to identify cancer related genes
and perform clustering analysis on the detected genes to refine existing
classification systems and detect novel subtypes. To this end, we utilize
the representation power of a multi-layer neural network to project raw
data onto a representation space where clusters can be easily detected. As
we mentioned before, clusters identified through unsupervised learning
may not be biologically relevant. To address this issue, we impose an
additional constraint that the detected clusters are consistent with previous
results. A number of criteria (e.g., NMI (Cover and Thomas, 2012)) can
be used to measure the concordance of different partitions, however, it is
difficult to express these criteria as a function of the network parameters.
To overcome this difficulty, we transform the problem into a supervised-
learning problem, that is, to find a representation space where the class
labels can be accurately predicted.

Figure 1 depicts the network structure of the proposed method.
It consists of an input layer, M hidden layers, a classification layer
and a clustering module. The M -th hidden layer is designated as the
representation layer, the output of which is fed into the classification layer
and the clustering module. Mathematically, the neural network can be
described as follows:

o1 = ReLU(W1x + b1),

om = ReLU(Wmom�1 + bm), 2  m  M ,

ȳ = softmax(Wm+1oM + bm+1) ,

(1)

where Wm, bm, and om are the weight matrix, bias terms and output
of the m-th layer, respectively, and ȳ is the output of the classification
layer, which can be interpreted as a probability vector of an input sample
belonging to the J groups. For the purpose of this study, we used the
rectified linear unit (ReLU) (Nair and Hinton, 2010) and softmax as the
activation functions for the hidden and classification layers, respectively.
For notational convenience, we denote ⇥ = {(Wm,bm)}M

m=1 and
f(x|⇥) : RD ! RDM as the mapping function that projects raw data
onto the representation space, where DM is the number of the nodes in
the representation layer and DM << D.

We optimize network parameters ⇥ through joint supervised and
unsupervised learning by minimizing an objective function that consists
of a classification loss, a clustering loss and a regularization term. The
classification loss measures the discrepancy between the predicted and
given class labels, and in this study cross-entropy is used

Lclassification = �
NX

n=1

JX

j=1

yjn log ȳjn . (2)

We use the K-means method (Lloyd, 1982) to detect clusters in the
representation space. The clustering loss optimized by K-means is given

Algorithm 1: Hyperparameter estimation (X, Y)
Input: training data X, class labels Y

Output: optimal parameters ↵⇤, �⇤, K⇤

randomly partition (X,Y) into ten folds {(Xi,Yi)}10
i=1;

estimate �⇤ through ten-fold cross validation;
estimate Kl by maximizing average silhouette width;
for i = 0 to T do

K = Kl + i;
for j = 1 to J do

↵ = ↵j ;
Solve Problem (5);

end
↵i = arg max

end
i⇤ = arg maxi si;
K⇤ = Ki⇤ ;
↵⇤ = ↵i⇤

by

Lclustering =

NX

n=1

kf(xn|⇥) � Csnk2
2 ,

s. t.
KX

k=1

skn = 1, skn 2 {0, 1}, 8k,8n,

(3)

where K is the number of clusters, C is a center matrix with each column
representing a cluster center, and sn is a binary vector where skn = 1 if
xn is assigned to cluster k and 0 otherwise.

Finally, we impose an `2,1-norm regularization on the weight matrix of
the first layer to control the model complexity and to select cancer related
genes:

Lsparsity = kWT
1 k2,1 =

DX

j=1

vuut
D2X

i=1

W 2
1ij , (4)

where W1ij is the ij-th element of W1 and D2 is the number of the
nodes in the second layer. It has an effect of automatically determining the
number of nodes used in the input layer, thus the number of genes used in
cancer subtyping analysis.

Combining the above three losses, we obtain the following formulation
for cancer subtype identification:

min
{⇥,S,C}

�
NX

n=1

JX

j=1

yjn log ȳjn + ↵
NX

n=1

kf(xn|⇥) � Csnk2
2

+ �kWT
1 k2,1 ,

s. t.
KX

k=1

skn = 1, skn 2 {0, 1}, 8k,8n ,

(5)

where S = [s1, · · · , sN ] is an assignment matrix, � is a regularization
parameter that controls the sparseness of a solution, and ↵ controls the
tradeoff between the classification and clustering performance. In the
following sections, we describe how to solve the above optimization
problem and estimate the hyper-parameters.

2.2 Optimization

The above optimization problem contains three sets of variables, i.e.,
network parameters ⇥, assignment matrix S, and cluster centers C. It
is difficult to solve the problem directly since the parameters are coupled
and S is a binary matrix. To address the issue, we divided the variables into
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Figure S1: Hyper-parameter estimation. (a) The regularization parameter λ was estimated to be 0.006 based
on the one-standard-error rule. (b) The number of clusters was pre-estimated to be 9 based on the average
silhouette width. (c) We searched a range of values to estimate the number of clusters. For each K ≥ 9,
we trained a deep learning model by using different α values and estimated the optimal α by using the one-
standard-error rule. The figure presents an example showing that the optimal α was estimated to be 1.2 for
K = 11. (d) The number of clusters was finally determined to be 11 by maximizing the average silhouette
width. See Section 2.3 for a detailed description of hyper-parameter estimation.

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/629865doi: bioRxiv preprint 

https://doi.org/10.1101/629865


0 200 400 600 800 1000 1200 1400 1600 1800

Epochs

10
0

10
1

10
2

 L
o
s
s

Training loss

Validation loss

Figure S2: Curves of training and validation losses vs. epochs. No sign of over-fitting was observed. The first
300 epochs are for model initialization based on supervised learning and the remaining 1500 epochs are for
model optimization based on joint supervised and unsupervised learning.
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Figure S3: Rand indexes computed by comparing the cluster assignments of the test samples with their PAM50
labels (a) and those obtained by using the original training dataset (b). DeepType performed similarly when
up to 10% of the class labels of the training data were corrupted.
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S1 Bladder Cancer Study
S1.1 Experiment Setting

The bladder cancer dataset was obtained from the TCGA project, which contains the expression profiles of
20,241 genes from 427 bladder tumor samples. We classified each tumor sample into one of the two UNC
subtypes (Damrauer et al., 2014), namely luminal and basal, using the R package BLCAsubtyping (Kamoun
et al., 2019), and used the UNC subtypes as the class labels. For model construction and performance evaluation,
we randomly partitioned the data into a training and test dataset, containing 80% and 20% of the samples,
respectively. Since the sample size is small, in order to avoid possible overfitting, we used only the top 10,000
most variant genes, and designed a three-layer neural network with 10,000, 32 and 2 nodes in the input layer,
the hidden layer and the output layer, respectively. The number of clusters K, the tradeoff parameter α and
the regularization parameter λ were estimated to be 4, 0.005 and 0.002, respectively. Other experiment settings
were similar to those used in the breast cancer study.

S1.2 Clinically Relevant Subtypes Revealed by DeepType

By applying DeepType to the bladder cancer dataset, a total of 156 genes were selected and 4 clusters were
detected. The descriptions of the selected genes are given in Table S5. To visualize the detected clusters, we
applied t-SNE (van der Maaten and Hinton, 2008) to the outputs of the representation layer. Figure S4(a-b)
presents the sample distributions of the identified clusters and their UNC-subtype compositions, respectively.
We can see that the tumor samples were grouped into four well-defined clusters, including two luminal dominated
clusters (labeled as luminal 1 and 2) and two basal dominated clusters (labeled as basal 1 and 2). To demonstrate
the clinical relevance of the identified tumor subtypes, a survival data analysis was performed. Figure S4(c)
shows that the four subtypes are associated with distinct prognostic outcomes (logrank test, p-value < 0.0001).
Further internal and external validation analysis is presented in Section S1.3.

Figure S4(d) presents the heatmap of the 156 selected genes. We can clearly see two modules, one containing
key genes MSN, TNC and MUC16, and the other containing key genes TOX3 and PDX1. The difference
in the gene expressions in the two modules divided the samples into two broad categories, i.e., basal and
luminal. Specifically, the basal samples have high expressions in the MSN module and low expressions in the
TOX3 module, and the luminal samples are on the contrary. Within each UNC subtype, luminal 1 has higher
expressions in the MSN module than luminal 2, while basal 1 has higher expressions in the TOX3 module than
basal 2. Using t-test and the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995), we identified
99 genes differentially expressed between luminal 1 and luminal 2, and 112 genes between basal 1 and basal 2
(FDR ≤ 0.05). Our analysis showed that DeepType is able to identify novel bladder cancer subtypes beyond
the UNC subtyping system that are associated with distinct expression patterns.

S1.3 Comparison Study

For comparison, we applied SparseK and iCluster to the bladder cancer dataset. The parameters of the two
methods were estimated in the same way as that used in the breast cancer study. We first visualized the sample
distributions of the clusters detected by the three methods (Figure S5). As with the breast cancer study, we
can see that the clusters identified by DeepType are much more compact than those detected by SparseK and
iCluster. Then, we performed a series of external and internal evaluations of the quality of the identified clusters.
For external evaluation, we assessed the concordance between cluster assignments and the UNC subtypes, the
tumor pathological stages, and the risk of tumor recurrence computed based on a three-gene signature proposed
in (Liu et al., 2017) (see Table S6 for a detailed description). For internal evaluation, we used the silhouette
width and Davies-Bouldin index to quantify the compactness and separateness of the obtained clusters. The
results are reported in Tables S7 and S8. In terms of external criteria, our method performed significantly
better than SparseK and slightly better than iCluster. In terms of internal criteria, DeepType resulted in the
highest silhouette width and the lowest Davies–Bouldin index, which is consistent with the visualization result
presented in Figure S5. Our analysis suggested that our method resulted in subtypes with significantly higher
cluster quality than the competing methods.
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Figure S4: DeepType identified four clinically relevant bladder cancer subtypes. (a) The sample distribution of
the identified clusters visualized by t-SNE. (b) The UNC-subtype composition of the four clusters. (c) The four
identified subtypes are associated with distinct clinical outcomes. (d) The heatmap of the 156 selected genes
showed that the identified clusters exhibited distinct transcriptional characteristics on several gene modules
and key genes. The samples were arranged by the clustering assignments, and the expression data are linearly
normalized into the scale of [0, 1] across samples.
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Figure S5: Visualization of the sample distributions of the clusters detected by three methods applied to the
bladder cancer dataset. Each sample is color-coded by its clustering assignment (top) and UNC-subtype label
(bottom). DeepType revealed a clear four-cluster structure.
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Table S5: DeepType identified 156 genes to be informative for bladder cancer subtyping

See the attached Excel file

Table S6: Clinical and prognostic characteristics of bladder cancer

Characteristics Class label

UNC subtype basal, luminal

Pathological stage 1, 2, 3

Recurrence risk low risk, high risk

Table S7: External evaluation of subtypes identified by three methods applied to the bladder cancer dataset.
DeepType significantly outperformed SparseK (p ≤ 0.001) and iCluster (p ≤ 0.03, Wilcoxon rank-sum test).

Average Purity NMI
DeepType SparseK iCluster DeepType SparseK iCluster

UNC subtypes 0.95 0.75 0.91 0.51 0.16 0.43

Pathological stage 0.45 0.42 0.44 0.04 0.02 0.04

Recurrence risk 0.78 0.66 0.75 0.20 0.08 0.20

Table S8: Internal evaluation of subtypes identified by three methods applied to the bladder cancer dataset. The
Davies-Bouldin index is a value in [0, inf), and a smaller value suggests a better clustering scheme. DeepType
outperforms the competing methods by a large margin.

DeepType SparseK iCluster

Silhouette width 0.45 0.19 0.04

Davias-Bouldin index 1.00 2.56 3.29
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