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Abstract 

Gnetophytes, comprising three relict genera, Gnetum, Welwitchia and Ephedra, are a 

morphologically diverse and enigmatic assemblage among seed plants. Despite recent 

progress on phylogenomic analyses or the insights from the recently decoded Gnetum 

genome, the relationship between gnetophytes and other seed plant lineages is still one 

of the outstanding, unresolved questions in plant sciences. Here, we showed that 

phylogenetic studies from nuclear genes support the hypothesis that places gnetophytes 

as sister to all other extant seed plants and so this hypothesis should not be ruled out 

according to phylogenetic inference based on nuclear genes. However, this 

extraordinarily difficult phylogenetic problem might never be solved by phylogenetic 

inference based gene tree under various artificial selection. Hence, we adopted a novel 

approach, comparing gene divergence among different lineages, to solve the conflicts 

by showing that gnetophytes actually did not gained a set of genes like the most recent 

common ancestor (MRCA) of other seed plants. This distinct gene evolution pattern 

could not be explained by random gene lost as in other seed plants but should be 

interpreted by the early divergence of gnetophytes from rest of seed plants. With such 

a placement, the gymnosperms are paraphyletic and there should be three distinct 

groups of living seed plants: gnetophytes, non-gnetophytes gymnosperms and 

angiosperms. 
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Introduction 

Although the living seed plants exhibit a high degree of species richness and extensive 

morphological variation, extant seed plant taxa represent only a relic of their former 

diversity. The extensive extinction and long independent evolution and convergence in 

both morphological characters and genome sequences, has made it extremely difficult 

to correctly trace phylogenetic relationships among seed plant lineages. This problem 

has been triggering debates for over several decades and the central issue is the 

placement of an enigmatic group of gymnosperms called the genophtes (Fig. 1): The 

‘anthophyte hypothesis’ was first proposed because of shared morphological 

similarities with angiosperms. This hypothesis placed gnetophytes as most closely 

related to angiosperms (Crane, 1985; Doyle & Donoghue, 1986). However, this 

hypothesis had been ruled out due to the rise and development of molecular research 

(Doyle et al., 1994; Wickett et al., 2014). Most molecular studies based on plastid and 

nuclear sequence have show strong support to the hypothesis that gnetophytes should 

be placed closely related to conifers. It mainly includes three hypotheses: either as sister 

to Pinaceae (‘Gnepine’), to cupressophytes (‘Gnecup’), or to all conifers (‘Gnetifer’), 

depending on the different data sets, sites selection, and inferring methods involved 

(Ruhfel et al., 2014; Wickett et al., 2014). Moreover, sophisticated phylogenomic 

analyses based on large-scale data matrices are also pointing towards the hypothesis 

that gnetophytes are most closely related to conifers (Wickett et al., 2014; Ran et al., 

2018). Interestingly, the other two remaining hypotheses, that have received little 

attention, but have also been constantly supported using different sets of gene sequence 

and various phylogenomic reconstruction methods, either place gnetophytes as sister to 

all other gymnosperms (Sanderson et al., 2000; Rai et al., 2008; Li et al., 2017) or even 

all seed plants (Frohlich & Parker, 2000; Schmidt & Schneider-Poetsch, 2002; Lee et 

al., 2011; Chen et al., 2016). Notably, the ‘Seed plants sister’ hypothesis has not been 

supported with phylogenetic tree inferred from nuclear genes to our current knowledge 

and tends to be ignored in phylogenetic testing (Wickett et al., 2014). 
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Figure 1. Six conflicting hypotheses of the phylogenetic position of gnetophytes 

inferred by	 diverse sets of molecular markers or morphological character 

clustering. The anthophytes hypothesis was first proposed due to morphological 

character cladistic and once triggered great debates on history. Couple of genes or 

alignments from large matrices of nuclear or plastid genome compartments were 

conducted and provide conflicting topologies on phylogenetic positions of gnetophytes. 
 
Phylogenetic inferences on nuclear genes 

To test the strength of the emerging consensus hypothesis that gnetophytes are closed 

to conifers, we measured the phylogenetic signals from a data matrix of 13 land plants 

species (using nine whole genome assemblies and four whole transcriptome data sets, 

Table 1).	We used the whole genome assembly of G. montanum, and transcriptomic 

data from Ephedra equisetina (Wan et al., 2018, see ‘Gnetophytes Genome Project’, 

which also contains information on data production, taxon sampling, assembly and 

annotation). We also used genomic data from nine published plant genomes and 
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transcriptome data of Cycads and Ginkgo (Table 1; six gymnosperms - G. montanum, 

E. equisetina, Picea abies, P. taeda, G. biloba, and Cycas elongata; six angiosperms - A. 

trichopoda, Vitis vinifera, Arabidopsis thaliana, Musa acuminata, Elaeis guineensis, 

and Oryza sativa, and; one non-seed plant - S. moellendorffii). Protein genes of species 

with genomes were from database (Table 1). For species with transcriptomic data, we 

used Genewise 2.4.1 (Birney et al., 2004) to generate gene structures based on proteins 

to the assembled G. montanum sequence. Protein gene from all these species were used 

for phylogenetic analyses. 

 
Table 1. Species and genome assemblies used in this study 
Species Sources of data 

Selaginella moellendorffii 
http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?orga
nism=PhytozomeV10 

Picea abies  http://congenie.org 
Pinus taeda http://pinegenome.org/pinerefseq/ 

Ginkgo biloba  
ftp://ftp.plantbiology.msu.edu/ pub/data/MPGR/Ginkgo biloba/ (EST 
data) 

Cycas elongata 
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154
384 

Gnetum montanum https://www.ncbi.nlm.nih.gov/bioproject/PRJNA339497 
Ephedra equisetina https://www.ncbi.nlm.nih.gov/bioproject/PRJNA339497 
Amborella trichopoda  ftp://ftp.ensemblgenomes.org/pub/plants/release-25/plants/ 
Musa acuminata ftp://ftp.ensemblgenomes.org/pub/release-25/plants/ 
Oryza sativa ftp://ftp.ensemblgenomes.org/pub/release-25/plants/ 
Vitis vinifera ftp://ftp.ensemblgenomes.org/pub/release-25/plants/ 
Arabidopsis thaliana  ftp://ftp.ensemblgenomes.org/pub/release-25/plants/ 
Elaeis guineensis  ftp://ftp.ensemblgenomes.org/pub/release-25/plants/ 

 

Similarities between these proteins were detected using an all-against-all BLASTp	

version 2.2.26 (Altschul et al., 1997) with an E-value of 1e-10. Only alignments between 

gene pairs that had >0.5 coverage of each sequence were retained for analysis. The 

software OrthoMCL (Li et al., 2003), based on a Markov cluster algorithm was applied 

to find orthogroups (with an inflation value of 1.5, to extract orthologous and 

paralagous proteins). Then we retrieved a single copy sequence in per species, to 

generate a 1,334 gene dataset. Then the alignments of 331,467 AA sites were 
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concatenated to a super alignment matrix. ProtTestwas used to select the best fit model 

(LG+Γ4 model) for amino acid replacement and RA×ML (v8.0.19) was used to 

reconstruct a maximum likelihood tree. Robustness of the maximum likelihood tree 

was assessed using the bootstrap method (100 pseudo-replicates). A ML tree supporting 

“gnetophytes around the conifers” were shown in Fig. 2A. 

 
Figure 2. Phylogenetic inference based on nuclear genes with different sites 

selection. The alignments of 331,467 AA sites in Figure 2A (or 310,631 AA sites in 

Figure 2B) were concatenated to a super alignment matrix. ProtTest was used to select 

the best fit model (LG+Γ4 model) for amino acid replacement and RA×ML (v8.0.19) 

was used to reconstruct a maximum likelihood tree. Robustness of the maximum 

likelihood tree was assessed using the bootstrap method (100 pseudo-replicates). 
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Considering the following three factors: (a) The extinctions of the ancestor of 

modern angiosperms; (b) angiosperms have greater average rate of substitution than 

gymnosperms; (c) the slow evolutionary rate of the gymnosperms, the distinct 

evolution rates among extent angiosperms and gymnosperms as well as the lack of 

ancient angiosperm ancestor sequence, simultaneously leads to that gnetophytes will 

contain much more same amino-acids with the non-gnetophyte gymnosperms than 

extant angiosperms, which will outweigh the real evolutionary signals during 

phylogenetic inference. Hence, to reduce the effect of (a) and (b), we retained sites 

where at least one of the six gymnosperms has same amino-acid with at least one of the 

six angiosperms. Finally, 310,631 (94%) of the total 331,467 sites were retained and 

used to do the phylogenic tree construction following the above approach. Notably, a 

ML tree (with 100% bootstrap support) indicating “gnetophytes as sisters to other seed 

plants” based on these sites were generated and showed in Fig. 2B. 

Though the ‘gnetophytes as sister to other seed plants’ hypothesis has been 

reported previously, either by using whole plastid sequence data, plastid proteins, or 

mitochondrial genes (data were not shown) analyzed with a range of methods including 

maximum parsimony and maximum likelihood (Frohlich & Parker, 2000; Schmidt & 

Schneider-Poetsch, 2002; Lee et al., 2011; Chen et al., 2016), this hypothesis tends to 

be ruled out based on nuclear loci (Wickett et al., 2014). Here, for the first time, we 

showed that this hypothesis could also be supported from phylogenetic inference from 

nuclear genes. Given this, a hypothesis of gnetophytes being sister to all other seed 

plants cannot be ruled out on the basis of phylogenetic trees inferred from nuclear loci. 

However, resolving phylogenetic relationships among extant seed plants has been 

shown as an extraordinarily difficult problem only based on gene sequences (Wickett 

et al., 2014). Hence, we think there is little hope that the mainstream approach of gene 

tree construction resulting from different treatments of the data and methods of analysis 

will solve this problem fundamentally. We should adopt other novel approach to 

provide better resolution of relationships among major seed plant clades. 
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Gene evolution patterns among representative seed plants 

Because of the inconsistencies in signals using typical phylogenetic approaches, we 

developed an indirect approach to examine patterns of gene proliferation among major 

seed plant clades. In total, five different protein coding gene sets in Amborella 

trichopoda were compared against the relevant protein coding genes in Sellaginella 

moellendorffii (Fig. 3, supplementary table 1-5). Only genes of A. trichopoda having at 

least a score > 50 with S. moellendorffii were used in the boxplot. The determination 

and selection methods are as follows:  

(a) We defined an “n1” set of single copy orthoMCL genes (Li et al., 2003), which 

are those groups shared by G. montanum, G. biloba, P. taeda and A. trichopoda 

(supplementary table S2).  

(b) The “n2” gene set comprised protein-coding genes considered to be missing in 

G. biloba but present in the other seed plants, G. montanum, P. taeda and A. 

trichopoda. We used BLASTp, with an E-value threshold of 1e-5, to query 

protein sets from G. montanum and P. taeda against protein sets from G. biloba 

and A. trichopoda. Genes shared by G. montanum and P. taeda, that also had 

≥ 10% higher scores (score=identity*coverage) when queried against A. 

trichopoda compared with G. biloba, were considered to be genes that are 

absent in G. biloba.  

(c) The “n3” set were protein genes considered to be missing in P. taeda but 

present in the other seed plants, G. montanum, G. biloba, A. trichopoda. We 

aligned by BLASTp with an E-value of 1e-5 protein sets from G. biloba and G. 

montanum against protein sets from P. taeda and A. trichopoda. Genes shared 

by G. biloba and G. montanum, that also had ≥ 10% higher scores 

(score=identity * coverage) when aligned against A. trichopoda compared with 

P. taeda, were considered to be genes that are absent in P. taeda.  

(d) The “n4” set consisted of protein genes considered to be missing in G. 

montanum but present in the other seed plants, G. biloba, P. taeda, A. 

trichopoda. We aligned by BLASTp with an E-value of 1e-5 protein sets from 
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G. biloba and P. taeda against protein sets from G. montanum and A. 

trichopoda. Genes shared by G. biloba and P. taeda, that also had ≥ 10% higher 

scores (score=identity*coverage) when aligned against A. trichopoda 

compared with G. montanum, were considered to be genes that are absent in G. 

montanum.  

(e) The “n5” set were protein genes considered to occur only in A. trichopoda 

specific families. 

 

 

Figure 3. Genic signatures for gnetophytes being distinct from other seed plants. 

Comparisons of A. trichopoda gene sets that carry orthologues present in different 

combinations of gymnosperms (BLASTp gene identities against S. moellendorffii -

Smo). The “n1” group contains genes found in all seed plants investigated and were 

likely found in the seed plant ancestor, while “n5” represents genes present only in A. 

trichopoda, genes that are likely to have diverged substantially only in the angiosperm 

lineage). When G. montanum orthologous genes are absent (“n4”), the dataset has 

significantly lower overall BLASTp identities than in datasets where orthologues are 

absent in other gymnosperms (e.g. “n2” and “n3”). 
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We mainly focused on genes that were present in Amborella trichopoda but were 

absent in one of the gymnosperms (i.e. absent in either G. montanum, or Ginkgo biloba, 

or Pinus taeda). The “n1” set, with a speculative orthologue in all the seed plant 

lineages, were considered to be genes that have been retained from the seed plant 

ancestor (Supplementary Table 1). In contrast the “n2”, “n3” and “n4” sets have an 

orthologue missing in G. biloba, P. taeda or G. montanum (Supplementary Table 2-4). 

The “n5” set of genes (Supplementary Table 5) is considered to be specific to A. 

trichopoda or gained after angiosperms separated from gymnosperms. Our analyses of 

the sequence identities of the “n1”-“n5” gene sets showed that the sequence identity 

distribution of the “n5” set is lower than the “n1” set (p < 2 × 10-16, Fig. 3). Remarkably, 

the “n4” set, representing genes thought to be absent in G. montanum, also has a lower 

sequence identity distribution than that of the “n2” set (orthologous genes considered 

to be absent in G. biloba, p < 2 × 10-16, Fig. 3) and the “n3” set (orthologous genes 

considered to be absent in P. taeda, p < 5.3 × 10-13, Fig. 3). When G. montanum 

orthologous genes are absent (“n4”), the dataset has significantly lower overall 

BLASTp identities than in datasets where orthologues are absent in other gymnosperms 

(e.g. “n2” and “n3”). What becomes apparent is that orthologous genes in G. montanum 

(i.e. n1, n2, and n3 sets; Fig. 3) play a notable role in comparison among all gene sets 

identity distributions (Fig. 3). 

How to interpret this gene evolution patterns? It’s important to note that these 

analyses are not affected by the different substitution rate among G. montanum, G. 

biloba, and P. taeda since all the genes of “n1”-“n5” sets are from A. trichopoda. Firstly, 

“n5” set is deservedly considered later obtained by A. trichopoda after its split with 

other gymnosperms and the genes from “n5” set are more young than other genes from 

other sets (Fig. 4). Hence, the “n5” set genes has less sequence similarities (or identities) 

with the ancient S. moellendorffii genes. It is expected that because comparison between 

orthologs of ancient, conserved (“old”) genes would be more similar to each other, and 

have higher sequence identities than orthologs of less conserved, or more rapidly 

diverging (“yound”) genes. Secondly, “n2” genes and “n3” genes show no obvious 
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difference, which indicated that “n2” genes and “n3” genes were obtained before the 

split of G. montanum, G. biloba, P. taeda and A. trichopoda (in other words, these genes 

were obtained in the common ancestor of G. montanum, G. biloba, P. taeda and A. 

trichopoda). The absence of these genes in G. biloba or P. taeda is due to random lost 

during their independent evolution (Fig. 4). And this speculation is confirmed by that 

there are also no obvious difference between “n1” genes and “n2”/“n3” genes since “n1” 

represents genes shared by G. montanum, G. biloba, P. taeda and A. trichopoda (in 

other words, these genes were also obtained in the common ancestor of G. montanum, 

G. biloba, P. taeda and A. trichopoda). In other words, “n2”/“n3” genes were as “old” 

as “n1” genes. Notably, the ‘gene absence’ patterns could not be explained by random 

lost in G. montanum but should be interpreted by the early divergence of gnetophytes 

from rest of seed plants because “n4” has much lower identities than “n1”, “n2”, and 

“n3”. In other words, part (red G2 in Fig. 4) of “n4” genes were actually obtained only 

by the common ancestor of G. biloba, P. taeda and A. trichopoda with early split of G. 

montanum and these “n4” genes are “younger” than “n1”, “n2”, and “n4” but “older” 

than “n5” genes. The observed gene evolution pattern is only consistent with the 

hypothesis that gnetophytes are sister to all other extant seed plants (Fig. 4). Notably, 

that there is little overlap (Wayne comparison in Fig. 4) between these three sets (‘n2’, 

‘n3’ and ‘n4’) also confirms than our approach can detect specific gene absence in each 

species, which are not affected by the gene loss in other nodes (such as L4 or L2 in Fig. 

4). 
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Figure 4. Interpretation of distinct Genic signatures for gnetophytes based on gene 

gains/loss mechanism with ‘Seed plants sister’(right) hypothesis and ‘closed to 

conifers’ hypothesis. More gene loss detected in G. montanum and ‘n2’ genes 

harboring less identity is due the G2 part of genes (genes gained by the MRCA of other 

seed plants). The right topology tree can not explain the distinct patterns found in G. 

montanum.  

For additional, we examined in detail some exemplar multigene families of the “n4” 

set using phylogenetic approaches and observed two families that are consistent with 

the ‘Seed plants sister’ hypothesis. For example, from the germin-like protein family 

the orthologue GLP7 is missing from G. montanum and is broadly shared by non-

gnetophytes gymnosperms and angiosperms (see Supplementary Materials online and 

Supplementary Fig. 1). In the same way, sub-clades of the Phenylalanine Ammonia 

Lyase gene family are found to be only shared by non-gnetophytes gymnosperms and 

angiosperms (Supplementary Fig. 2, Supplementary Table 4; Bagal et al., 2012). 

 

Discussion 
 
We argue here that the hypotheses ‘gnetophytes are sister to all other seed plants’ can 
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not be ruled out based only on the phylogenetic trees inferred from nuclear loci. 

Assuming so, there remains the potential for profound shifts in our understanding of 

the origin and divergence of many genetic, genomic, biochemical, metabolic and 

morphological characters in seed plant evolution. For example, the two paralogues 

GgWOXX and GgWOXY should be consider to have been lost in the their MRCA of 

other seed plants after the split with gnetophytes (Wan et al., 2018). And if 

gymnosperms may not be monophyletic, then many characters used to be considered 

to be derived in gnetophytes (Wan et al., 2018) may in fact be ancestral characters (Fig. 

5, e.g. intron structures, lack of WGD, pfam domains). 

 
Figure 5. Reinterpretation of genome evolution patterns across seed plants based 
on the hypotheses gnetophytes are sister to all other seed plants.	
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