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ABSTRACT 14 

Animal-borne data loggers, i.e., biologgers, allow researchers to record a variety of sensor data 15 

from animals in their natural environments (Hussey et al. 2015; Kays et al. 2015). This data allows 16 

biologists to observe many aspects of the animals’ lives, including their behavior, physiology, social 17 

interactions, and external environment. However, the need to limit the size of these devices to a 18 

small fraction of the animal’s size imposes strict limits on the devices’ hardware and battery 19 

capacities (Kays et al. 2015). Here we show how AI can be leveraged on board these devices to 20 

intelligently control their activation of costly sensors, e.g., video cameras, allowing them to make 21 

the most of their limited resources during long deployment periods. Our method goes beyond 22 

previous works that have proposed controlling such costly sensors using simple threshold-based 23 

triggers, e.g., depth-based (Watanuki et al. 2007; Volpov et al. 2015) and acceleration-based 24 

(Nishiumi et al. 2018; Brown et al. 2012) triggers. Using AI-assisted biologgers, biologists can 25 

focus their data collection on specific complex target behaviors such as foraging activities, allowing 26 

them to automatically record video that captures only the moments they want to see. By doing so, 27 

the biologger can reserve its battery power for recording only those target activities. We anticipate 28 

our work will provide motivation for more widespread adoption of AI techniques on biologgers, 29 

both for intelligent sensor control and intelligent onboard data processing. Such techniques can not 30 

only be used to control what is collected by such devices, but also what is transmitted off the 31 

devices, such as is done by satellite relay tags (Cox et al. 2018).     32 
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INTRODUCTION 33 

‘Bio-logging,’ i.e. the use of animal-borne sensors has revolutionized the study of animal behavior 34 

in the natural environments (Hussey et al. 2015; Kays et al. 2015). Although there have been 35 

extraordinary improvements in sensors and memories of the devices since the first logger was 36 

attached to a Weddell seal (Kooyman 1965), behavioral time-series data has been obtained with a 37 

simple strategy: continuous recording regardless of the researchers’ goals. For example, video 38 

loggers continue to shoot animal behavior and the surrounding environment including unimportant 39 

scenes, which consumes a large amount of power. Because the size of an animal-borne device is 40 

limited by the animal's carrying capacity, ‘intelligent’ technology is needed for increasing the 41 

potential to apply bio-logging in a variety of research fields. 42 

 43 

In this study, we propose the concept of AI-assisted biologgers that use low-cost sensors to 44 

automatically detect activities of interest, allowing them to conditionally activate high-cost sensors 45 

to target those activities. Although simple threshold-based camera trigger mechanisms are available, 46 

e.g., acceleration-based GPS triggers (Brown et al. 2012), it is difficult for biologists to capture 47 

complex activities of interest with these mechanisms due to the difficulty in creating rules for 48 

detecting complex activities using only simple thresholding. 49 

 50 

These costs can vary depending on the application, with examples including the use of low cost 51 

(low bitrate) GPS data to control a high cost (high bitrate) microphone that normally would quickly 52 

fill the device's storage, or the use of a low cost (low energy) acceleration sensor to control the use 53 

of a high-cost (energy consuming) camera. In this study, we focus on the second of these examples, 54 

using acceleration and GPS data to control the use of our logger's energy consuming camera 55 
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because biologists’ demand for animal-borne video cameras keeps increasing for decades (e.g., 56 

Rutz et al. 2007; Moll et al. 2007; Gómez-Laich et al. 2015).  57 

 58 

Fig. 1 (a) shows an example of how such a logger can be used for seabirds, with the logger attached 59 

to the back of a seabird which is then released to roam freely in its natural environment. Fig. 1 (b) 60 

shows how this logger can continuously run its low-energy sensors (e.g., an accelerometer) and use 61 

these sensors' data to detect important activities, such as foraging. Upon detecting such important 62 

activities, the logger can then activate its energy consuming sensor (i.e., a camera) to record the 63 

important activity. By doing so, the logger can limit its use of the energy-consuming sensor to times 64 

when it is most likely to capture the target activity, increasing its chances for success by extending 65 

the runtime of the logger. This contrasts with normal loggers that continuously run the energy-66 

consuming sensors, causing them to quickly exhaust their batteries which limits their chances for 67 

successfully recording the target activities.  68 

 69 

In order to robustly detect animal activities using sensor data in the wild, we employ supervised 70 

learning to conduct activity recognition on board the logging devices. That is, we start by having a 71 

biologist label sensor data from low-energy sensors to identify the activities that he/she wants to 72 

record in advance. We then train an activity recognition model for detecting these activities using 73 

the labeled data and install the activity recognition model onto the loggers that are deployed in the 74 

field. 75 

 76 

However, since the microcontroller units (MCUs) that can be mounted in small biologgers tend to 77 

have limited memory and low computing capability, it is difficult to run computationally expensive 78 

machine learning processes on the loggers. In this study, we have developed a computationally 79 
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efficient animal activity recognition method based on the random forest algorithm that can run on 80 

such MCUs. In brief, our method automatically builds a small decision tree for activity recognition 81 

that fits in the flash memory of the MCU while maintaining high activity recognition accuracy. 82 

 83 

In addition, in order to achieve robust activity recognition, our method also has the following 84 

features: (i) robustness to noise, (ii) robustness to sensor positioning, and (iii) robustness to 85 

differences in sensor hardware. Robustness to noise refers to the need to handle the varying amount 86 

of noise present in sensor data due to differences in how securely the loggers are attached to the 87 

animals. Robustness to sensor positioning refers to the need to deal with differences in sensor data 88 

collected from different individuals due to variations in the positioning and orientation of the 89 

devices. Robustness to differences in sensor hardware refers to the need to handle the differences in 90 

sensor data that stem from using data collected from previous years’ hardware when training 91 

models for a logger that uses new hardware. We discuss each of these features in the section Sensor 92 

data logger. 93 

 94 

Along with the results reported in this paper, we are also providing open access to some of the 95 

software used in this study along with hardware diagrams of the biologgers used, in hopes of 96 

assisting other researchers who wish to deploy similar systems in the future. The software includes 97 

a labelling tool that can be used to prepare biologger sensor data for use when training machine 98 

learning systems and a docker container that includes our algorithm for generating low cost decision 99 

trees and scripts for generating the source code needed to run biologgers such as the ones used in 100 

this study. This information is available at TBD. 101 

 102 

RESULTS 103 
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Sensor data logger 104 

We begin with a brief introduction to the sensor data loggers used in this study (for more details see 105 

Online Methods). Fig. 1 (c) shows a close-up view of the logger, with the camera module located on 106 

the far-left end of the logger. Fig. 1 (d) shows an example of the data collected from a chest-107 

mounted logger, with the map displaying the GPS data collected and the two inset images showing 108 

frames from foraging activity captured by the device. Fig. 1 (e) shows an example of how these 109 

devices were attached in the field. In this example, the logger is attached on the back of the animal, 110 

with the camera facing forward and the GPS receiver (white square to the rear of the device) facing 111 

the sky. Additionally, in some cases the devices were instead attached to the chest of the birds, in 112 

order to improve the camera’s field of view during foraging activities. 113 

 114 

Note that because our logger is equipped with a commercially-available MCU and sensors using a 115 

simple circuit design (see Online Methods), we believe that reproduction of the logger system using 116 

rapid prototyping platforms, such as Arduino, is relatively easy. 117 

 118 

Activity recognition method 119 

Overview 120 

Our method is based on supervised machine learning, which can be divided into two main phases: 121 

training and testing. This approach assumes that sensor data that corresponds to the data collected 122 

by our low-energy sensors can be collected in advance during the training phase. During the 123 

training phase, the preexisting sensor data is labelled by biologists to indicate the target activities 124 

that should be captured by the loggers’ cameras. This labeled sensor data is then used to train the 125 

activity recognition models that will be installed on the biologgers for camera control. The testing 126 

phase corresponds to the biologgers’ use in the field, where the model built using the preexisting 127 
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data is used on board the loggers to recognize target activity in real time using data collected by the 128 

loggers’ low energy sensors. 129 

 130 

The supervised machine learning method used by our study uses decision trees, in which a 131 

hierarchy of simple rules is learned during the training phase that can be used to classify input data 132 

vectors during the testing phase based on thresholds learned from the training data. We start with 133 

the raw sensor data, which comes from our preexisting dataset in the training phase and from our 134 

low-energy sensors during the testing phase. We then divide this raw data into short windows (e.g., 135 

1-second windows), from which we can extract several features from each window that will be used 136 

as input for the decision trees. Each window is then represented by a vector of extracted features, 137 

with labelled vectors extracted from preexisting data used to train the decision tree during the 138 

training phase and unlabeled vectors extracted in real time from low-energy sensors used as input to 139 

the tree during the testing phase. In our method, we build these decision trees using a modified 140 

version of the random forest algorithm in which we generate trees that minimize the amount of flash 141 

memory used for feature extraction on the logging device. The output of the decision tree classifier 142 

is then used to control the logger’s video recording, allowing us to conserve the battery power of the 143 

logging device by limiting video recording to when we are most likely to capture the target activity. 144 

 145 

Feature extraction 146 

In order to detect an activity of interest, we must first extract features from the raw data collected by 147 

our low-energy sensors. In this study, we extract these features from acceleration data and/or GPS 148 

coordinates. Fig. 2 (a) and (b) show examples of the GPS and accelerometer data collected by our 149 

device.  150 

 151 
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The GPS track in Fig. 2 (a) shows the movement of a single bird, with the animal’s positions 152 

labeled as belonging to one of three different activity classes: local search, global flight, and 153 

stationary. The two inset boxes in Fig. 2 (a) show examples of the global flight and local search 154 

activities, along with examples of some features extracted from a 10-minute window of GPS data 155 

collected at a rate of one position per minute taken from each example. Comparing the two 156 

activities, we can see how such features can capture key differences between the activities. For 157 

example, the local search activity is conducted at a lower average speed with low displacement 158 

relative to the distance traveled when compared to the global flight activity. 159 

 160 

Fig. 2 (b) shows an example of the accelerometer data collected by our device. The data is collected 161 

using a sampling rate of 25 Hz, with the net magnitude of acceleration computed for each 3-axis 162 

sample and stored in a 25-sample (1-second) buffer in RAM. The conversion from 3-axis data to 163 

magnitude values is illustrated in Fig. 2 (b), with the first row corresponding to the raw 3-axis data 164 

and the second row corresponding to the converted magnitude data. Features are then extracted 165 

from the 1-second windows of magnitude values, with Fig. 2 (c) listing some of the features used in 166 

our method. For the full list of features extracted from GPS and accelerometer data see Online 167 

Methods. 168 

 169 

The acceleration data shown in the first row of Fig. 2 (b) includes three highlighted portions that 170 

correspond to the activities: flying, foraging, and stationary. The third row of Fig. 2 (b) shows the 171 

magnitude data for each activity, while the third and fourth rows show examples of the features that 172 

are extracted from 1-second windows of magnitude data in our method. Note that each horizontal 173 

segment in the stepped lines in the third and fourth rows correspond to the single value extracted for 174 

the 1-second window covered by the horizontal segment. Comparing the three activities, we can 175 
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again see how these features capture key characteristics of each activity allowing us to distinguish 176 

between the activities based on a few key values derived from each window of data. 177 

 178 

Classification 179 

Using the features extracted from the GPS or accelerometer data, we then construct a decision tree 180 

that can be used to classify each segment of data into an activity class. Fig. 2 (d) shows an example 181 

of such a tree that was constructed using Scikit-learn’s decision tree algorithm (Pedregosa et al. 182 

2011) using the magnitude-based features shown in rows three and four of Fig. 2 (b). The white 183 

nodes in this tree show the rules used to classify each instance of data based on the features 184 

extracted from the sensor data, while the grey leaf nodes show the classes assigned based on those 185 

rules. Each leaf node also lists the support for each class at that node, with the three values listed 186 

(e.g., [10, 0, 0]) corresponding to the number of instances of training data classified at that node 187 

from the classes flying, foraging, and stationary, respectively. In this example the support values 188 

from all the leaf nodes sum to 30, which correspond to the 30 segments of training data taken from 189 

rows three and four of Fig. 2 (b). 190 

 191 

When classifying a new 1-second window of data, we simply start at the root node of the tree and 192 

compute each feature encountered until we reach a leaf node that assigns the most likely class for 193 

the data. For example, consider the case where we need to classify one of the 10 1-second windows 194 

from the Flying portion of Fig 2 (b), i.e., the data shown in the left-most chart of each of rows two 195 

through four. Starting at the root node of the example decision tree in Fig. 2 (d), we see that the first 196 

rule used during classification checks the crest feature using a threshold of 0.69. Given that the 197 

crest values for our Flying data are all greater than 0.69, we would follow the False path from that 198 

node, immediately reaching a leaf node that assigns the Flying class to the data segment. 199 
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 200 

Looking at this example tree, we can also better understand two potential benefits of decision trees 201 

when used with MCUs. The first is their small size, which is due to how their logic can be 202 

implemented as a series of nested if-else statements. This allows their models to be stored using 203 

only a minimal amount of flash memory (as opposed to models generated by other techniques such 204 

as SVM which typically consume too much space for use on MCUs). The second is their potential 205 

for minimizing the energy used by the device during recognition. This comes from how each input 206 

data segment only follows a single path through the tree, meaning that the MCU needs only to 207 

extract features as they are encountered in the path taken through the tree, minimizing the feature 208 

extraction processes run for each input vector. 209 

 210 

Feature costs 211 

Standard decision tree algorithms, e.g., Scikit-learn’s default algorithm, build decision trees that 212 

maximize classification accuracy with no option to weight the features used in the tree based on a 213 

secondary factor such as memory usage. This can be an issue when running the classifier on an 214 

embedded device, where the total amount of flash memory available can be limited (e.g., 32 kB). 215 

Fig. 2 (e) shows an example of a decision tree built using Scikit-learn’s default algorithm using a 216 

full dataset of acceleration data, which results in a total memory footprint of approximately 1958 217 

bytes. While this tree technically fits into our biologger’s limited flash memory, its large size 218 

reduces the memory available for other system functions needed to operate the logger’s sensors and 219 

write sensor data to long-term storage. 220 

 221 

The memory size of the tree in Fig. 2 (e) was estimated based on the feature sizes listed in Fig. 2 222 

(c), with the letters used to label each node in the tree indicating which feature from Fig. 2 (c) was 223 
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used at that node. While freely choosing a combination of several of these features results in an 224 

accurate decision tree, it may also be possible to achieve good results when using only a subset of 225 

these features. By restricting the use of the costliest features, e.g., kurtosis, it may be possible to 226 

reduce the size of the resulting tree while achieving similar accuracy. 227 

 228 

Reduced cost decision tree 229 

Given the need to minimize the size of the feature extraction functions used by decision trees when 230 

run on devices such as biologgers, this study proposes a method for automatically generating low-231 

cost decision trees that is based on the random forest algorithm (Breiman, L. 2001). The random 232 

forest algorithm is a decision tree algorithm that generates multiple unique decision trees from a 233 

single dataset by restricting the features made available when creating each node in a tree to a 234 

randomly selected subset of the features. In the original random forest algorithm, several trees are 235 

generated in this way and are then combined for use as an ensemble classifier. Our method modifies 236 

the original algorithm by using weighted random selection of the features for each node, with each 237 

feature extraction function assigned a weight proportional to the inverse of its size. The resulting 238 

algorithm generates randomized trees that are less likely to incorporate features that require more 239 

space in flash memory while still attempting to maximize classification accuracy using the 240 

remaining features. We then select a single tree from among the several randomized trees generated 241 

for use on our device. 242 

 243 

Fig. 2 (f) shows the process used when generating nodes in a decision tree using our method. We 244 

start by assigning each feature a weight that is proportional to the inverse of its weight. For 245 

example, mean uses only 40 bytes of flash memory and so is assigned a relatively high weight of 246 

0.35, while kurtosis uses 680 bytes of flash memory and so is assigned a weight of 0.02. We then 247 
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use these weights to perform weighted random selection (without replacement) of the features to 248 

select which features to use when creating a new node in the tree. In this example, we have 249 

randomly placed four dots along the perimeter of the pie chart, signifying a random selection of the 250 

features mean, variance, mean-cross, and energy. We then select the best candidate feature from 251 

amongst these randomly selected features, which in this example is energy. This feature is then used 252 

to create the next node in our decision tree, shown as the node “energy <= 1.141” on the right side 253 

of Fig. 2 (f). 254 

 255 

Using our method for weighted random selection of nodes described above, we are then able to 256 

generate randomized trees that tend to use less costly features. When generating these trees, we can 257 

easily estimate the size of each tree generated based on the sum of sizes of all features used in the 258 

tree and can set a threshold size for which all trees above the threshold are discarded. Fig. 2 (g) 259 

shows an example batch of trees output by our method where we have set a threshold size of 1000 260 

bytes. These trees were generated from the same training and validation data as was used for Fig. 2 261 

(e). We can then select a single tree from among these trees that gives our desired balance of cost to 262 

accuracy. In this example, we have selected the tree illustrated in Fig. 2 (h) based on it having the 263 

highest accuracy among this batch of trees. Comparing Fig. 2 (h) to (e), we can see that our method 264 

was able to generate a tree that is 42 percent the size of (e) while maintaining close to the same 265 

accuracy. 266 

 267 

Other functionalities of our logger 268 

Our method also incorporates several functionalities that enable robust activity recognition in the 269 

conditions encountered during this study. First, we address the need for noise robustness, due to the 270 

varying amount of noise that can be introduced into the sensor data stemming from how the loggers 271 
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must be loosely attached to the birds via taping the logger to the birds’ feathers. We achieve this 272 

through data augmentation during the training phase, in which we train our models on multiple 273 

versions of our training data that each are altered by adding varying levels of random artificial 274 

noise. Next we address the need for robustness to sensor positioning, which stems from how loggers 275 

can be attached to birds at different positions and orientations, such as some loggers having been 276 

placed on the birds’ backs to maximize GPS reception while others were placed on the birds’ chests 277 

to improve the camera’s view of the animals’ feeding. We achieve this by converting all 3-axis 278 

accelerometer data to net magnitude of acceleration values, removing the orientation information 279 

from the data before use in our activity recognition models. Finally, we address the need for 280 

robustness to differences in sensor hardware that stems from how the biologgers used in this study 281 

must be trained using accelerometer data collected from hardware used in previous years’ research. 282 

We achieve this by running an online conversion of the sensor data collected on our biologger to 283 

downsample our sensor’s 16-bit resolution data to match the 8-bit resolution data collected in 284 

previous years prior to using the data in our activity recognition models. Further information about 285 

these functionalities can be found in the Online Methods. 286 

 287 

Performance of Proposed Method 288 

We evaluated the proposed method by using it to control the video recorded by the biologgers 289 

described in the section Sensor data logger when attached to black-tailed gulls from a breeding 290 

colony located on Kabushima Island at Hachinohe, Japan. Along with the proposed method, we also 291 

deployed one logger using a naive method, in which the logger was programmed to activate the 292 

camera in 15-minute intervals. All loggers (naive and proposed) ran the camera for a set 1-minute 293 

window after each activation. Altogether 11 loggers were used, with 10 loggers running the 294 

proposed method and 1 logger running the naive method. A total of 212 1-minute videos were 295 
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collected by the loggers, with 185 videos collected using the proposed method and 27 videos 296 

collected using the naive sampling method. 297 

 298 

The proposed method was trained to activate the cameras during possible foraging activity, which 299 

we identified based on abnormal movements during flight that seemed to correspond to diving 300 

behavior. These abnormal movements were detected by extracting features from 1-second windows 301 

of acceleration data. Additionally, camera activation was limited to movements detected during 302 

flight activity by only activating the camera when the bird’s movement had recently been classified 303 

as flying prior to being classified as foraging, i.e., flying had been detected within the previous five 304 

seconds. The acceleration data used to train the decision trees used in our method was collected in 305 

the previous year from birds at the same colony using Axy-trek logging devices1. 306 

 307 

Fig. 3 gives an overview of the results for the black-tailed gulls. Fig 3 (a) and (b) show GPS tracks 308 

that give an overview of the video data collected by the proposed method and the naive method, 309 

respectively. The portions of the tracks highlighted in green show where video data was collected 310 

on possible or confirmed foraging activity, while the sections highlighted in grey show where video 311 

was collected on non-foraging activity. While only one logger was run using the naive sampling 312 

strategy, its results highlight the issue with such a method, with the logger quickly depleting its 313 

battery recording videos on and around the nesting area, greatly reducing the range of collection 314 

when compared to the devices using event-based camera activation. 315 

 316 

                                         
1 http://www.technosmart.eu/axytrek.php 
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Fig. 3 (c) shows six examples of the acceleration data that was collected surrounding the time of 317 

camera activation by the proposed method, with each chart showing 10 seconds of net magnitude of 318 

acceleration data corresponding to a single example. The first row shows three examples of 319 

foraging and possible foraging activity, in which the camera was correctly activated based on the 320 

birds’ movements, while the three examples in the second row show non-target (flying) activity in 321 

which the camera was incorrectly triggered. Note that the camera is activated based on a 1-second 322 

window of data, which corresponds to a window extracted from the area around the 2 to 4 second 323 

mark for each example. The exact timing is not known due to a short delay (about 3 to 4 seconds) 324 

between when the camera is triggered and when it starts recording data. As is shown in these charts, 325 

while acceleration data can be used to detect the target activity, it is difficult to avoid false positives 326 

due to the similarity between the target activity and other anomalous movements in the sensor data. 327 

Furthermore, due to the camera delay, it is not possible to film short actions that do not last longer 328 

than the camera delay or repeat within the 1-minute recording window. Some of the camera 329 

activations determined to be false positives in these results may have been such one-time actions 330 

that were not captured due to the delay. 331 

 332 

The 212 videos collected by the biologgers were evaluated by the biologists participating in this 333 

study, with each video classified as belonging to the classes: foraging, possible foraging, flying, and 334 

stationary. Of the 27 videos collected by the naive method, none contained any target activity, with 335 

3 videos containing flying activity and 24 videos containing stationary activity. In contrast, of the 336 

185 videos collected by the proposed method, 58 contained target activity (5 confirmed foraging 337 

and 53 possible foraging) and 127 contained non-target activity (86 flying and 41 stationary), giving 338 

the proposed method a precision of about 0.31. Of particular interest were five target activity videos 339 
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which captured images of the black-tailed gulls feeding on insects, both over land and over the sea. 340 

(Supplementary Videos 1 & 2) 341 

 342 

Along with the evaluation done by the biologists, we also analyzed the performance of the 343 

biologger by first fully labelling the low-energy sensor data (i.e., accelerometer data) collected by 344 

the biologgers and then computing the precision, recall, and f-measure for the 1-minute windows of 345 

sensor data that corresponded to the 212 videos collected by the logger. Based on this full labelling 346 

of the data, we computed the estimated distribution of the activities in the sensor data and found that 347 

the target activity (foraging) comprised only about 2 percent of the 6,616 total minutes of data 348 

collected, with 10 percent corresponding to flying activity and the remaining 88 percent 349 

corresponding to stationary. The proposed method achieved a precision of 0.27, a recall of 0.56, and 350 

an f-measure of 0.37 based on this full labelling. The naive method was again determined to have 351 

not collected any target activity, and so received a 0 for all three scores. Meanwhile, the proposed 352 

method was able to capture about half of the estimated windows of target activity (recall 0.56) and 353 

achieved a precision of 0.27, which is well above the expected precision of 0.02 for a naive 354 

sampling method when the target comprises only 2 percent of the dataset. 355 

 356 

DISCUSSION 357 

Several previous studies involving biologgers have introduced trigger mechanisms that can be used 358 

to control when high-cost sensors are activated, with many of these studies focusing on controlling 359 

animal-borne cameras such as the one used in this study. (Troscianko et al. 2015) introduced a 360 

programmable animal-borne camera that incorporated an internal clock, allowing their camera to 361 

only be activated at set times of day. Both (Beringer et al. 2005) and (Goldbogen et al. 2017) 362 

incorporated light sensors to prevent their cameras from being triggered during periods of darkness. 363 
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(Boness et al. 2006) ensured that their camera only recorded the animal when it was at sea using a 364 

saltwater switch. (Watanuki et al. 2007) and (Volpov et al. 2015) took this a step farther by 365 

incorporating a depth sensor, allowing their cameras to only trigger when an animal surpassed a 366 

predefined depth threshold. (Nishiumi et al. 2018) deployed devices with two acceleration sensors, 367 

using a low-cost (low-frequency) acceleration sensor to activate a second high-cost (high-368 

frequency) acceleration sensor when a preset threshold had been surpassed. Finally, (Brown et al. 369 

2012) measured the variance from their low-cost acceleration sensor to dynamically adjust the 370 

sampling rate of their high-cost GPS sensor based on predetermined threshold values. In each of 371 

these previous studies, the readings from the low-cost sensors were only compared to preset 372 

thresholds when determining whether to activate a high-cost sensor. Such methods are only suitable 373 

for coarse-level characterizations of behavior such as differentiating between underwater activity 374 

versus surface activity. In contrast, our proposed method can be used to distinguish between 375 

complex behaviors at a finer scale, allowing biologists to target a specific target behavior. 376 

 377 

This is the first study to our knowledge to deploy AI in animal-borne data loggers. Wild animals 378 

represent one of the most extreme environments in which AI works in terms of limited space and 379 

harsh conditions. We anticipate our work will provide motivation for more widespread adoption of 380 

AI techniques on biologgers, both for intelligent sensor control and intelligent onboard data 381 

processing. Such techniques can not only be used to control what is collected by such devices, but 382 

also what is transmitted off the devices, such as is done by satellite relay tags (Cox et al. 2018). The 383 

combination of IoA (Internet of Animals) and AIoA (AI on animals) would enable biologists to 384 

answer a number of scientific questions about wild animals and obtain important information for 385 

their conservation. 386 

 387 
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FIGURES 389 

 390 

Figure 1. Biologging device used in this study. (a) Example deployment of biologger on a seabird in 391 

its natural environment. (b) Use of low-cost accelerometer to detect foraging activity and activate 392 

high-cost video camera for targeted collection. (c) Biologging device pictured with camera pointing 393 

to left, coated in waterproofing material for use on black-tailed gulls. Device measures 85 mm 394 

length x 35 mm width x 15 mm height and weighs approximately 27 g. (d) Example data collected 395 

by the biologging device from a single black-tailed gull from a colony near Hachinohe City, Japan. 396 
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Green highlighted portions of GPS track indicate successful video recording of foraging behavior 397 

with inset images showing examples of insect predation captured by the device. (e) Attachment of 398 

biologging device in the field to the back of a black-tailed gull using Tesa tape. 399 

  400 
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 401 

Figure 2. Creating AI models for sensor control onboard biologging devices. (a) Example GPS data 402 

collected by our device, collected from a single streaked shearwater from a colony on Awashima 403 

Island, Japan. The inset box on the left shows an example of global flight behavior, with example 404 

features extracted from a 10-min window of GPS data shown above. (b) Example accelerometer 405 
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data collected by our device, collected from a single black-tailed gull from a colony near Hachinohe 406 

City, Japan. The first row shows raw acceleration data, the second row shows magnitude of 407 

acceleration data from 10-sec windows of data corresponding to the behaviors flying, foraging, and 408 

stationary, respectively. The bottom two rows show four example features extracted from the 409 

magnitude of acceleration data for each 10-sec window. (c) The amount of program memory in 410 

bytes used to program each feature extraction function used for the decision tree. (d) Example 411 

decision tree generated from the 1-sec segments of feature values shown in the lower two rows of 412 

(b). Each white node represents a decision based on a single feature’s value and each grey node 413 

represents a final predicted class for the current 1-sec segment of data. (e) Example decision tree 414 

generated by a standard decision tree algorithm. (f) Modified weighted sampling of features used in 415 

our method. Each feature is randomly selected proportionally to the inverse of their size. (g) 416 

Example output from our modified version of the random forest algorithm. Each tree is a candidate 417 

low-cost tree for use on a biologging device. (h) Possible final candidate selected from the trees in 418 

(g).  419 

 420 

  421 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 16, 2019. ; https://doi.org/10.1101/630053doi: bioRxiv preprint 

https://doi.org/10.1101/630053


  - 23 -

 422 

Figure 3. Results of AI video control for black-tailed gull. (a) GPS tracks collected by biologgers 423 

using the proposed method. Green highlighted sections represent successful video collection of 424 

foraging behavior. Grey sections represent video collection of non-target behavior. (b) GPS tracks 425 

collected by biologger using the naive method. (c) Examples of acceleration data (shown as 426 

magnitude of acceleration) collected around the time of video camera activation on biologgers using 427 

the proposed method. Top row corresponds to videos containing target behavior while bottom row 428 

corresponds to videos with non-target behavior. 429 

 430 
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  432 
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DATA COLLECTION 433 

The research at Awashima Island was conducted with permits from the Ministry of the 434 

Environment, Japan. The protocols at Kabushima Island were approved by the Agency for Cultural 435 

Affairs, Japan and the Aomori Prefectural Government. All field protocols were approved by the 436 

Animal Experimental Committee of Nagoya University. 437 
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