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Abstract9

The UK Biobank (Bycroft et al., 2018) is a very large, prospective population-based cohort10

study across the United Kingdom. It provides unprecedented opportunities for researchers to11

investigate the relationship between genotypic information and phenotypes of interest. Multiple12

regression methods, compared with GWAS, have already been showed to greatly improve the13

prediction performance for a variety of phenotypes. In the high-dimensional settings, the lasso14

(Tibshirani, 1996), since its first proposal in statistics, has been proved to be an effective method15

for simultaneous variable selection and estimation. However, the large scale and ultrahigh16

dimension seen in the UK Biobank pose new challenges for applying the lasso method, as many17

existing algorithms and their implementations are not scalable to large applications. In this18

paper, we propose a computational framework called batch screening iterative lasso (BASIL)19

that can take advantage of any existing lasso solver and easily build a scalable solution for very20

large data, including those that are larger than the memory size. We introduce snpnet, an R21
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package that implements the proposed algorithm on top of glmnet (Friedman et al., 2010a)22

and optimizes for single nucleotide polymorphism (SNP) datasets. It currently supports `1-23

penalized linear model, logistic regression, Cox model, and also extends to the elastic net24

with `1/`2 penalty. We demonstrate results on the UK Biobank dataset, where we achieve25

superior predictive performance on quantitative and qualitative traits including height, body26

mass index, asthma and high cholesterol.27

Author Summary28

With the advent and evolution of large-scale and comprehensive biobanks, there come up unprece-29

dented opportunities for researchers to further uncover the complex landscape of human genetics.30

One major direction that attracts long-standing interest is the investigation of the relationships31

between genotypes and phenotypes. This includes but doesn’t limit to the identification of geno-32

types that are significantly associated with the phenotypes, and the prediction of phenotypic values33

based on the genotypic information. Genome-wide association studies (GWAS) is a very powerful34

and widely used framework for the former task, having produced a number of very impactful dis-35

coveries. However, when it comes to the latter, its performance is fairly limited by the univariate36

nature. To address this, multiple regression methods have been suggested to fill in the gap. That37

said, challenges emerge as the dimension and the size of datasets both become large nowadays.38

In this paper, we present a novel computational framework that enables us to solve efficiently the39

entire lasso or elastic-net solution path on large-scale and ultrahigh-dimensional data, and therefore40

make simultaneous variable selection and prediction. Our approach can build on any existing lasso41

solver for small or moderate-sized problems, scale it up to a big-data solution, and incorporate42

other extensions easily. We provide a package snpnet that extends the glmnet package in R and43

optimizes for large phenotype-genotype data. On the UK Biobank, we observe improved prediction44

performance on height, body mass index (BMI), asthma and high cholesterol by the lasso over other45

univariate and multiple regression methods. That said, the scope of our approach goes beyond ge-46

netic studies. It can be applied to general sparse regression problems and build scalable solution47

for a variety of distribution families based on existing solvers.48
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1 Introduction49

The past two decades have witnessed rapid growth in the amount of data available to us. Many50

areas such as genomics, neuroscience, economics and Internet services are producing big datasets51

that have high dimension, large sample size, or both. A variety of statistical methods and computing52

tools have been developed to accommodate this change. See, for example, Friedman et al. (2009);53

Efron and Hastie (2016); Dean and Ghemawat (2008); Zaharia et al. (2010); Abadi et al. (2016)54

and the references therein for more details.55

In high-dimensional regression problems, we have a large number of predictors, and it is likely56

that only a subset of them have a relationship with the response and will be useful for prediction.57

Identifying such a subset is desirable for both scientific interests and the ability to predict outcomes58

in the future. The lasso (Tibshirani, 1996) is a widely used and effective method for simultaneous59

estimation and variable selection. Given a continuous response y ∈ Rn and a model matrix X ∈60

Rn×p, it solves the following regularized regression problem.61

β̂(λ) = argmin
β∈Rp

1
2n‖y −Xβ‖

2
2 + λ‖β‖1, (1)

where ‖x‖q = (
∑n
i=1 |xi|q)

1/q is the vector `q norm of x ∈ Rn and λ ≥ 0 is the tuning parameter.62

The `1 penalty on β allows for selection as well as estimation. Normally there is an unpenalized63

intercept in the model, but for ease of presentation we leave it out, or we may assume that both X64

and y have been centered with mean 0. One typically solves the entire lasso solution path over a grid65

of λ values λ1 ≥ λ2 · · · ≥ λL and chooses the best λ by cross-validation or by predictive performance66

on an independent validation set. In R (R Core Team, 2017), several packages, such as glmnet67

(Friedman et al., 2010a) and ncvreg (Breheny and Huang, 2011), provide efficient procedures to68

obtain the solution path for the Gaussian model (1), and for other generalized linear models with the69

residual sum of squared replaced by the negative log-likelihood of the corresponding model. Among70

them, glmnet, equipped with highly optimized Fortran subroutines, is widely considered the fastest71

off-the-shelf lasso solver. It can, for example, fit a sequence of 100 logistic regression models on a72

sparse dataset with 54 million samples and 7 million predictors within only 2 hours (Hastie, 2015).73
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However, as the data become increasingly large, many existing methods and tools may not be74

able to serve the need, especially if the size exceeds the memory size. Most packages, including75

the ones mentioned above, assume that the data or at least its sparse representation can be fully76

loaded in memory and that the remaining memory is sufficient to hold other intermediate results.77

This becomes a real bottleneck for big datasets. For example, in our motivating application, the78

UK Biobank genotypes and phenotypes dataset (Bycroft et al., 2018) contains about 500,000 indi-79

viduals and more than 800,000 genotyped single nucleotide polymorphisms (SNPs) measurements80

per person. This provides unprecedented opportunities to explore more comprehensive genotypic81

relationships with phenotypes of interest. For polygenic traits such as height and body mass index82

(BMI), specific variants discovered by genome-wide association studies (GWAS) used to explain83

only a small proportion of the estimated heritability (Visscher et al., 2017), an upper bound of the84

proportion of phenotypic variance explained by the genetic components. While GWAS with larger85

sample size on the UK Biobank can be used to detect more SNPs and rare variants, their prediction86

performance is fairly limited by univariate models. It is very interesting to see if full-scale multiple87

regression methods such as the lasso or elastic-net can improve the prediction performance and88

simultaneously select relevant variants for the phenotypes. That being said, the computational89

challenges are two fold. First is the memory bound. Even though each bi-allelic SNP value can90

be represented by only two bits and the PLINK library (Chang et al., 2015) stores such SNP91

datasets in a binary compressed format, statistical packages such as glmnet and ncvreg require92

that the data be loaded in memory in a normal double-precision format. Given its sample size and93

dimension, the genotype matrix itself will take up around one terabyte of space, which may well94

exceed the size of the memory available and is infeasible for the packages. Second is the efficiency95

bound. For a larger-than-RAM dataset, it has to sit on the disk and we may only read part of it96

into the memory. In such scenario, the overall efficiency of the algorithm is not only determined97

by the number of basic arithmetic operations but also the disk I/O — data transfer between the98

memory and the disk — an operation several magnitudes slower than in-memory operations.99

In this paper, we propose an efficient and scalable meta algorithm for the lasso called Batch100

Screening Iterative Lasso (BASIL) that is applicable to larger-than-RAM datasets and designed101
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to tackle the memory and efficiency bound. It computes the entire lasso path and can easily102

build on any existing package to make it a scalable solution. As the name suggests, it is done in103

an iterative fashion on an adaptively screened subset of variables. At each iteration, we exploit an104

efficient, parallelizable screening operation to significantly reduce the problem to one of manageable105

size, solve the resulting smaller lasso problem, and then reconstruct and validate a full solution106

through another efficient, parallelizable step. In other words, the iterations have a screen-solve-107

check substructure. That being said, it is the goal and also the guarantee of the BASIL algorithm108

that the final solution exactly solves the full lasso problem (1) rather than any approximation, even109

if the intermediate steps work repeatedly on subsets of variables.110

The screen-solve-check substructure is inspired by Tibshirani et al. (2012) and especially the111

proposed strong rules. The strong rules state: assume β̂(λk−1) is the lasso solution in (1) at λk−1,112

then the jth predictor is discarded at λk if113

|x>j (y −Xβ̂(λk−1))| < λk − (λk−1 − λk). (2)

The key idea is that the inner product above is almost “non-expansive” in λ and that the lasso114

solution is characterized equivalently by the Karush-Kuhn-Tucker (KKT) condition (Boyd and115

Vandenberghe, 2004). For the lasso, the KKT condition states that β̂ ∈ Rp is a solution to (1) if116

for all 1 ≤ j ≤ p,117

1
n
· x>j (y −Xβ̂)


= λ · sign(β̂j), if β̂j 6= 0,

≤ λ, if β̂j = 0.
(3)

The KKT condition suggests that the variables discarded based on the strong rules would have118

coefficient 0 at the next λk. The checking step comes into play because this is not a guarantee. The119

strong rules can fail, though failures occur rarely when p > n. In any case, the KKT condition will120

be checked to see if the coefficients of the left-out variables are indeed 0 at λk. If the check fails,121

we add in the violated variables and repeat the process. Otherwise, we successfully reconstruct a122

full solution and move to the next λ. This is the iterative algorithm proposed by these authors and123

has been implemented efficienly into the glmnet package.124
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The BASIL algorithm proceeds in a similar way but is designed to optimize for datasets that125

are too big to fit into the memory. Considering the fact that screening and KKT check need to scan126

through the entire data and are thus costly in the disk Input/Output (I/O) operations, we attempt127

to do batch screening and solve a series of models (at different λ values) in each iteration, where a128

single sweep over the full data would suffice. Followed by a checking step, we can obtain the lasso129

solution for multiple λ’s in one iteration. This can effectively reduce the total number of iterations130

needed to compute the full solution path and thus reduce the expensive disk read operations that131

often cause significant delay in the computation. The process is illustrated in Figure 1 and will be132

detailed in the next section.133

2 Results134

Overview of the BASIL algorithm For convenience, we first introduce some notation. Let135

Ω = {1, 2, . . . , p} be the universe of variable indices. For 1 ≤ ` ≤ L, let β̂(λ`) be the lasso solution136

at λ = λ`, and A(λ`) = {1 ≤ j ≤ p : β̂j(λ`) 6= 0} be the active set. When X is a matrix, we use XS137

to represent the submatrix including only columns indexed by S. Similarly when β is a vector, βS138

represents the subvector including only elements indexed by S. Given any two vectors a, b ∈ Rn,139

the dot product or inner product can be written as a>b = 〈a, b〉 =
∑n
i=1 aibi. Throughout the140

paper, we use predictors, features, variables and variants interchangeably. We use the strong set to141

refer to the screened subset of variables on which the lasso fit is computed at each iteration, and142

the active set to refer to the subset of variables with nonzero lasso coefficients.143

Remember that our goal is to compute the exact lasso solution (1) for larger-than-RAM datasets144

over a grid of regularization parameters λ1 > λ2 > · · · > λL ≥ 0. We describe the procedure for the145

Gaussian family in this section and discuss extension to general problems in the next. A common146

choice is L = 100 and λ1 = max1≤j≤p |x>j r(0)|/n, the largest λ at which the estimated coefficients147

start to deviate from zero. Here r(0) = y if we do not include an intercept term and r(0) = y − ȳ148

if we do. In general, r(0) is the residual of regressing y on the unpenalized variables, if any. The149

other λ’s can be determined, for example, by an equally spaced array on the log scale. The solution150
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Figure 1: The lasso coefficient profile that shows the progression of the BASIL algorithm. The previously
finished part of the path is colored grey, the newly completed and verified is in green, and the part that is
newly computed but failed the verification is colored red.

path is found iteratively with a screening-solving-checking substructure similar to the one proposed151

in Tibshirani et al. (2012). Designed for large-scale and ultrahigh-dimensional data, the BASIL152

algorithm can be viewed as a batch version of the strong rules. At each iteration we attempt to153

find valid lasso solution for multiple λ values on the path and thus reduce the burden of disk reads154

of the big dataset. Specifically, as summarized in Algorithm 1, we start with an empty strong set155

S(0) = ∅ and active set A(0) = ∅. Each of the following iterations consists of three steps: screening,156

fitting and checking.157
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Algorithm 1 BASIL for the Gaussian Model
1: Initialization: active set A(0) = ∅, initial residual r(0) (with respect to the intercept or other

unpenalized variables) at λ1 = λmax, a short list of initial parameters Λ(0) = {λ1, . . . , λL(0)}.
2: for k = 0 to K do
3: Screening: for each 1 ≤ j ≤ p, compute inner product with current residual c(k)

j = 〈xj , r(k)〉.
Construct the strong set

S(k) = A(k) ∪ E(k)
M ,

where E(k)
M is the set of M variables in Ω \ A(k) with largest |c(k)|.

4: Fitting: for all λ ∈ Λ(k), solve the lasso only on the strong set S(k), and find the coefficients
β̂(k)(λ) and the residuals r(k)(λ).

5: Checking: search for the smallest λ such that the KKT conditions are satisfied, i.e.,

λ̄(k) = min
{
λ ∈ Λ(k) : max

j∈Ω\S(k)
(1/n)|x>j r(k)(λ)| < λ

}
.

For empty set, we define λ̄(k) to be the immediate previous λ to Λ(k) but increment M by
∆M . Let the current active set A(k+1) and residuals r(k+1) defined by the solution at λ̄(k).
Define the next parameter list Λ(k+1) = {λ ∈ Λ(k) : λ < λ̄(k)}. Extend this list if it consists of
too few elements. For λ ∈ Λ(k) \Λ(k+1), we obtain exact lasso solutions for the full problem:

β̂S(k)(λ) = β̂(k)(λ), β̂Ω\S(k)(λ) = 0.

6: end for

In the screening step, an updated strong set is found as the candidate for the subsequent fitting.158

Suppose that so far (valid) lasso solutions have been found for λ1, . . . , λ` but not for λ`+1. The new159

set will be based on the lasso solution at λ`. In particular, we will select the top M variables with160

largest absolute inner products |〈xj , y−Xβ̂(λ`)|. They are the variables that are most likely to be161

active in the lasso model for the next λ values. In addition, we include the ever-active variables at162

λ1, . . . , λ` because they have been “important” variables and might continue to be important at a163

later stage.164

In the fitting step, the lasso is fit on the updated strong set for the next λ values λ`+1, . . . , λ`′ .165

Here `′ is often smaller than L because we do not have to solve for all of the remaining λ values on166

this strong set. The full lasso solutions at much smaller λ’s are very likely to have active variables167

outside of the current strong set. In other words even if we were to compute solutions for those168

very small λ values on the current strong set, they would probably fail the KKT test. These λ’s169
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are left to later iterations when the strong set is expanded.170

In the checking step, we check if the newly obtained solutions on the strong set can be valid171

part of the full solutions by evaluating the KKT condition. Given a solution β̂S ∈ R|S| to the172

sub-problem at λ, if we can verify for every left-out variable j that (1/n)|〈xj , y −XS β̂S〉| < λ, we173

can then safely set their coefficients to 0. The full lasso solution β̂(λ) ∈ Rp is then assembled by174

letting β̂S(λ) = β̂S and β̂Ω\S(λ) = 0. We look for the λ value prior to the one that causes the first175

failure down the λ sequence and use its residual as the basis for the next screening. Nevertheless,176

there is still chance that none of the solutions on the current strong set passes the KKT check177

for the λ subsequence considered in this iterations. That suggests the number of previously added178

variables in the current iteration was not sufficient. In this case, we are unable to move forward179

along the λ sequence, but will fall back to the λ value where the strong set was last updated and180

include ∆M more variables based on the sorted absolute inner product.181

The three steps above can be applied repeatedly to roll out the complete lasso solution path182

for the original problem. However, if our goal is choosing the best model along the path, we can183

stop fitting once an optimal model is found evidenced by the performance on a validation set. At a184

high level, we run the iterative procedure on the training data, monitor the error on the validation185

set, and stop when the model starts to overfit, or in other words, when the validation error shows186

a clear upward trend.187

Extension to general problems It is straightforward to extend the algorithm from the Gaussian188

case to more general problems. In fact, the only changes we need to make are the screening step189

and the strong set update step. Wherever the strong rules can be applied, we have a corresponding190

version of the iterative algorithm. In Tibshirani et al. (2012), the general problem is191

β̂(λ) = argmin
β∈Rp

f(β) + λ
r∑
j=1

cj‖βj‖pj , (4)

where f is a convex differentiable function, and for all 1 ≤ j ≤ r, cj ≥ 0, pj ≥ 1, and βj can be a192

scalar or vector whose `pj -norm is represented by ‖βj‖pj . The general strong rule discards predictor193
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j if194

‖∇jf(β̂(λk−1))‖qj
< cj(2λk − λk−1), (5)

where 1/pj + 1/qj = 1. Hence, our algorithm can adapt and screen by choosing variables with195

large values of ‖∇jf(β̂(λk−1))‖qj
that are not in the current active set. We expand in more detail196

two important applications of the general rule: logistic regression and Cox’s proportional hazards197

model in survival analysis.198

Logistic regression In the lasso penalized logistic regression (Friedman et al., 2010b) where the

observed outcome y ∈ {0, 1}n, the convex differential function in (4) is

f(β) = − 1
n

n∑
i=1

(yi log pi + (1− yi) log(1− pi)) .

where pi = 1/(1 + exp(−x>i β)) for all 1 ≤ i ≤ n. The rule in (5) is reduced to

|x>j (y − p̂(λk−1))| < λk − (λk−1 − λk),

where p̂(λk−1) is the predicted probabilities at λ = λk−1. Similar to the Gaussian case, we can still199

fit relaxed lasso and allow adjustment covariates in the model to adjust for confounding effect.200

Cox’s proportional hazards model In the usual survival analysis framework, for each sample,

in addition to the predictors xi ∈ Rp and the observed time yi, there is an associated right-censoring

indicator δi ∈ {0, 1} such that δi = 0 if failure and δi = 1 if right-censored. Let t1 < t2 < ... < tm

be the increasing list of unique failure times, and j(i) denote the index of the observation failing

at time ti. The Cox’s proportional hazards model (Cox, 1972) assumes the hazard for the ith

individual as hi(t) = h0(t) exp(x>i β) where h0(t) is a shared baseline hazard at time t. We can let

f(β) be the negative log partial likelihood in (4) and screen based on its gradient at the most recent

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2020. ; https://doi.org/10.1101/630079doi: bioRxiv preprint 

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/


lasso solution as suggested in (5). In particular,

f(β) = − 1
m

m∑
i=1

x>j(i)β − log

∑
j∈Ri

exp(x>j β)

 ,

where Ri is the set of indices j with yj ≥ ti (those at risk at time ti). We can derive the associated201

rule based on (5) and thus the survival BASIL algorithm. Further discussion and comprehensive202

experiments are included in a follow-up paper (Li et al., 2020).203

Extension to the elastic net Our discussion so far focuses solely on the lasso penalty, which204

aims to achieve a rather sparse set of linear coefficients. In spite of good performance in many high-205

dimensional settings, it has limitations. For example, when there is a group of highly correlated206

variables, the lasso will often pick out one of them and ignore the others. This poses some hardness207

in interpretation. Also, under high-correlation structure like that, it has been empirically observed208

that when the predictors are highly correlated, the ridge can often outperform the lasso (Tibshirani,209

1996).210

The elastic net, proposed in Zou and Hastie (2005), extends the lasso and tries to find a sweet211

spot between the lasso and the ridge penalty. It can capture the grouping effect of highly correlated212

variables and sometimes perform better than both methods especially when the number of variables213

is much larger than the number of samples. In particular, instead of imposing the `1 penalty, the214

elastic net solves the following regularized regression problem.215

β̂(λ) = argmin
β∈Rp

f(β) + λ(α‖β‖1 + (1− α)‖β‖22/2), (6)

where the mixing parameter α ∈ [0, 1] determines the proportion of lasso and ridge in the penalty216

term.217

It is straightforward to adapt the BASIL procedure to the elastic net. It follows from the gradient218

motivation of the strong rules and KKT condition of convex optimization. We take the Gaussian219

family as an example. The others are similar. In the screening step, it is easy to derive that we can220
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still rank among the currently inactive variables on their absolute inner product with the residual221

|x>j (y−Xβ̂(λk−1))| to determine the next candidate set. In the checking step, to verify that all the222

left-out variables indeed have zero coefficients, we need to make sure that (1/n)|x>j (y−Xβ̂(λk−1))| ≤223

λα holds for all such variables. It turns out that in our UK Biobank applications, the elastic-net224

results (after selection of α and λ on the validation set) do not differ significantly from the lasso225

results, which will be immediately seen in the next section.226

UK Biobank analysis We describe a real-data application on the UK Biobank that in fact227

motivates our development of the BASIL algorithm.228

The UK Biobank (Bycroft et al., 2018) is a very large, prospective population-based cohort229

study with individuals collected from multiple sites across the United Kingdom. It contains exten-230

sive genotypic and phenotypic detail such as genomewide genotyping, questionnaires and physical231

measures for a wide range of health-related outcomes for over 500,000 participants, who were aged232

40-69 years when recruited in 2006-2010. In this study, we are interested in the relationship between233

an individual’s genotype and his/her phenotypic outcome. While GWAS focus on identifying SNPs234

that may be marginally associated with the outcome using univariate tests, we would like to find235

relevant SNPs in a multivariate prediction model using the lasso. A recent study (Lello et al., 2018)236

fits the lasso on a subset of the variables after one-shot univariate p-value screening and suggests237

improvement in explaining the variation in the phenotypes. However, the left-out variants with238

relatively weak marginal association may still provide additional predictive power in a multiple239

regression environment. The BASIL algorithm enables us to fit the lasso model at full scale and240

gives further improvement in the explained variance over the alternative models considered.241

We focused on 337,199 White British unrelated individuals out of the full set of over 500,000 from242

the UK Biobank dataset (Bycroft et al., 2018) that satisfy the same set of population stratification243

criteria as in DeBoever et al. (2018). The dataset is partitioned randomly into training, validation244

and test subsets. Each individual has up to 805,426 measured variants, and each variant is encoded245

by one of the four levels where 0 corresponds to homozygous major alleles, 1 to heterozygous alleles,246

2 to homozygous minor alleles and NA to a missing genotype. In addition, we have available247
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covariates such as age, sex, and forty pre-computed principal components of the SNP matrix.248

To evaluate the predictive performance for quantitative response, we use a common measure

R-squared (R2). Given a linear estimator β̂ and data (y,X), it is defined as

R2 = 1− ‖y −Xβ̂‖
2
2

‖y − ȳ‖22
.

We evaluate this criteria for all the training, validation and test sets. For a dichotomous response,249

misclassification error could be used but it would depend on the calibration. Instead the receiver250

operating characteristic (ROC) curve provides more information and illustrates the tradeoff between251

true positive and false positive rates under different thresholds. The AUC computes the area under252

the ROC curve — a larger value indicates a generally better classifier. Therefore, we will evaluate253

AUCs on the training, validation and test sets for dichotomous responses.254

We compare the performance of the lasso with related methods to have a sense of the contribution255

of different components. Starting from the baseline, we fit a linear model that includes only age256

and sex (Model 1 in the tables below), and then one that includes additionally the top 10 principal257

components (Model 2). These are the adjustment covariates used in our main lasso fitting and we258

use these two models to highlight the contribution of the SNP information over and above that of259

age, sex and the top 10 PCs. In addition, the strongest univariate model is also evaluated (Model260

3). This includes the 12 adjustment covariates together with the single SNP that is most correlated261

with the outcome after adjustment.262

Toward multivariate models, we first compare with a univariate method that has some multi-263

variate flavor (Models 4 and 5). We select a subset of the K most marginally significant variants264

(after adjusting for the covariates), and construct a new variable by linearly combining these vari-265

ants using their univariate coefficients. An OLS is then fit on the new variable together with the266

adjustment variables. It is similar to a one-step partial least squares (Wold, 1975) with p-value267

based truncation. We take K = 10, 000 and 100, 000 in the experiments. We further compare with268

a hierarchical sequence of multivariate models where each is fit on a subset of the most significant269

SNPs. In particular, the `-th model selects `×1000 SNPs with the smallest univariate p-values, and270
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a multivariate linear or logistic regression is fit on those variants jointly. The sequence of models271

are evaluated on the validation set, and the one with the smallest validation error is chosen. We272

call this method Sequential LR or SeqLR (Model 6) for convenience in the rest of the paper. As273

a byproduct of the lasso, the relaxed lasso (Meinshausen, 2007) fits a debiased model by refitting274

an OLS on the variables selected by the lasso. This can potentially recover some of the bias in-275

troduced by lasso shrinkage. For the elastic-net, we fit separate solution paths with varying λ’s at276

α = 0.1, 0.5, 0.9, and evaluate their performance (R2 or AUC) on the validation set. The best pair277

of hyperparameters (α, λ) is selected and the corresponding test performance is reported.278

In addition, we make comparison with two other bayesian methods PRS-CS (Ge et al., 2019)279

and SBayesR (Lloyd-Jones et al., 2019). For PRS-CS, we first characterized the GWAS summary280

statistics using the combined set of training and validation set (n = 269, 927) with age, sex, and281

the top 10 PCs as covariates using PLINK v2.00a3LM (9 Apr 2020) (Chang et al., 2015). Using282

the LD reference dataset precomputed for the European Ancestry using the 1000 genome samples283

(https://github.com/getian107/PRScs), we applied PRS-CS with the default option. We took284

the posterior effect size estimates and computed the polygenic risk scores using PLINK2’s --score285

subcommand (Chang et al., 2015). For SBayesR, we computed the sparse LD matrix using the com-286

bined set of training and validation set individuals (n = 269, 927) using the -- make-sparse-ldm287

subcommand implemented in GCTB version 2.0.1 (Zeng et al., 2018). Using the GWAS sum-288

mary statistics computed on the set of individuals and following the GCTB’s recommendations,289

we applied SBayesR with the following options: gctb --sbayes R--ldm [the LD matrix] --pi290

0.95,0.02,0.02,0.01 --gamma 0.0,0.01,0.1,1 --chain-length 10000 --burn-in 2000291

--exclude-mhc --gwas-summary [the GWAS summary statistics]. We report the model per-292

formance on the test set.293

There are thousands of measured phenotypes in the dataset. For demonstration purpose, we294

analyze four phenotypes that are known to be highly or moderately heritable and polygenic. For295

these complex traits, univariate studies may not find SNPs with smaller effects, but the lasso model296

may include them and predict the phenotype better. We look at two quantitative traits: standing297

height and body mass index (BMI) (Tanigawa et al., 2019), and two qualitative traits: asthma and298
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high cholesterol (HC) (DeBoever et al., 2018).299

We first summarize the test performance of different methods on the four phenotypes in Figure 2.300

The lasso and elastic net show significant improvement in test R2 and AUC over the other competing301

methods. Details of the model for height are given in the next section and for the other phenotypes302

(BMI, asthma and high cholesterol) in Appendix A. A comparison of the univariate p-values and303

the lasso coefficients for all these traits is shown in the form of Manhattan plots in the Appendix304

B (Supplementary Figure 14, 15).305
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Figure 2: Comparison of different methods on the test set. R2 are evaluated for continuous phenotypes
height and BMI, and AUC evaluated for binary phenotypes asthma and high cholesterol.

Height is a polygenic and heritable trait that has been studied for a long time. It has been used306
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as a model for other quantitative traits, since it is easy to measure reliably. From twin and sibling307

studies, the narrow sense heritability is estimated to be 70-80% (Silventoinen et al., 2003; Visscher308

et al., 2006, 2010). Recent estimates controlling for shared environmental factors present in twin309

studies calculate heritability at 0.69 (Zaitlen et al., 2013; Hemani et al., 2013). A linear based310

model with common SNPs explains 45% of the variance (Yang et al., 2010) and a model including311

imputed variants explains 56% of the variance, almost matching the estimated heritability (Yang312

et al., 2015). So far, GWAS studies have discovered 697 associated variants that explain one fifth313

of the heritability (Lango Allen et al., 2010; Wood et al., 2014). Recently, a large sample study314

was able to identify more variants with low frequencies that are associated with height (Marouli315

et al., 2017). Using lasso with the larger UK Biobank dataset allows both a better estimate of the316

proportion of variance that can be explained by genomic predictors and simultaneous selection of317

SNPs that may be associated. The results are summarized in Table 1. The associated R2 curves for318

the lasso and the relaxed lasso are shown in Figure 3. The residuals of the optimal lasso prediction319

are plotted in Figure 4.320

Model Form R2
train R2

val R2
test Size

(1) Age + Sex 0.5300 0.5260 0.5288 2
(2) Age + Sex + 10 PCs 0.5344 0.5304 0.5336 12
(3) Strong Single SNP 0.5364 0.5323 0.5355 13
(4) 10K Combined 0.5482 0.5408 0.5444 10,012
(5) 100K Combined 0.5833 0.5515 0.5551 100,012
(6) Sequential LR 0.7416 0.6596 0.6601 17,012
(7) Lasso 0.8304 0.6992 0.6999 47,673
(8) Relaxed Lasso 0.7789 0.6718 0.6727 13,395
(9) Elastic Net 0.8282 0.6991 0.6998 48,256
(10) PRS-CS 0.5692 − 0.5615 148,052
(11) SBayesR 0.5397 − 0.5368 667,045

Table 1: R2 values for height. For sequential LR, lasso and relaxed lasso, the chosen model is based on
maximum R2 on the validation set. Model (3) to (8) each includes Model (2) plus their own specification
as stated in the Form column. The validation results for PRS-CS and SBayesR are not available because
we used a combined training and validation set for training.

A large number (47,673) of SNPs need to be selected in order to achieve the optimal R2
test =321

0.6999 for the lasso and similarly for the elastic-net. Comparatively, the relaxed lasso sacrifices322

some predictive performance by including a much smaller subset of variables (13,395). Past the323
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Figure 3: R2 plot for height. The top axis shows the number of active variables in the model.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

140

160

180

200

140 160 180 200
Predicted Height (cm)

A
ct

ua
l H

ei
gh

t (
cm

)

0

2500

5000

7500

10000

−20 −10 0 10 20 30
Residual (cm)

F
re

qu
en

cy

Figure 4: Left: actual height versus predicted height on 5000 random samples from the test set. The
correlation between actual height and predicted height is 0.9416. Right: histogram of the lasso residuals
for height. Standard deviation of the residual is 5.05 (cm).
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Method R2
val R2

test h2
test Cortest Cortest−{age, sex}

Lasso 69.92% 69.99% 35.66% 0.8366 0.4079
Prescreened lasso 69.40% 69.56% 34.73% 0.8340 0.4025

Table 2: Comparison of prediction results on height with the model trained following the same procedure as
ours except for an additional prescreening step as done in Lello et al. (2018). In addition to R2, proportion
of residual variance explained (denoted by h2

test) and correlation between the fitted values and actual values
are computed. We also compute an adjusted correlation between the residual after regressing age and sex
out from the prediction and the residual after regressing age and sex out from the true response, both on
the test set.

optimal point, the additional variance introduced by refitting such large models may be larger than324

the reduction in bias. The large models confirm the extreme polygenicity of standing height.325

In comparison to the other models, the lasso performs significantly better in terms of R2
test326

than all univariate methods, and outperforms multivariate methods based on univariate p-value327

ordering. That demonstrates the value of simultaneous variable selection and estimation from a328

multivariate perspective, and enables us to predict height to within 10 cm about 95% of the time329

based only on SNP information (together with age and sex). We also notice that the sequential330

linear regression approach does a good job, whose performance gets close to that of the relaxed331

lasso. It is straightforward and easy to implement using existing softwares such as PLINK (Chang332

et al., 2015).333

Recently Lello et al. (2018) apply a lasso based method to predict height and other phenotypes334

on the UK Biobank. Instead of fitting on all QC-satisfied SNPs (as stated in Section 4), they335

pre-screen 50K or 100K most significant SNPs in terms of p-value and apply lasso on that set only.336

In addition, although both datasets come from the same UK Biobank, the subset of individuals337

they used is larger than ours. While we restrict the analysis to the unrelated individuals who have338

self-reported white British ancestry, they look at Europeans including British, Irish and Any Other339

White. For a fair comparison, we follow their procedure (pre-screening 100K SNPs) but run on340

our subset of the dataset. The results are shown in Table 2. We see that the improvement of the341

full lasso over the prescreened lasso is almost 0.5% in test R2, and 1% relative to the proportion of342

residual variance explained after covariate adjustment.343

Further, we compare the full lasso coefficients and the univariate p-values from GWAS in Fig-344
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ure 5. The vertical grey dotted line indicates the top 100K cutoff in terms of p-value. We see
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Figure 5: Comparison of the lasso coefficients and univariate p-values for height. The index on the
horizontal axis represents the SNPs sorted by their univariate p-values. The red curve associated with
the left vertical axis shows the − log10 of the univariate p-values. The blue bars associated with the right
vertical axis show the corresponding lasso coefficients for each (sorted) SNP. The horizontal dotted lines in
gray identifies lasso coefficients of ±0.05. The vertical one represents the 100K cutoff used in Lello et al.
(2018).

345

although a general decreasing trend appears in the magnitude of the lasso coefficients with respect346

to increasing p-values (decreasing − log10(p)), there are a number of spikes even in the large p-value347

region which is considered marginally insignificant. This shows that variants beyond the strongest348

univariate ones contribute to prediction.349

3 Discussion350

In this paper, we propose a novel batch screening iterative lasso (BASIL) algorithm to fit the full351

lasso solution path for very large and high-dimensional datasets. It can be used, among the others,352

for Gaussian linear model, logistic regression and Cox regression, and can be easily extended to fit353

the elastic-net with mixed `1/`2 penalty. It enjoys the advantages of high efficiency, flexibility and354

easy implementation. For SNP data as in our applications, we develop an R package snpnet that355
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incorporates SNP-specific optimizations and are able to process datasets of wide interest from the356

UK Biobank.357

In our algorithm, the choice of M is important for the practical performance. It trades off358

between the number of iterations and the computation per iteration. With a small M or small359

update of the strong set, it is very likely that we are unable to proceed fast along the λ sequence in360

each iteration. Although the design of the BASIL algorithm guarantees that for any M,∆M > 0,361

we are able to obtain the full solution path after sufficient iterations, many iterations will be needed362

if M is chosen too small, and the disk I/O cost will be dominant. In contrast, a large M will incur363

more memory burden and more expensive lasso computation, but with the hope to find more valid364

lasso solutions in one iteration, save the number of iterations and the disk I/O. It is hard to identify365

the optimal M a priori. It depends on the computing architecture, the size of the problem, the366

nature of the phenotype, etc. For this reason, we tend to leave it as a subjective parameter to367

the user’s choice. However in the meantime, we do plan to provide a more systematic option to368

determine M , which leverages the strong rules again. Recall that in the simple setting with no369

intercept and no covariates, the initial strong set is constructed by |x>j y| ≤ 2λ − λmax. Since the370

strong rules rarely make mistakes and are fairly effective in discarding inactive variables, we can371

guide the choice of batch size M by the number of λ values we want to cover in the first iteration.372

For example, one may want the strong set to be large enough to solve for the first 10 λ’s in the373

first iteration. We can then let M = |{1 ≤ j ≤ p : |x>j y| > 2λ10 − λmax}|. Despite being adaptive374

to the data in some sense, this approach is by no means computationally optimal. It is more based375

on heuristics that the iteration should make reasonable progress along the path.376

Our numerical studies demonstrate that the iterative procedure effectively reduces a big-n-big-377

p lasso problem into one that is manageable by in-memory computation. In each iteration, we378

are able to use parallel computing when applying screening rules to filter out a large number of379

variables. After screening, we are left with only a small subset of data on which we are able to380

conduct intensive computation like cyclical coordinate descent all in memory. For the subproblem,381

we can use existing fast procedures for small or moderate-size lasso problems. Thus, our method382

allows easy reuse of previous software with lightweight development effort.383
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When a large number of variables is needed in the optimal predictive model, it may still require384

either large memory or long computation time to solve the smaller subproblem. In that case, we385

may consider more scalable and parallelizable methods like proximal gradient descent (Parikh and386

Boyd, 2014) or dual averaging (Xiao, 2010; Duchi et al., 2012). One may think why don’t we387

directly use these methods for the original full problem? First, the ultra high dimension makes388

the evaluation of gradients, even on mini-batch very expensive. Second, it can take a lot more389

steps for such first-order methods to converge to a good objective value. Moreover, the speed of390

convergence depends on the choice of other parameters such as step size and additional constants391

in dual averaging. For those reasons, we still prefer the tuning-free and fast coordinate descent392

methods when the subproblem is manageable.393

The lasso has nice variable selection and prediction properties if the linear model assumption394

together with some additional assumptions such as the restricted eigenvalue condition (Bickel et al.,395

2009) or the irrepresentable condition (Zhao and Yu, 2006) holds. In practice, such assumptions do396

not always hold and are often hard to verify. In our UK Biobank application, we don’t attempt to397

verify the exact conditions, and the selected model can be subject to false positives. However, we398

demonstrate relevance of the selection via empirical consistency with the GWAS results. We have399

seen superior prediction performance by the lasso as a regularized regression method compared to400

other methods. More importantly, by leveraging the sparsity property of the lasso, we are able to401

manage the ultrahigh-dimensional problem and obtain a computationally efficient solution.402

When comparing with other methods in the UK Biobank experiments, due to the large number403

of test samples (60,000+), we are confident that the lasso and elastic-net methods are able to do404

significantly better than other methods. In fact, the standard error of R2 can be easily derived405

by the delta method, and the standard error of the AUC can be estimated and upper bounded by406

1/(4 min(m,n)) (DeLong et al., 1988; Cortes and Mohri, 2005), where m,n represents the number407

of positive and negative samples. For height and BMI, it turns out that the standard errors are408

roughly 0.001, or 0.1%. For asthma and high cholesterol, considering the case rate around 12%,409

the standard errors can be upper bounded by 0.005, or 0.5%. Therefore, on height, BMI and410

asthma, the lasso and elastic net perform significantly better than the other methods, while on411
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high cholesterol, the Sequential LR and the relaxed lasso have competitive performance as well.412

4 Materials and Methods413

Variants in the BASIL framework Some other very useful components can be easily incorpo-414

rated into the BASIL framework. We will discuss debiasing using the relaxed lasso and the inclusion415

of adjustment covariates.416

The lasso is known to shrink coefficients to exclude noise variables, but sometimes such shrink-

age can degrade the predictive performance due to its effect on actual signal variables. Meinshausen

(2007) introduces the relaxed lasso to correct for the potential over-shrinkage of the original lasso

estimator. They propose a refitting step on the active set of the lasso solution with less regular-

ization, while a common way of using it is to fit a standard OLS on the active set. The active set

coefficients are then set to

β̂A,Relax(λ) = argmin
βA∈R|A|

‖y −XAβA‖22,

whereas the coefficients for the inactive set remain at 0. This refitting step can revert some of the417

shrinkage bias introduced by the vanilla lasso. It doesn’t always reduce prediction error due to the418

accompanied increase in variance when there are many variables in the model or when the signals419

are weak. That being said, we can still insert a relaxed lasso step with little effort in our iterative420

procedure: once a valid lasso solution is found for a new λ, we may refit with OLS. As we iterate,421

we can monitor validation error for the lasso and the relaxed lasso. The relaxed lasso will generally422

end up choosing a smaller set of variables than the lasso solution in the optimal model.423

In some applications such as GWAS, there may be confounding variables Z ∈ Rn×q that we424

want to adjust for in the model. Population stratification, defined as the existence of a systematic425

ancestry difference in the sample data, is one of the common factors in GWAS that can lead to426

spurious discoveries. This can be controlled for by including some leading principal components of427

the SNP matrix as variables in the regression (Price et al., 2006). In the presence of such variables,428

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2020. ; https://doi.org/10.1101/630079doi: bioRxiv preprint 

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/


we instead solve429

(α̂(λ), β̂(λ)) = argmin
α∈Rq,β∈Rp

1
2n‖y − Zα−Xβ‖

2
2 + λ‖β‖1. (7)

This variation can be easily handled with small changes in the algorithm. Instead of initializing430

the residual with the response y, we set r(0) equal to the residual from the regression of y on the431

covariates. In the fitting step, in addition to the variables in the strong set, we include the covariates432

but leave their coefficients unpenalized as in (7). Notice that if we want to find relaxed lasso fit433

with the presence of adjustment covariates, we need to include those covariates in the OLS as well,434

i.e.,435

(α̂Relax(λ), β̂A,Relax(λ)) = argmin
α∈Rq,βA∈R|A|

‖y − Zα−XAβA‖22. (8)

436

UK Biobank experiment details We focused on 337,199 White British unrelated individuals437

out of the full set of over 500,000 from the UK Biobank dataset (Bycroft et al., 2018) that satisfy438

the same set of population stratification criteria as in DeBoever et al. (2018): (1) self-reported439

White British ancestry, (2) used to compute principal components, (3) not marked as outliers for440

heterozygosity and missing rates, (4) do not show putative sex chromosome aneuploidy, and (5)441

have at most 10 putative third-degree relatives. These criteria are meant to reduce the effect of442

confoundedness and unreliable observations.443

The number of samples is large in the UK Biobank dataset, so we can afford to set aside444

an independent validation set without resorting to the costly cross-validation to find an optimal445

regularization parameter. We also leave out a subset of observations as test set to evaluate the final446

model. In particular, we randomly partition the original dataset so that 60% is used for training,447

20% for validation and 20% for test. The lasso solution path is fit on the training set, whereas the448

desired regularization is selected on the validation set, and the resulting model is evaluated on the449

test set.450

We are going to further discuss some details in our application that one might also encounter451

in practice. They include adjustment for confounders, missing value imputation and variable stan-452
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dardization in the algorithm.453

In genetic studies, spurious associations are often found due to confounding factors. Among454

the others, one major source is the so-called population stratification (Patterson et al., 2006). To455

adjust for that effect, it is common is to introduce the top principal components and include them456

in the regression model. Therefore in the lasso method, we are going to solve (7) where in addition457

to the SNP matrix X, we let Z include covariates such as age, sex and the top 10 PCs of the SNP458

matrix.459

Missing values are present in the dataset. As quality control normally done in genetics, we460

first discard observations whose phenotypic value of interest is not available. We further exclude461

variants whose missing rate is greater than 10% or the minor allele frequency (MAF) is less than462

0.1%, which results in around 685,000 SNPs for height. In particulr, 685,362 for height, 685,371 for463

BMI, 685,357 for asthma and 685,357 for HC. The number varies because the criteria are evaluated464

on the subset of individuals whose phenotypic value is observed (after excluding the missing ones),465

which can be different across different phenotypes. For those remaining variants, mean imputation466

is conducted to fill the missing SNP values; that is, the missing values in every SNP are imputed467

with the mean observed level of that SNP in the population under study.468

When it comes to the lasso fitting, there are some subtleties that can affect its variable selection469

and prediction performance. One of them is variable standardization. It is often a step done without470

much thought to deal with heterogeneity in variables so that they are treated fairly in the objective.471

However in our studies, standardization may create some undesired effect. To see this, notice that472

all the SNPs can only take values in 0, 1, 2 and NA — they are already on the same scale by473

nature. As we know, standardization would use the current standard deviation of each predictor474

as the divisor to equalize the variance across all predictors in the lasso fitting that follows. In this475

case, standardization would unintentionally inflate the magnitude of rare variants and give them476

an advantage in the selection process since their coefficients effectively receive less penalty after477

standardization. In Figure 6, we can see the distribution of standard deviation across all variants in478

our dataset. Hence, to avoid potential spurious findings, we choose not to standardize the variants479

in the experiments.480
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Figure 6: Histogram of the standard deviations of the SNPs. They are computed after mean imputation
of the missing values because they would be the exact standardization factors to be used if the lasso were
applied with variable standardization on the mean-imputed SNP matrix.

Computational optimization in software implementation Among the iterative steps in481

BASIL, screening and checking are where we need to deal with the full dataset. To deal with the482

memory bound, we can use memory-mapped I/O. In R, bigmemory (Kane et al., 2013) provides483

a convenient implementation for that purpose. That being said, we do not want to rely on that484

for intensive computation modules such as cyclic coordinate descent, because frequent visits to the485

on-disk data would still be slow. Instead, since the subset of strong variables would be small, we486

can afford to bring them to memory and do fast lasso fitting there. We only use the full memory-487

mapped dataset in KKT checking and screening. Moreover since checking in the current iteration488

can be done together with the screening in the next iteration, effectively only one expensive pass489

over the full dataset is needed every iteration.490

In addition, we use a set of techniques to speed up the computation. First, the KKT check can be

easily parallelized by splitting on the features when multi-core machines are available. The speedup

of this part is immediate and (slightly less than) proportional to the number of cores available.

Second, specific to the application, we exploit the fact that there are only 4 levels for each SNP
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Multiplication Method n = 200, p = 800 n = 2000, p = 8000
Standard 3.20 306.01

SNP-Optimized 1.32 130.21

Table 3: Timing performance (milliseconds) on multiplication of SNP matrix and residual matrix. The
methods are all implemented in C++ and run on a Macbook with 2.9 GHz Intel Core i7 and 8 GB 1600
MHz DDR3.

value and design a faster inner product routine to replace normal float number multiplication in

the KKT check step. In fact, given any SNP vector x ∈ {0, 1, 2, µ}n where µ is the imputed value

for the missing ones, we can write the dot product with a vector r ∈ Rn as

x>r =
n∑
i=1

xiri = 1 ·
∑
i:xi=1

ri + 2 ·
∑
i:xi=2

ri + µ ·
∑
i:xi=µ

ri.

We see that the terms corresponding to 0 SNP value can be ignored because they don’t contribute491

to the final result. This will significantly reduce the number of arithmetic operations needed to492

compute the inner product with rare variants. Further, we only need to set up 3 registers, each493

for one SNP value accumulating the corresponding terms in r. A series of multiplications is then494

converted to summations. In our UK Biobank studies, although the SNP matrix is not sparse495

enough to exploit sparse matrix representation, it still has around 70% 0’s. We conduct a small496

experiment to compare the time needed to compute X>R, where X ∈ {0, 1, 2, 3}n×p, R ∈ Rp×k.497

The proportions for the levels in X are about 70%, 10%, 10%, 10%, similar to the distribution of498

SNP levels in our study, and R resembles the residual matrix when checking the KKT condition.499

The number of residual vectors is k = 20. The mean time over 100 repetitions is shown in Table 3.500

We implement the procedure with all the optimizations in an R package called snpnet, which is501

currently available at https://github.com/junyangq/snpnet. It assumes pgen file format (Chang502

et al., 2015) of the SNP matrix, fits the lasso solution path and allows early stopping if a validation503

dataset is provided. In order to achieve better efficiency, we suggest using snpnet together with504

glmnetPlus, a warm-started version of glmnet, which is currently available at https://github.505

com/junyangq/glmnetPlus. It allows one to provide a good initialization of the coefficients to fit506

part of the solution path instead of always starting from the all-zero solution by glmnet.507
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Related methods and packages There are a number of existing screening rules for solving508

big lasso problems. Sobel et al. (2009) use a screened set to scale down the logistic lasso problem509

and check the KKT condition to validate the solution. Their focus, however, is on selecting a510

lasso model of particular size and only the initial screened set is expanded if the KKT condition is511

violated. In contrast, we are interested in finding the whole solution path (before overfitting). We512

adopt a sequential approach and keep updating the screened set at each iteration. This allows us513

to potentially keep the screened set small as we move along the solution path. Other rules include514

the SAFE rule (El Ghaoui et al., 2010), Sure Independence Screening (Fan and Lv, 2008), and the515

DPP and EDPP rules (Wang et al., 2015).516

We expand the discussion on these screening rules a bit. Fan and Lv (2008) exploits marginal517

information of correlation to conduct screening but the focus there is not optimization algorithm.518

Most of the screening rules mentioned above (except for EDPP) use inner product with the current519

residual vector to measure the importance of each predictor at the next λ — those under a threshold520

can be ignored. The key difference across those rules is the threshold defined and whether the521

resulting discard is safe. If it is safe, one can guarantee that only one iteration is needed for each λ522

value, compared with others that would need more rounds if an active variable was falsely discarded.523

Though the strong rules rarely make this mistake, safe screening is still a nice feature to have in524

single-λ solutions. However, under the batch mode we consider due to the desire of reducing the525

number of full passes over the dataset, the advantage of safe threshold may not be as much. In526

fact, one way we might be able to leverage the safe rules in the batch mode is to first find out the527

set of candidate predictors for the several λ values up to λk we wish to solve in the next iteration528

based on the current inner products and the rules’ safe threshold, and then solve the lasso for these529

parameters. Since these rules can often be conservative, we would then have strong incentive to530

solve for, say, one further λ value λk+1 because if the current screening turns out to be a valid one531

as well, we will find one more lasso solution and move one step forward along the λ sequence we532

want to solve for. This can potentially save one iteration of the procedure and thus one expensive533

pass over the dataset. The only cost there is computing the lasso solution for one more λk+1 and534

computing inner products with one more residual vector at λk+1 (to check the KKT condition).535
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The latter can be done in the same pass as we compute inner products at λk for preparing the536

screening in the next iteration, and so no additional pass is needed. Thus under the batch mode,537

the property of safe screening may not be as important due to the incentive of aggressive model538

fitting. Nevertheless it would be interesting to see in the future EDPP-type batch screening. It539

uses inner products with a modification of the residual vector. Our algorithm still focuses of inner540

products with the vanilla residual vector.541

To address the large-scale lasso problems, several packages have been developed such as biglasso542

(Zeng and Breheny, 2017), bigstatsr (Privé et al., 2018), oem (Huling and Qian, 2018) and the543

lasso routine from PLINK 1.9 (Chang et al., 2015).544

Among them, oem specializes in tall data (big n) and can be slow when p > n. In many real545

data applications including ours, the data are both large-sample and high-dimensional. However,546

we might still be able to use oem for the small lasso subroutine since a large number of variables547

have already been excluded. The other packages, biglasso, bigstatsr, PLINK 1.9, all provide548

efficient implementations of the pathwise coordinate descent with warm start. PLINK 1.9 is549

specifically developed for genetic datasets and is widely used in GWAS and research in population550

genetics. In bigstatsr, the big spLinReg function adapts from the biglasso function in biglasso551

and incorporates a Cross-Model Selection and Averaging (CMSA) procedure, which is a variant552

of cross-validation that saves computation by directly averaging the results from different folds553

instead of retraining the model at the chosen optimal parameter. They both use memory-mapping to554

process larger-than-RAM, on-disk datasets as if they were in memory, and based on that implement555

coordinate descent with strong rules and warm start.556

The main difference between BASIL and the algorithm these packages use is that BASIL tries to557

solve a series of models every full scan of the dataset (at checking and screening) and thus effectively558

reduce the number of passes over the dataset. This difference may not be significant in small or559

moderate-sized problems, but can be critical in big data applications especially when the dataset560

cannot be fully loaded into the memory. A full scan of a larger-than-RAM dataset can incur a lot561

of swap-in/out between the memory and the disk, and thus a lot of disk I/O operations, which is562

known to be orders of magnitude slower than in-memory operations. Thus reducing the number of563

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2020. ; https://doi.org/10.1101/630079doi: bioRxiv preprint 

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/


full scans can greatly improve the overall performance of the algorithm.564

Aside from potential efficiency consideration, all of those packages aforementioned have to re-565

implement a variety of features existent in many small-data solutions but for big-data context.566

Nevertheless, currently they don’t provide as much functionality as needed in our real-data ap-567

plication. First, in the current implementations, PLINK 1.9 only supports the Gaussian family,568

biglasso and bigstatsr only supports the Gaussian and binomial families, whereas snpnet can569

easily extend to other regression families and already built in Gaussian, binomial and Cox fami-570

lies. Also, biglasso, bigstatsr and PLINK 1.9 all standardize the predictors beforehand, but in571

many applications such as our UK Biobank studies, it is more reasonable to leave the predictors572

unstandardized. In addition, it can take some effort to convert the data to the desired format by573

these packages. This would be a headache if the raw data is in some special format and one cannot574

afford to first convert the full dataset into an intermediate format for which a tool is provided to575

convert to the desired one by biglasso or bigstatsr. This can happen, for example, if the raw576

data is highly compressed in a special format. For the BED binary format we work with in our577

application, readRAW big.matrix function from BGData can convert a raw file to a big.matrix578

object desired by biglasso, and snp readBed function from bigsnpr (Privé et al., 2018) allows one579

to convert it to FBM object desired by bigstatsr. However, bigsnpr doesn’t take input data that580

has any missing values, which can prevalent in an SNP matrix (as in our application). Although581

PLINK 1.9 works directly with the BED binary file, its lasso solver currently only supports the582

Gaussian family, and it doesn’t return the full solution path. Instead it returns the solution at the583

smallest λ value computed and needs a good heritability estimate as input from the user, which584

may not be immediately available.585

We summarize the main advantages of the BASIL algorithm:586

• Input data flexibility. Our algorithm allows one to deal directly with any data type as587

long as the screening and checking steps are implemented, which is often very lightweight588

development work like matrix multiplication. This can be important in large-scale applications589

especially when the data is stored in a compressed format or a distributed way since then590

we would not need to unpack the full data and can conduct KKT check and screening on its591
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original format. Instead only a small screened subset of the data needs to be converted to the592

desired format by the lasso solver in the fitting step.593

• Model flexibility. We can easily transfer the modeling flexibility provided by existing594

packages to the big data context, such as the options of standardization, sample weights,595

lower/upper coefficient limits and other families in generalized linear models provided by596

existing packages such as glmnet. This can be useful, for example, when we may not want to597

standardize predictors already in the same unit to avoid unintentionally different penalization598

of the predictors due to difference in their variance.599

• Effortless development. The BASIL algorithm allows one to maximally reuse the existing600

lasso solutions for small or moderate-sized problems. The main extra work would be an601

implementation of batch screening and KKT check with respect to a particular data type.602

For example, in the snpnet package, we are able to quickly extend the in-memory glmnet603

solution to large-scale, ultrahigh-dimentional SNP data. Moreover, the existing convenient604

data interface provided by the BEDMatrix package further facilitates our implementation.605

• Computational efficiency. Our design reduces the number of visits to the original data606

that sits on the disk, which is crucial to the overall efficiency as disk read can be orders of607

magnitude slower than reading from the RAM. The key to achieving this is to bring batches608

of promising variables into the main memory, hoping to find the lasso solutions for more than609

one λ value each iteration and check the KKT condition for those λ values in one pass of the610

entire dataset.611

Lastly, we are going to provide some timing comparison with existing packages. As mentioned612

in previous sections, those packages provide different functionalities and have different restrictions613

on the dataset. For example, most of them (biglasso, bigstatsr) assume that there are no missing614

values, or the missing ones have already been imputed. In bigsnpr, for example, we shouldn’t have615

SNPs with 0 MAF either. Some packages always standardize the variants before fitting the lasso.616

To provide a common playground, we create a synthetic dataset with no missing values, and follow617

a standardized lasso procedure in the fitting stage, simply to test the computation. The dataset has618
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R Package Elapsed Time (minutes)
bigstatsr (Privé et al., 2018) 2.93 + 56.80

bigstatsr + CMSA (Privé et al., 2018) 2.93 + 101.75
biglasso(Zeng and Breheny, 2017) 4.55 + 54.27

PLINK (Chang et al., 2015) 53.52
snpnet 44.79

Table 4: Timing comparison on a synthetic dataset of size n = 50, 000 and p = 100, 000. The time for
bigstatsr and biglasso has two components: one for the conversion to the desired data type and the other
for the actual computation. The experiments are all run with 16 cores and 64 GB memory.

50,000 samples and 100,000 variables, and each takes value in the SNP range, i.e., in 0, 1, or 2. We619

fit the first 50 lasso solutions along a prefix λ sequence that contains 100 initial λ values (like early620

stopping for most phenotypes). The total time spent is displayed in Table 4. For bigstatsr, we621

include two versions since it does cross-validation by default. In one version, we make it comply with622

our single train/val/test split, while in the other version, we use its default 10-fold cross-validation623

version — Cross-Model Selection and Averaging (CMSA). Notice that the final solution of iCMSA624

is different from the exact lasso solution on the full data because the returned coefficient vector is625

a linear combination of the coefficient vectors from the 10 folds rather than from a retrained model626

on the full data. We uses 128GB memory and 16 cores for the computation.627

From the table, we see that snpnet is at about 20% faster than other packages concerned. The628

numbers before the “+” sign are the time spent on converting the raw data to the required data629

format by those packages. The second numbers are time spent on actual computation.630

It is important to note though that the performance relies not only on the algorithm, but also631

heavily on the implementations. The other packages in comparison all have their major computation632

done with C++ or Fortran. Ours, for the purpose of meta algorithm where users can easily integrate633

with any lasso solver in R, still has a significant portion (the iterations) in R and multiple rounds of634

cross-language communication. That can degrade the timing performance to some degree. If there635

is further pursuit of speed performance, there is still space for improvement by more designated636

implementation.637
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A Results for Additional Phenotypes869

A.1 Body Mass Index (BMI)870

BMI is another polygenic trait that is widely studied. Like height, it is heritable and easily mea-871

sured. It is also a trait of interest, since obesity is a risk factor for diseases such as type 2 diabetes872

and cardiovasclar disease. Recent studies estimate heritability at 0.42 (Zaitlen et al., 2013; Hemani873

et al., 2013) and 27% of the variance can be explained using a genomic model (Yang et al., 2015).874

We expect the heritability to be lower than that for height, since intuitively speaking, one com-875

ponent of the body mass, weight, should heavily depend on environmental factors, for example,876

individual’s lifestyle. From GWAS studies, 97 associated loci have been identified, but they only877

account for 2.7% of the variance (Speliotes et al., 2010; Locke et al., 2015). Although the estimates878

of heritability are not precise, there may be more missing heritability for BMI than for height. We879

also find lower R2 values using the lasso. The results are summarized in Table 5. The R2 curves880

for the lasso and the relaxed lasso are shown in Figure 7. From the table, we see that more than881

26,000 variants are selected by the lasso to attain an R2 greater than 10%. In constrast, the relaxed882

lasso and the sequential linear regression use around one-tenths of the variables, and end up with883

degraded predictive performance both at around 5%. From Figure 8, we see further evidence that884

the actual BMI is of high variability and hard to predict with the lasso model — the correlation885

between the predicted value and the actual value is 0.3256. From the residual histogram on the886

right, we also see the distribution is skewed to the right, suggesting a number of exceedingly high887

observed values than the ones predicted by the model. Nevertheless, we are able to predict BMI888

within 9 kg/m2 about 95% of the time.889

A.2 Asthma890

Asthma is a common respiratory disease characterized by inflammation of airways in the lungs and891

difficulty breathing. It is another complex, polygenic trait that is associated with both genetic892

and environmental factors. Our results are summarized in Table 6. The AUC curves for the lasso893

and the relaxed lasso are shown in Figure 9. In addition, for each test sample, we compute the894
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Model Form R2
train R2

val R2
test Size

(1) Age + Sex 0.0092 0.0089 0.0083 2
(2) Age + Sex + 10 PCs 0.0104 0.0103 0.0099 12
(3) (2) + Single SNP 0.0134 0.0128 0.0124 13
(4) (2) + 10K Combined 0.0384 0.0195 0.0210 10,012
(5) (2) + 100K Combined 0.1307 0.0064 0.0093 100,012
(6) Sequential LR 0.0865 0.0385 0.0395 2,012
(7) Lasso 0.3196 0.1017 0.1052 26,060
(8) Relaxed Lasso 0.1609 0.0504 0.0537 2,585
(9) Elastic Net 0.3923 0.1040 0.1071 29,548
(10) PRS-CS 0.0490 − 0.0315 148,052
(11) SBayesR 0.0231 − 0.0139 658,693

Table 5: R2 values for BMI. For lasso and relaxed lasso, the chosen model is based on maximum R2 on
the validation set. Model (3) to (8) each includes Model (2) plus their own specification as stated in the
Form column.The validation results for PRS-CS and SBayesR are not available because we used a combined
training and validation set for training.
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Figure 7: R2 plot for BMI. The top axis shows the number of active variables in the model.

percentile of its predicted score/probability among the entire test cohort, and create box plots of895

such percentiles separately for the control group and the case group. We see on the left of Figure 10896

that there is a significant overlap between the box plots of the two groups, suggesting that asthma897
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Figure 8: Left: actual BMI versus predicted BMI on 5000 random samples from the test set. The
correlation between actual BMI and predicted BMI is 0.3256. Right: residuals of lasso prediction for BMI.
Standard deviation of the residual is 4.51 kg/m2.

Model Form AUCtrain AUCval AUCtest Size
(1) Age + Sex 0.5293 0.5297 0.5320 2
(2) Age + Sex + 10 PCs 0.5342 0.5344 0.5367 12
(3) (2) + Single SNP 0.5463 0.5476 0.5454 13
(4) (2) + 10K Combined 0.5783 0.5580 0.5531 10,012
(5) (2) + 100K Combined 0.6884 0.5644 0.5580 100,012
(6) Sequential LR 0.6601 0.5883 0.5884 2,012
(7) Lasso 0.7692 0.6159 0.6126 5,936
(8) Relaxed Lasso 0.6747 0.5988 0.5955 621
(9) Elastic Net 0.7803 0.6167 0.6131 7,799
(10) PRS-CS 0.6300 − 0.5837 148,052
(11) SBayesR 0.6340 − 0.5491 658,693

Table 6: AUC values for asthma. For lasso and relaxed lasso, the chosen model is based on maximum
AUC on the validation set. Model (3) to (8) each includes Model (2) plus their own specification as stated
in the Form column.The validation results for PRS-CS and SBayesR are not available because we used a
combined training and validation set for training.

is difficult to predict. This can also be seen from the AUC value and the ROC curve in Figure 13.898

That being said, the multivariate lasso still does much better than the baseline model and the899

strongest univariate model. On the right of Figure 10, we stratify the prediction percentile into 10900

bins, and compute the overall prevalence within each bin. We observe a clear upward trend that901

provides further evidence that we manage to capture some genetic signal there.902
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Figure 9: AUC plot for asthma. The top axis shows the number of active variables in the model.
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Figure 10: Results for asthma based on the best lasso model. Left: box plot of the percentile of the linear
prediction score among cases versus controls. Right: the stratified prevalence across different percentile
bins based on the predicted scores by the optimal lasso.

A.3 High Cholesterol903

High cholesterol is characterized by high amounts of cholesterol present in the blood and is a risk904
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Model Form AUCtrain AUCval AUCtest Size
(1) Age + Sex 0.6918 0.6952 0.6883 2
(2) Age + Sex + 10 PCs 0.6927 0.6959 0.6889 12
(3) (2) + Single SNP 0.6963 6982 0.6921 13
(4) (2) + 10K Combined 0.7402 0.6956 0.6880 10,012
(5) (2) + 100K Combined 0.8518 0.6607 0.6547 100,012
(6) Sequential LR 0.7540 0.7167 0.7137 1,012
(7) Lasso 0.7832 0.7259 0.7191 1,371
(8) Relaxed Lasso 0.7273 0.7220 0.7166 239
(9) Elastic Net 0.7830 0.7259 0.7190 4,277
(10) PRS-CS 0.7166 − 0.7027 148,052
(11) SBayesR 0.7148 − 0.6953 658,693

Table 7: AUC values for high cholesterol. For lasso and relaxed lasso, the chosen model is based on
maximum AUC on the validation set. Model (3) to (8) each includes Model (2) plus their own specification
as stated in the Form column.The validation results for PRS-CS and SBayesR are not available because we
used a combined training and validation set for training.

factor for cardiovascular disease. It is highly heritable and may be polygenic. Our results are905

summarized in Table 7. The AUC curves for the lasso and the relaxed lasso are shown in Figure 11.906

Similarly the ROC curve for the best lasso model is shown in Figure 13, and box plots for the907

two groups and a stratified prevalence plot are shown in Figure 12. We see that the distributions908

of predictions made on non-HC individuals and on HC individuals are clearly different from each909

other, suggesting good classification results. That is reflected in the AUC measure listed in the910

table. Nevertheless, it is not much better than the result of the base model including only covariates911

age and sex.912

B Manhattan Plots913

The Manhattan plots in Figure 14 (generated using the qqman package (Turner, 2018)) show the914

magnitude of the univariate p-values and the size of the lasso coefficients for each gene for the915

two quantitative traits and two binary traits. The coefficients are plotted for the model with the916

optimal R2 value on the validation set. The variants highlighted in green in both plots are those917

that have coefficient magnitudes above the 99th percentile of all coefficient magnitudes for the trait.918

The horizontal line in the p-value plot is plotted at the genome-wide Bonferroni corrected p-value919
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Figure 11: AUC plot for high cholesterol. The top axis shows the number of active variables in the model.
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Figure 12: Results for high cholesterol based on the best lasso model. Left: box plot of the percentile
of the linear prediction score among cases versus controls. Right: the stratified prevalence across different
percentile bins based on the predicted scores by the optimal lasso.

threshold 5× 10−8. There are two main points we would like to highlight:920

• The lasso manages to capture significant univariate predictors in each genetic region. Due921

to possible correlation it does not pick up the variants with similarly small p-values located922
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Figure 13: ROC curves. Left: asthma. Right: high cholesterol.

nearby.923

• Some of the variants with weak univariate signals are also identified and turn out to be crucial924

to the predictive performance of the lasso.925

For the two qualitative traits plotted in Figure 15, there are fewer p-values above the threshold,926

and many of the significant ones are located close to each other. The size of the lasso fit is corre-927

spondingly smaller, and the large coefficients pick up the important locations as before. However,928

the nonzero coefficients are still spread across the whole genome.929
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(a) (b)

(c) (d)

Figure 14: Manhattan plots of the univariate p-values and lasso coefficients for height (a, c) and BMI
(b, d). The vertical axis of the p-value plots shows − log10(p) for each SNP, while the vertical axis of the
coefficient plots shows the magnitude of the coefficients from snpnet. The SNPs with relatively large lasso
coefficients are highlighted in green. The red horizontal line on the p-value plot represents a reference level
of p = 5 × 10−8.
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(a) (b)

(c) (d)

Figure 15: Manhattan plots of the univariate p-values and lasso coefficients for asthma (a, c) and high
cholesterol (b, d). The vertical axis of the p-value plots shows − log10(p) for each SNP, while the vertical
axis of the coefficient plots shows the magnitude of the coefficients from snpnet. The SNPs with relatively
large lasso coefficients are highlighted in green. The red horizontal line on the p-value plot represents a
reference level of p = 5 × 10−8.
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