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Abstract 
 
Single-cell RNA sequencing (scRNA-seq) is the leading technique for charting the molecular 
properties of individual cells. The latest methods are scalable to thousands of cells, enabling in-
depth characterization of sample composition without prior knowledge. However, there are 
important differences between scRNA-seq techniques, and it remains unclear which are the most 
suitable protocols for drawing cell atlases of tissues, organs and organisms. We have generated 
benchmark datasets to systematically evaluate techniques in terms of their power to 
comprehensively describe cell types and states. We performed a multi-center study comparing 13 
commonly used single-cell and single-nucleus RNA-seq protocols using a highly heterogeneous 
reference sample resource. Comparative and integrative analysis at cell type and state level 
revealed marked differences in protocol performance, highlighting a series of key features for cell 
atlas projects. These should be considered when defining guidelines and standards for 
international consortia, such as the Human Cell Atlas project. 
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Single-cell genomics provides an unprecedented view of the cellular makeup of complex and 
dynamic systems. Single-cell transcriptomics approaches in particular have led the technological 
advances that allow unbiased charting of cell phenotypes1. The latest improvements in single-cell 
RNA sequencing (scRNA-seq) allow these technologies to scale to thousands of cells per 
experiment, providing comprehensive profiling of cellular composition2,3. This has led to the 
identification of novel cell types and the fine-grained description of cell plasticity in dynamic 
systems, such as development4,5. The latest large-scale efforts are attempting to produce cellular 
maps of entire cell lineages, organs and organism6,7, with probably the most notable effort being 
the initiation of the Human Cell Atlas (HCA) project8. To comprehensively chart the cellular 
composition of the human body, the HCA project conducts phenotyping at the single-cell level. 
It will advance our understanding of tissue function and serve as a reference to pinpoint variation 
in healthy and disease contexts. In addition to methods that capture the spatial organization of 
tissues9,10, the main approach to create a first draft human cell atlas is scRNA-seq-based 
transcriptome analysis of dissociated cells, in which tissues are disaggregated and individual cells 
are captured by cell sorting or using microfluidic systems1. In sequential processing steps, the 
RNA is reverse transcribed to cDNA, amplified and processed to sequencing-ready libraries. 
Continuous technological development has improved the scale, accuracy and sensitivity of the 
initial scRNA-seq methods, and now allows us to create tailored experimental designs by 
selecting from a plethora of different scRNA-seq protocols. However, there are marked 
differences between these methods, and it is still not clear which are the best protocols for drawing 
a cell atlas. 
Experience from other large-scale consortium efforts has shown that neglecting benchmarking, 
standardization and quality control at the beginning can lead to major problems later on in the 
project, when investigators are attempting to exploit the results11. The overall success of any 
project depends critically on bringing the work of different consortium partners up to a high 
common standard. Thus, before launching into large-scale data collection efforts for the HCA and 
similar projects, it is important to conduct a comprehensive comparison of available single-cell 
profiling techniques. 
In this paper, to extend current efforts to compare the molecule capture efficiency of scRNA-seq 
methods12,13, we have systematically evaluated the power of these techniques to describe tissue 
complexity, and their suitability for building a cell atlas. We performed a multi-center 
benchmarking study to compare the most common scRNA-seq protocols using a unified reference 
sample resource. By analyzing human peripheral blood and mouse colon tissue, we have covered 
a broad range of cell types and states, in order to represent common scenarios in cell atlas projects. 
We have also added spike-in cell lines to allow us to assess sample composition, and have 
combined different species to pool samples into a single reference. We performed a 
comprehensive comparative analysis of 13 different scRNA-seq protocols, representing the most 
commonly used methods. We applied a wide range of different quality control metrics to evaluate 
datasets from different perspectives, and to test their suitability for producing a reproducible, 
integrative and predictive reference cell atlas. 
 
 
Results 
 
Reference sample and experimental design. 
A variety of scRNA-seq methods have been developed, and their utility proven, in single-cell 
transcriptome analysis of complex and dynamic tissues. The available protocols vary in the 
efficiency of RNA molecule capture, resulting in differences in sequencing library complexity 
and sensitivity to identify transcripts and genes12–14. However, there has been no systematic testing 
of how their performance varies between cell types, and how this affects the resolution of cellular 
phenotyping of complex samples. To address this problem, we benchmarked current scRNA-seq 
protocols to inform the methodology selection process of cell atlas projects. Ideally, methods 
should a) be accurate and free of technical biases, b) be applicable across distinct cell properties, 
c) fully disclose tissue heterogeneity, including subtle differences in cell states, d) produce 
reproducible expression profiles, e) comprehensively detect population markers, f) be integrable 
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with other methods, and g) have predictive value with cells mapping confidently to a reference 
atlas. 
To perform a systematic comparison of scRNA-seq methods for cell atlas projects, we created a 
reference sample containing: i) a high degree of cell type heterogeneity with various frequencies, 
ii) closely related subpopulations with subtle differences in gene expression, iii) a defined cell 
composition with trackable markers, and iv) cells from different species. For this study, we 
selected human peripheral blood mononuclear cells (PBMC) and mouse colon, which are tissue 
types with highly heterogeneous cell populations, as determined by previous single-cell 
sequencing studies15,16. In addition to the well-defined cell types, both tissues contain cells in 
transition states that present subtle transcriptional differences. These tissues also have a wide 
range of cell sizes and RNA contents, which are key parameters that affect performance in cell 
capture and library preparation. Interrogating tissues from different species allowed us to pool 
samples and exclude cell doublets. In addition to the intra-sample complexity, the spiked-in cell 
lines enabled the identification of batch effects and biases introduced during cell capture and 
library preparation. We added cell lines with distinct fluorescent markers that allowed us to track 
them during sample preparation. 
Specifically, the reference sample contained (% viable cells): PBMC (60%, human), colon (30%, 
mouse), HEK293T (6%, RFP labelled human cell line), NIH3T3 (3%, GFP labelled mouse cells) 
and MDCK (1%, TurboFP650 labelled dog cells) (Figure 1). To reduce variability due to 
technical effects during library preparation, the reference sample was prepared in a single batch, 
distributed into aliquots of 250,000 cells, and cryopreserved. We have previously shown that 
cryopreservation is suitable for single-cell transcriptomics studies of these tissue types17. For cell 
capture and library preparation, the thawed samples underwent FACS separation to remove 
damaged cells and physical doublets, except for the single-nucleus experiment. 
  

 
 
Figure 1. Overview of the experimental design and data processing. 
The reference sample consists of human PBMC (60%) and HEK293T (6%), mouse colon (30%) and 
NIH3T3 (3%) and dog MDCK (1%). The sample was prepared in one single batch, cryopreserved and 
sequenced by 13 different sc/snRNA-seq methods. Sequences were uniformly mapped to a joint human, 
mouse and canine reference and then separately to produce gene expression counts for each sequencing 
method.     
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A reference dataset for benchmarking experimental and computational protocols. 
To obtain sufficient sensitivity to capture low-frequency cell types and subtle differences in cell 
state, we profiled ~3,000 cells with each scRNA-seq method. In total, we produced datasets for 5 
microtiter plate-based methods and 7 microfluidics systems, including cell-capture technologies 
based on droplets (4), nanowells (1) and integrated fluidic circuits (IFC), to capture small (1) and 
medium (1) sized cells (Figure 1 and Table S1). We also included experiments to produce single-
nucleus RNA sequencing (snRNA-seq) libraries (1), and an experimental variant that profiled 
>50,000 cells to produce a reference of our complex sample. The unified sample resource and 
standardized sample preparation (Online Methods) were designed to largely eliminate sampling 
effects, and allow the systematic comparison of scRNA-seq protocol performance. 
To compare the different technologies, and to create a resource for the benchmarking and 
development of computational tools (e.g. batch effect correction, data integration and annotation), 
all datasets were processed in a uniform manner. Therefore, we designed a streamlined primary 
data processing pipeline tailored to the peculiarities of the reference sample (Online Methods). 
Briefly, raw sequencing reads were mapped to a joint human, mouse and canine reference genome 
and separately to their respective references to produce gene count matrices for subsequent 
analysis (data resource openly available). Consistent with the design of the reference sample, we 
detected most cells as human (63-95%) or mouse (4-34%; Figure 1). Notably, we observed a 
higher fraction of mouse colon cells in the single-nucleus sequencing dataset (Chromium (sn)). 
This could result from damaging the more fragile colon cells during sample preparation and 
resulting in proportionally fewer colon cells when selecting for cell viability. Indeed, when we 
skipped the viability selection step in the single-cell Chromium experiment as done in the single-
nucleus experiment, we observed the same shift in composition towards mouse cells, suggesting 
that cell viability staining excludes cells that are amenable for scRNA-seq. Consequently, 
replacing viability staining with a thorough in silico quality filtering in cell atlas experiments 
might better conserve the composition of the original tissue. The canine cells, spiked-in at a low 
concentration, were detected by all protocols (1-9%) except gmcSCRB-seq. Furthermore, the 
different methods showed notable differences in mapping statistics between different genomic 
locations (Figure 1). As expected, due to the presence of unprocessed RNA in the nucleus, the 
snRNA-seq experiment detected the highest proportion of introns, although several scRNA-seq 
protocols also showed high frequencies of intronic and intergenic mappings. 
  
Molecule capture efficiency and library complexity 
We produced reference datasets by analyzing 30,807 human and 19,749 mouse cells (Chromium 
V2; Figure 2a-c). The higher cell number allowed us to annotate the major cell types in our 
reference sample, and to extract population-specific markers (Table S2). Noteworthy, the 
reference samples solely provided the basis to assign cell identities and gene sets and was not 
utilized to quantify the methods’ performance. This strategy ensured that the choice of technology 
to derive the reference was not influencing downstream analyses. Indeed, cell clustering and 
reference-based cell annotation showed high agreement (average 80%; Online Methods) and 
only cells with consistent annotations were used subsequently for comparative analysis at cell 
type level. Notably, the PBMCs (human) and colon cells (mouse) represented two largely 
different scenarios. While the differentiated PBMCs clearly separated into subpopulations (e.g. 
T/B-cells, monocytes, Figure 2b and Supplementary Fig. 1a, 2a-d), colon cells were ordered as 
a continuum of cell states that differentiate from intestinal stem cells into the main functional 
units of the colon (i.e. absorptive enterocytes and secretory cells, Figure 2c and Supplementary 
Figs. 1b, 3a-d). After identifying major subpopulations and their respective markers in our 
reference sample, we clustered the cells of each sc/snRNA-seq protocol and annotated cell types 
using matchSCore2 (Online Methods). This algorithm allows a gene marker-based projection of 
single cells (cell-by-cell) onto a reference sample and, thus, the identification of cell types in our 
datasets (Supplementary Fig. 4 and 5). 
To compare mRNA capture efficiencies among protocols we downsampled the sequencing reads 
per cell to a common depth and step-wise reduced fractions (100% to 25%). Library complexity 
was determined separately for largely homogenous cell types with markedly different cell 
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properties and function, namely human HEK293T cells, monocytes and B-cells (Figure 2d,e), 
and mouse colon secretory and transit-amplifying (TA) cells (Supplementary Fig. 6a,b). We 
observed large differences in the number of detected genes between the protocols, with consistent 
trends across cell types and gene quantification strategies (Supplementary Fig. 6c). Notably, 
some protocols, such as Smart-seq2 and Chromium V2, performed better with higher RNA 
quantities (HEK293T) compared to lower starting amounts (monocytes and B-cells), suggesting 
an input-sensitive optimum. Consistent with the variable library complexity, the protocols 
presented large differences in drop-out probabilities (Figure 2f), with Quartz-seq2, Chromium 
V2 and CEL-seq2 showing consistently lower probability.  
 

 
 
Figure 2. Comparison of 13 sc/snRNA-seq methods.  
a. Color legend of sc/snRNA-seq protocols. b. UMAP of 30,807 cells from the human reference sample 
(Chromium) colored by cell type annotation. c. UMAP of 19,749 cells from the mouse reference 
(Chromium) colored by cell type annotation. d. Boxplots comparing the number of genes detected across 
protocols, in downsampled (20K) HEK293T cells, monocytes and B-cells. Cell identities were defined by 
combining the clustering of each dataset and cell projection onto the reference. e. Number of detected genes 
at step-wise downsampled sequencing depths. Points represent the average number of detected genes as a 
fraction of all cells of the corresponding cell type at the corresponding sequencing depth. f. Dropout 
probabilities as a function of expression magnitude, for each protocol and cell type, calculated on 
downsampled data (20K).  
 
Technical effects and information content. 
We further assessed the magnitude of technical biases, and the methods’ ability to describe cell 
populations. To quantify the technical variation within and across protocols, we selected highly 
variable genes (HVG) across all datasets, and plotted the variation in the main principle 
components (PC; Figure 3a). Using the downsampled data for HEK293T cells, monocytes and 
B-cells, we observed a strong protocol-specific signature, with the main source of variability 
being the number of genes detected per cell (Figure 3b). Nevertheless, PC analysis also showed 
a mixing of the data points for cells from different methods, suggesting generally conserved 
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information content across the methods. Data from snRNA-seq did not show notable outliers, 
indicating conserved representation of the transcriptome between the cytoplasm and nucleus. The 
technical effects were also visible when using t-distributed stochastic neighbor embedding (tSNE) 
as non-linear dimensionality reduction method (Supplementary Fig. 7). By contrast, the methods 
largely mixed when the analysis was restricted to cell type-specific marker genes, suggesting a 
conserved cell identity profile across techniques (Supplementary Fig. 8). 
Next, we quantified the similarities in information content of the protocols. Again, we used the 
downsampled datasets and calculated the correlation between methods in average transcript 
counts across multiple cells, thus compensating for the sparsity of single-cell transcriptome data. 
For the three human cell types, we observed a broad spectrum of correlation between 
technologies, with generally lower correlation for smaller cell types (Figure 3c). Here, the 
Chromium snRNA-seq protocol displayed a notable outlier, possibly driven by a decreased 
correlation of immature transcripts (intronic counts; Figure 1). Restricting the correlation analysis 
to population-specific marker genes, we observed less variation between techniques (Pearson’s r, 
0.5-0.7), which underlines the fact that the expression of these markers is largely conserved 
between the methods (Supplementary Fig. 9). 
To further test the suitability of protocols to describe cell types, we determined their sensitivity 
to detect population specific expression signatures, and found that they had remarkably variable 
power to detect marker genes (Figure 3d,e). Although most of the marker genes were detected 
by all technologies (>83% of genes), the magnitude of detection varied substantially. Quartz-seq2 
and Smart-seq2 showed high expression levels for all cell type signatures, indicating that they 
have higher power for cell type identification. Since marker genes are particularly important for 
data interpretation (e.g. annotation), low marker detection levels could severely limit the 
interpretation of poorly explored tissues, or when trying to identify subtle differences between 
subpopulations. 
 

 
 
Figure 3. Similarity measures of sc/snRNA sequencing methods. 
a,b. PCA analysis on downsampled data (20K) using highly variable genes between protocols, separated 
into HEK293T cells, monocytes and B-cells, and color-coded by protocol (a) and number of detected genes 
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per cell (b). c. Pearson correlation plots across protocols using expression of common genes. For a fair 
comparison, cells were downsampled to the same number for each method. Protocols are ordered by 
agglomerative hierarchical clustering. d. Heatmap representing average log expression values of 
downsampled (20K) HEK293T cell, monocyte, and B-cell reference markers per protocol. e. Heatmap 
representing the log expression values of HEK293T cell, monocyte and B-cell reference markers on 
downsampled data (20K). f. Cumulative gene counts per protocol as the average of 100 randomly sampled 
HEK293T cells, monocytes and B-cells separately on downsampled data (20K). 
 
The methods also detected vastly different total numbers of genes when accumulating transcript 
information over multiple cells, with strong positive outliers observed for the smaller cell types 
(Figure 3f). In particular, CEL-seq2 and Quartz-seq2 identified many more genes than other 
methods. Intriguingly, CEL-seq2 outperformed all other methods by detecting many weakly 
expressed genes; genes detected specifically by CEL-seq2 had significantly lower expression than 
the common genes detected by Quartz-seq2 (p<2.2e-16). The greater sensitivity to weakly 
expressed genes makes this protocol particularly suitable for describing cell populations in detail, 
an important prerequisite for creating a comprehensive cell atlas and functional interpretation. 
To further illustrate the power of the different protocols to chart the heterogeneity of complex 
samples, we clustered and plotted downsampled datasets in two-dimensional space (Figure 4a) 
and then calculated the cluster accuracy and Average Silhouette Width (ASW18, Figure 4b), a 
commonly used measure for assessing the quality of data partitioning into communities. 
Consistent with the assumption that library complexity and sensitive marker detection provides 
greater power to describe complexity, methods that performed well for these two attributes 
showed better separation of subpopulations, greater ASW and cluster accuracy. This is illustrated 
in the monocytes, for which accurate clustering protocols separated the major subpopulations 
(CD14+ and FCGR3A+), while methods with low ASW did not distinguish between them. 
Similarly, several methods were able to distinguish between CD8+ and NK cells, while others 
were not. 
 

 
 
Figure 4. Clustering analysis of 13 sc/snRNA-seq methods on downsampled datasets (20K). a. T-SNE 
visualizations of unsupervised clustering in human samples from 13 different methods. Each dataset was 
analyzed separately after downsampling to 20K reads per cell. Cells are colored by cell type inferred by 
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matchSCore2 before downsampling. Cells that did not achieve a probability score of 0.5 for any cell type 
were considered unclassified. b. Clustering accuracy and Average Silhouette Width for clusters in each 
protocol. 
 
Joint analysis across datasets 
A common scenario for cell atlas projects is that data are produced at different sites using different 
scRNA-seq protocols. However, the final atlas is created from a combination of datasets, which 
requires that the technologies used are compatible. To assess how suitable it is to combine the 
results from our protocols into a joint analysis, we used downsampled human and mouse datasets 
to produce a joint quantification matrix for all techniques19. Importantly, single cells grouped 
themselves by cell type, suggesting that cell phenotypes are the main driver of heterogeneity in 
the joint datasets (Figure 5a-d and Supplementary Fig. 10a,b). Indeed, the combined data 
showed a clear separation of cell states (e.g. T-cell and enterocyte subpopulations) and rarer cell 
types, such as dendritic cells. However, within these populations there were some differences 
between the methods, indicating the presence of technical effects that could not be entirely 
removed during the merging step (Figure 5e-f and Supplementary Fig.10c,d). To formally 
assess the capacity of the methods to be joined, we calculated the degree to which technologies 
mix in the merged datasets (Figure 5g,h). Intriguingly, the methods’ suitability to be combined 
was not directly correlated with their power to discriminate between cell types. Thus, while a 
well-performing method might result in a high-resolution cell atlas maps, it could perform poorly 
in a consortium-driven project that includes different data sources. Moreover, when integrating 
further downsampled datasets, we observed a drop in mixing ability, although the cell type 
separation was largely conserved (Supplementary Fig. 10e). Consequently, quality standard 
guidelines for consortia might define minimum coverage thresholds to ensure the subsequent 
option of data merging. 
Cell atlas datasets will serve as a reference for annotating cell types and states in future 
experiments. Therefore, we assessed cells’ ability to be projected onto our reference sample 
(Figure 2b,c). We used the population signature model defined by matchSCore2 and evaluated 
the protocols based on their cell-by-cell mapping probability, which reflects the confidence of 
cell annotation (Supplementary Fig. 11a-c). Although there were some differences in the 
protocols’ projection probabilities and a potential bias due to the selection of the reference 
protocol, a confident annotation was observed for most cells with inDrop and ddSEQ reporting 
the highest probabilities. Notably, high probability scores were also observed in further 
downsampled datasets (Supplementary Fig. 11b). This has practical consequences, as data 
derived from less well performing methods (from a cell atlas perspective) or from poorly 
sequenced experiments could be identifiable and thus suitable for specific analysis types, such as 
tissue composition profiling.  
 
 
Conclusion 
  
Systematic benchmarking of available technologies is a crucial prerequisite for large-scale 
projects. Here, we evaluated scRNA-seq protocols for their power to produce a cellular map of 
complex tissues. Our reference sample simulated common scenarios in cell atlas projects, 
including differentiated cell types and dynamic cell states. We defined the strengths and 
weaknesses of key features that are relevant for cell atlas studies, such as comprehensiveness, 
integratability, and predictive value. The methods revealed a broad spectrum of performance, 
which should be considered when defining guidelines and standards for international consortia 
(Figure 6). In addition, cell atlas projects need to consider other protocol-specific features, such 
as cost-effectiveness and scalability, in their decision making process towards large-scale 
datasets. It is equally important to benchmark computational pipelines for data analysis and 
interpretation20–22. We envision that the datasets provided by our study will serve as a valuable 
resource for the single-cell community to develop and evaluate novel strategies towards an 
informative and interpretable cell atlas. 
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Figure 5. Integration of sc/snRNA-seq methods. UMAP visualization of cells after integrating 
technologies for human (a,b) and mouse (c,d) datasets. Cells are colored by cell type (a,c) and sc/snRNA-
seq protocol (b,d). e,f. Barplots showing normalized and method-corrected (integrated) expression scores 
of cell-type-specific signatures for human HEK293T cells, monocytes, B-cells (e) and mouse secretory and 
transit-amplifying cells (f). Bars represent cells and colors methods. g,h. Evaluation of method 
integratability in human (g) and mouse (h). Protocols are compared according to their ability to group cell 
types into clusters (after integration) and mix with other technologies within the same clusters. Points are 
colored by sequencing method. The gray area shows the optimal trade-off between the two properties. 
 

 
 
Figure 6. Benchmarking summary of 13 sc/snRNA-seq methods. Methods are scored by key analytical 
metrics, characterizing protocols according to their ability to recapitulate the original structure of complex 
tissues, and their suitability for cell atlas projects. The methods are ordered by their overall benchmarking 
score, which is computed by averaging the scores across metrics. 
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Addendum 
This study complements a study entitled "Systematic comparative analysis of single cell RNA-
sequencing method" by Ding et al., which applied a complementary design (BIORXIV/2019/ 
632216). 
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Online Methods 
 
 
Reference sample 
 
Cell Lines 
NIH3T3-GFP, MDCK-TurboFP650 and HEK293-RFP were cultured at 37ºC in an atmosphere 
of 5% (v/v) carbon dioxide in Dulbecco’s Modified Eagle’s Medium, supplemented with 10% 
(w/v) fetal bovine serum, 100 U penicillin, and 100 µg/L streptomycin (Invitrogen). On the 
reference sample preparation day, the culture medium was removed and the cells washed with 1X 
PBS. Afterwards, cells were trypsinized (trypsin 100X), pelleted at 800 x g for 5min, washed in 
1X PBS, re-suspended in PBS-EDTA (2mM) and stored on ice. 
 
Mouse Colon Tissue 
The colon from eleven mice (7xLGR5/GFP and 4WT) was dissected and removed. For single-
cell separation the colons were treated separately. The colon was sliced, opened and washed twice 
in cold 1X HBSS. It was then placed on a petri plate on ice and minced with razor blades until 
disintegration. The minced tissue was transferred to a 15 ml tube containing 5 ml of 1X HBSS 
and 83 µl of collagenase IV (final concentration 166 U/ml). The solution was incubated for 15 
min at 37ºC (vortexed for 10 sec every 5 min). To inactivate the collagenase IV, 1 ml of FBS was 
added and vortexed for 10 seconds. The solution was filtered through a 70 µm nylon mesh 
(changed when clogged). Finally, all samples were combined, cells pelleted for 5 min at 400 g at 
4ºC. The supernatant was removed, and the cells resuspended in 20 ml of 1X HBSS and stored 
on ice.  
 
Isolation of peripheral blood mononuclear cells (PBMC) 
Whole blood was obtained from four donors (two female, two male). The extracted blood was 
collected in Heparin tubes (GP supplies) and processed immediately. For each donor, PBMCs 
were isolated according to the manufacturer’s instructions for FICOLL extraction (pluriSelect). 
Briefly, blood from two Heparin tubes (approximately 8 ml) was combined, diluted in 1X PBS 
and carefully added to a 50 ml tube containing 15 ml FICOLL. The tubes were centrifuged for 30 
min at 500 g (minimum acceleration and deceleration). The interphase was carefully collected 
and diluted with 1X PBS + EDTA (2mM). Following a second centrifugation, the supernatant 
was discarded and the pellet resuspended in 2 ml of 1X PBS + EDTA (2mM) and stored on ice.  
 
Preparation of the reference sample 
Cell counting was performed using an automated cell counter (TC20™ Automated Cell Counter, 
Bio-Rad Laboratories). The reference sample was calculated to include human PBMC (60%), 
mouse colon (30%), HEK293T (6%, RFP labelled human cell line), NIH3T3 (3%, GFP labelled 
mouse cells) and MDCK (1%, TurboFP650 labelled dog cells). To adjust for cell integrity loss 
during sample processing, we measured the viability during cell counting, and accounted for an 
expected viability loss after cryopreservation (10% for cell lines and PBMC; 50% for colon17). 
All single cell solutions were combined in the proportions mentioned above and diluted to 
250,000 viable cells per 0.5 ml. For cryopreservation, 0.5 ml of cell suspension was aliquoted into 
cryotubes and gently mixed with a freezing solution (final concentration 10% DMSO; 10% heat-
inactivated FBS). Cells were then frozen by gradually decreasing the temperature (1ºC/min) to –
80ºC (cryopreserved), and stored in liquid nitrogen. MARS-Seq and Smart-Seq2 experiments 
were performed to validate sample quality and composition before distributing aliquots to the 
partners.   
 
Sample processing instructions 
This cryopreserved reference sample forms the basis for systematic comparison of scRNA-seq 
techniques. The sample consists of two complex tissues (human PBMC and mouse colon) and 
three cell lines (HEK293-RFP, NIH3T3-GFP, MDCK-Turbo650). The primary PBMC and the 
colon cells account for around 90% of the living (DAPI negative) sample content, and the cell 
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lines the remaining 10% (6% HEK293-RFP, 3% NIH3T3-GFP, <1% MDCK-Turbo650). Each 
cryo-vial contains ~250,000 living cells, sufficient to sort a minimum of 4 x 384-well plates or to 
isolate >3000 cells (microfluidic systems), and should be stored at -80ºC upon arrival. 
The sample preparation aims to be standardized for all methods to allow comparison of the 
performance of library preparation. FACS isolation should be performed before sample 
processing to exclude damaged/dead cells (DAPI positive). Moreover, we aim to simulate the 
exclusion of unwanted cell types by excluding NIH3T3 (GFP positive) cells during FACS 
isolation. For the remaining sample, FACS gates should be set to exclude debris, cell fragments 
and doublets (Appendix: screen shots provided). Proportions of intact (DAPI negative) and 
fluorescence labeled cells (RFP, GFP and TurboFP650) should be recorded, and, if possible, cells 
should be index-sorted (for microtiter plates). 
 
NOTE: The cryopreserved samples consists of approximately 30-40% intact (DAPI negative) 
cells. We recommend FACS isolation of DAPI negative cells before single-cell capture. 
NOTE: We provide cryo-vials of PBMC and fluorescence-labeled cell lines to facilitate gate-
setting for debris exclusion, and to define the degree of compensation. Please set gates to 
include blood and larger cells as indicated in the Appendixes. 
NOTE: One HCA reference vial is sufficient to fill 4x 384-well plates.  
NOTE: FACS isolation into plates should be performed at low speed (below 100 cells/sec) to 
avoid loss of the sample.  
NOTE: To simulate the exclusion of cell types, GFP-labeled NIH3T3 cells should be excluded 
from the final single-cell selection.  
 
Sample thawing instructions 

- Remove sample from -80ºC and process immediately 
- De-freeze in water bath (37ºC) with continuous agitation until material is almost thawed 
- Transfer to 15 ml Falcon using a 1000 ul tip (wide-bored or cut tip) without mixing by 

pipetting 
- Add drop-wise 1000 ul of pre-warmed (37ºC) Hibernate-A while gently swirling the 

sample 
- Let sample rest for 1 min 
- Add drop-wise 2000 ul of pre-warmed (37ºC) Hibernate-A while gently swirling the 

sample 
- Let sample rest for 1 min 
- Add drop-wise 2000 ul of pre-warmed (37ºC) Hibernate-A while gently swirling the 

sample 
- Let sample rest for 1 min 
- Add 3000 ul pre-warmed (37ºC) Hibernate-A  
- Invert Falcon 3 times 
- Let sample rest for 1 min 
- Add 5000 ul pre-warmed (37ºC) Hibernate-A  
- Invert Falcon 6 times 
- Let sample rest for 1 min 
- Centrifuge sample at 400 g for 5 min at 4ºC (pellet clearly visible) 
- Remove supernatant until 500 ul supernatant remains in tube 
- Resuspend the pellet by gentle pipetting 
- Add 3500 ul of 1X PBS + 2mM EDTA 
- Store sample on ice until processing 
- Filter cells through a nylon mesh into FACS tubes (2 tubes with 2 ml sample) 
- Add 3 ul DAPI 
- Mix gently 
- Store on ice 
- Exclude DAPI and GFP positive cells during sorting 
- Use index sorting for RFP and TurboFP650 (optional)  
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Single-cell RNA sequencing library preparation 

 
Quartz-Seq223 
We isolated single-cells into 384-well PCR plates from cell suspension using a MoFlo Astrios 
EQ (Beckman Coulter) cell sorter. The cell sorter was equipped with a 100-μm nozzle and a 
custom-made splash-guard. In total, we analyzed 3,072 wells corresponding to eight 384-well 
PCR plates. Sequence library preparation of Quartz-Seq2 was performed as described 
previously23 with the following modifications. For lysis buffer, we used 768 kinds of RT primers 
corresponding to v3.2A and v3.2B. We prepared two sets of the 384-well PCR plate with lysis 
buffer containing no ERCC spike-in RNA. We added 1 μl of RT premix (2X Thermopol buffer, 
1.25 units/μL SuperScript III, 0.1375 units/μL RNasin plus) to 1 μl of lysis buffer for each well. 
After cell barcoding, we collected cDNA solution into one well reservoir from two sets of 384-
well plates, which corresponded to 768 wells. For cDNA purification and concentration, we used 
four purification columns for cDNA solution from two 384-well PCR plates. In the PCR step, we 
amplified cDNA for ten cycles. In an additional purification step for amplified cDNA, we added 
26 μl (0.65X) of resuspended AMPure XP Beads to the cDNA solution. We obtained amplified 
cDNA of 32.6 ± 6.8 ng (n = 4) from the 768 wells. We sequenced the Quartz-Seq2 sequence 
library with a NextSeq 500/550 High Output v2 Kit. The BCL files obtained were converted to 
FASTQ files using bcl2fastq2 (v2.17.1.14) with demultiplexing pool barcodes. Each FASTQ file 
was split into single FASTQ files for each cell barcode using a custom script 
(https://github.com/rikenbit/demultiplexer_quartz-seq2, DOI: 10.5281/zenodo.2585429). 
 
inDrop System (1CellBio)24 
Cells were isolated using an Aria3Fusion (BD Bioscience) cell sorter with a 100µm nozzle and a 
flow rate of 6-7. The workflow was carried out using the inDrop instrument and the inDrop single 
cell RNA-seq kit (Cat. No. 20196, 1CellBio) according to the manufacturer’s protocols. 
Microfluidic chips were prepared by silanization, and barcode labeled hydrogel microspheres 
(BHMs) were prepared shortly before cell capture, according to protocol (version v2.0., 1CellBio 
website). Droplet-making oil, single-cell suspension (200 cells/µL), and freshly prepared RT/lysis 
buffer were loaded onto the chip for droplet generation, according to the inDrop protocol for 
single-cell encapsulation and reverse transcription (version 2.1., 1CellBio website). An emulsion 
corresponding to ~4000 droplets was collected in a cooled tube and irradiated with UV light to 
release the photo-cleavable barcoding oligos from the BHMs. cDNA synthesis proceeded within 
the droplets, and the emulsion was subsequently split into equal volumes in such a way as to not 
exceed ~2000 droplets per reaction tube. After de-emulsification, cDNA contained in the aqueous 
phase was stored at -80°C. The RT product was further processed according to the InDrop library 
preparation protocol (version 1.2. 1CellBio website). The cDNA was fragmented by ExoI/HinfI 
and purified by AMPure XP beads. Second strand synthesis was conducted using NEB second-
strand synthesis module (Cat. no. E6111S, NEB). In vitro-transcription was conducted using 
HiScribe T7 High Yield RNA Synthesis kit (cat. no. E2040S, NEB). Amplified RNA was then 
fragmented, and the fragments used in a second reverse transcription reaction with random 
hexamers to convert the sample back into DNA and to add a read primer-binding site to each 
molecule. Hybrid molecules of RNA and DNA were cleaned up using AMPure beads and 
amplified by PCR. Final libraries were sequenced using HiSeq4000 and NextSeq (Illumina). 
  
ICELL8 SMARTer Single-Cell System (Takara Bio)25 
Hoechst 33342 and propidium iodide co-stained single-cell suspension (20 cells/µL) was 
distributed in eight wells of a 384-well source plate (Cat. No. 640018, Takara) and dispensed into 
a barcoded SMARTer ICELL8 3’ DE Chip (Cat. No. 640143, Takara) using an ICELL8 
MultiSample NanoDispenser (MSND, Takara). 4 chips were used to target ~3000 single cells. 
Nanowells were imaged using the ICELL8 Imaging Station (Takara). After imaging, the chip was 
sealed, placed in a pre-cooled freezing chamber, and stored at −80 °C. CellSelect software was 
used to identify each nanowell that contained a single cell. These nanowells were then selected 
for subsequent targeted deposition of a 50 nL/nanowell RT-PCR reaction solution from the 
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SMARTer ICELL8 3’ DE Reagent Kit (Cat. No. 640167, Takara) using the MSND. After RT and 
amplification in a Chip Cycler, barcoded cDNA products from nanowells were pooled together 
using the SMARTer ICELL8 Collection Kit (Cat. No. 640048, Takara). cDNA was concentrated 
using the Zymo DNA Clean & Concentrator kit (Cat. No. D4013, Zymo Research), and purified 
using AMPure XP beads. cDNA was then used to construct Nextera XT (Illumina) DNA libraries, 
followed by 0.6X AMPure XP bead purification. Library quantification and size distribution was 
done using Qubit, KAPA Library Quantification and Agilent TapeStation. Final libraries were 
sequenced using HiSeq4000 and NextSeq500 (Illumina). 
 
Drop-Seq (Dolomite)26 
Single-cell RNA experiments were performed using the scRNA system with P-Pumps and a 
scRNA-chip (100µm channel width) from Dolomite Bio (Royston, UK). Encapsulation was 
conducted according to the manufacturer’s instructions, and library construction was completed 
according to the published DropSeq protocol26. Briefly, polyT-barcoded beads (MACOSKO-
2011-10; ChemGenes) were loaded at a concentration of 600/µl, and cells at a concentration of 
450/µl. The pumps were operated at a flowrate of 30 µl/min for beads and cell suspension 
(PBS+2mM EDTA), and at 200 µl/min for oil (QX200™ Droplet Generation Oil for EvaGreen; 
BioRad). After encapsulation, cell lysis, and hybridization of RNA to the beads, droplets were 
broken using PFO (Sigma-Aldrich) and aliquots of a maximum of 90000 beads were collected. 
Reverse transcription was performed in a 200µl volume with Maxima H Minus Reverse 
Transcriptase (Thermo Fisher Scientific) and 2.5 µM TSO-primer 
(AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG; Qiagen) at room temperature for 30 min, 
followed by 90 min at 42°C. After exonuclease treatment (ExoI; New England Biolabs) at 47°C 
in 200 µl, to digest the unbound primer, cDNA was amplified by PCR using HiFi HotStart mix 
(Kapa Biosystems) and amplification primer (AAGCAGTGGTATCAACGCAGAGT; Qiagen) 
in batches of 4000 beads in a volume of 50 µl (95°C - 3min; 4 cycles: 98°C - 20s, 65°C - 45s, 
72°C - 3min; 9 cycles: 98°C - 20s, 67°C - 20s, 72°C - 3min; 72°C - 5min). Libraries were 
generated using the Nextera XT library Kit (Illumina) in five pooled PCR samples with 600 pg 
of cDNA and a custom P5-primer 
(AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTTGGTATC
AACGCAGAGT*A*C; Qiagen). Final library QC was conducted using the BioAnalyzer High 
Sensitivity DNA Chip (Agilent Technologies). For sequencing on an Illumina HiSeq2500 V4, we 
used a custom read 1 primer (GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC; 
Qiagen). 
 
Chromium V2 (10X Genomics): Single-cell RNA sequencing15 
Two cell preparations were conducted on two different days: one to prepare 2 libraries for 
sequencing at high read depth, and one to prepare 8 libraries at low read depth. To prepare the 
libraries for high read depth, one frozen vial of a Human Cell Atlas reference sample was thawed 
and prepared as described. At the end of this protocol, the cells were resuspended in PBS with 
2 mM EDTA. Since cells showed clumping and low viability, they were centrifuged 3 times at 
150 g for 10 min at room temperature, and resuspended in 50% PBS, 2mM EDTA and 50% 
Iscove’s Modified Dulbecco Medium (IMDM, ATCC) supplemented with 10% FBS and filtered 
through a 40µm FlowMi cell strainer (Sigma-Aldrich) to remove cell aggregates and large cell 
debris. At the final count before loading, the cell suspension demonstrated a viability of 60%. To 
prepare the libraries for low read depth, two frozen vials of a the reference sample were thawed 
and prepared as described in an updated version of the HCA Benchmark protocol. At the end of 
this protocol, the cells were resuspended in IMDM, 10% FBS and 1mM EDTA, and filtered 
through a 40-µm FlowMi cell strainer to remove cell aggregates and large cell debris. At the final 
count before loading, the cell suspension demonstrated a viability of 65%. The cells were not 
processed using FACS isolation, but run directly on the 10x Chromium system (10x Genomics, 
Pleasanton, CA, USA). 
Cells were mixed with single-cell master mix, and the resulting cell suspensions were loaded on 
a 10x Chromium system to generate 2 libraries at 5,000 cells each and 5 libraries at 10,000 cells 
each. The single-cell libraries were generated using 10x Chromium Single Cell gene expression 
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V2 reagent kits according to the manufacturer’s instructions (Chromium single cell 3’ reagents 
kits v2 user guide). Single cell 3’ RNA-seq libraries were quantified using an Agilent Bioanalyzer 
with a high sensitivity chip (Agilent), and a Kapa DNA quantification kit for Illumina platforms 
(Kapa Biosystems). The libraries were pooled according to the target cell number loaded. 
Sequencing libraries were loaded at 200 pM on an Illumina NovaSeq6000 with Novaseq S2 
Reagent Kit (100 cycles) using the following read lengths: 26 bp Read1, 8 bp I7 Index and 91 bp 
Read2. The 2 libraries of 5,000 cells and the 8 libraries of 10,000 cells were sequenced at 250,000 
and 25,000 reads per cell, respectively. 
 
Chromium V2 (10X Genomics): Single-nucleus RNA sequencing  
We isolated nuclei from the cell suspension using a protocol provided by 10x Genomics27. We 
counted the nuclei using a Countess II (Thermo Fisher Scientific). We made an aliquot containing 
~11,000 nuclei in a volume of 33.8 µL in RB buffer (1x PBS, 1% BSA, and 0.2U/µl RNaseIn 
(TaKaRa)) as sample A, and stained the rest of the nuclei suspension with Vybrant DyeCycle 
Violet Stain (Thermo Fisher Scientific) at a concentration of 10 µM. We used a MoFlo Astrios 
EQ cell sorter (Beckman Coulter) and set fluorescence activated cell sorting (FACS) gating on 
forward scatter plot, side scatter plot and on fluorescent channels to pick Violet-positive (for 
nuclei), while excluding debris and doublets. We used a 100 µm nozzle to sort 20,000 nuclei into 
20 μl RB buffer as sample B. After sorting, we measured the volume of B with a pipette, spun it 
at 500 g for 5 min at 4ºC, and then carefully removed part of the supernatant to leave ~40µl. We 
resuspended B by gentle pipetting 40 times.  
Immediately after nuclei isolation, we loaded sample A into one channel of a Chromium Single 
Cell 3' Chip (10x Genomics, PN-120236), and then processed it through the Chromium Controller 
to generate GEMs (Gel Beads in Emulsion). We then loaded 33.8 µL of B 25 minutes later after 
sorting and centrifugation, as described above, into one channel of a second chip, and processed 
it in the same way as the first chip. We prepared RNA-Seq libraries for both samples in parallel 
with the Chromium Single Cell 3' Library & Gel Bead Kit V2 (10x Genomics, PN-120237), 
according to the manufacturer's protocol. We pooled the 2 samples based on molar concentrations 
and sequenced them on a NextSeq500 instrument (Illumina). 
 
Smart-seq228 
Smart-seq2 libraries were prepared at half the volume, as described previously28, with minor 
modifications. In brief, 2 µl of lysis buffer containing 0.1 % Triton X-100 (Sigma-Aldrich), 1 
U/µl RNase inhibitor (Takara), 2.5 mM dNTPs (Thermo Fisher) and 2 µM oligo-dT primer (5′–
AAGCAGTGGTATCAACGCAGAGTACT30VN-3′; IDT) were dispensed into each well of a 
384-well plate (4titude). Lysis plates were stored at -20°C until cell sorting, after which single-
cell lysates were kept at -80 °C. Before reverse transcription, cell lysates were denatured at 72 °C 
for 3 min and immediately placed on ice. The RT reaction was performed in a 5 µl total volume, 
with final reagent concentrations of 1x Superscript first-strand buffer (Thermo Fisher), 5 mM 
DTT (Thermo Fisher), 1 M Betaine (Sigma-Aldrich), 9 mM MgCl2 (Sigma-Aldrich), 1 U/µl 
RNase inhibitor (Takara), 1 µM LNA template-switching oligo (5′-
AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3′; Exiqon), and 10 U/µl Superscript II 
RT enzyme. Next, pre-amplification PCR was performed for 22 cycles at final concentrations of 
1x KAPA HiFi HotStart ReadyMix (Roche) and 0.08 µM ISPCR primer (5′-
AAGCAGTGGTATCAACGCAGAGT-3′; IDT) in a total reaction volume of 11 µl. The cDNA 
was cleaned up by adding 10 µl of SPRI beads (19.5 % PEG, 1 M NaCl, 1 mM EDTA, 0.01 % 
IGEPAL CA-630), washing twice with 20 µl 80 % ethanol, and eluting in 10 µl H2O. The cDNA 
concentration was measured for all wells using Picogreen dsDNA assay (Thermo Fisher), and 
diluted to 200 pg/µl using a Mantis liquid handler (Formulatrix). Next, 1 µl of cDNA was used 
as input for the Nextera XT library preparation kit (Illumina) at 1/5 volume, according to the 
manufacturer’s instructions. During the 12 cycles library PCR, custom i7 and i5 indexing primers 
(IDT) were added at 0.5 µM each. Finally, 5 µl of library per well were pooled, cleaned and 
concentrated using SPRI beads (19.5 % PEG; see above). Final libraries were sequenced using 
HiSeq2500 V4 (Illumina). 
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CEL-Seq229,30 
Single-cell RNA sequencing was performed using a modified version of the mCEL-Seq2 
protocol, an automated and miniaturized version of CEL-Seq2, on a Mosquito nanoliter-scale 
liquid-handling robot (TTP LabTech)29,31. Briefly, cells were sorted into 384-well plates (Bio-
Rad) containing 240 nl of lysis buffer containing polyT primers and 1.2 μl of mineral oil (Sigma-
Aldrich). Sorted plates were centrifuged at 2200 g for several minutes at 4°C, snap-frozen in 
liquid nitrogen and stored at −80°C until processing. 160nL of reverse transcription reaction mix 
and 2.2 μl of second strand reaction mix were used to convert RNA into cDNA. cDNA from 96-
cells were pooled together before clean up and in vitro transcription, generating 4 libraries from 
one 384-well plate. During all purification steps, including the library cleanup, we used 0.8 μl of 
AMPure/RNAClean XP beads (Beckman Coulter) per 1 μl of sample. Sixteen libraries with 96 
cells each (one of the libraries contained 30,000 RNA molecules from ERCC spike-in mix per 
cell) were sequenced on an Illumina HiSeq3000 sequencing system (pair-end multiplexing run). 
 
MARS-Seq32 
To construct single-cell libraries from poly(A)-tailed RNA, we used massively parallel single-
cell RNA sequencing (MARS-Seq)32. Briefly, single cells were FACS-isolated into 384-well 
plates containing lysis buffer (0.2% Triton X-100 (Sigma-Aldrich); RNase inhibitor (Invitrogen)) 
and reverse-transcription (RT) primers. Single-cell lysates were denatured and immediately 
placed on ice. The RT reaction mix, containing SuperScript III reverse transcriptase (Invitrogen), 
was added to each sample. After RT, the cDNA was pooled using an automated pipeline 
(epMotion, Eppendorf). Unbound primers were eliminated by incubating the cDNA with 
exonuclease I (NEB). A second stage of pooling was performed through cleanup with SPRI 
magnetic beads (Beckman Coulter). Subsequently, pooled cDNAs were converted into double-
stranded DNA using the Second Strand Synthesis enzyme (NEB), followed by clean-up and linear 
amplification by T7 in vitro transcription overnight. The DNA template was then removed by 
Turbo DNase I (Ambion), and the RNA purified using SPRI beads. Amplified RNA was 
chemically fragmented using Zn2+ (Ambion), and then purified using SPRI beads. The 
fragmented RNA was ligated with ligation primers containing a pool barcode and partial Illumina 
Read1 sequencing adapter using T4 RNA ligase I (NEB). The ligated products were reverse-
transcribed using the Affinity Script RT enzyme (Agilent Technologies) and a primer 
complementary to the ligated adapter, partial Read1. The cDNA was purified using SPRI beads. 
Libraries were completed by a PCR step using the KAPA Hifi Hotstart ReadyMix (Kapa 
Biosystems) and a forward primer containing the Illumina P5-Read1 sequence, and a reverse 
primer containing the P7-Read2 sequence. The final library was purified using SPRI beads to 
remove excess primers. Library concentration and molecular size were determined with a High 
Sensitivity DNA Chip (Agilent Technologies). Multiplexed pools were run on Illumina 
HiSeq2500 Rapid flow cells (Illumina).  
 
C1 High-Throughput (HT-IFC)33 
Cells were sorted into 15-ml tubes containing 7 ml of PBS with 5% FBS, using a Sony SH800 
Cell Sorter. Cells were concentrated by centrifugation at 350 g for 5 minutes at 4ºC. The 
supernatant was removed, and cells were counted and diluted to 900 cells/ul for the Fluidigm C1 
HT Small-Cell Integrated Fluidic Circuits (IFCs), and 450 cells/ul for the Fluidigm C1 HT 
Medium-Cell IFCs. A total of eight small-cell and seven medium-cell IFCs were used to generate 
cDNA on the Fluidigm C1 System. cDNA generation and the subsequent preparation of 
sequencing libraries were performed according to the recommended Fluidigm C1 HT protocols. 
Enrichment Primers from the Fluidigm reagent kit were replaced with NEBNext i5xx primers 
from NEBNext Multiplex Oligos for Illumina (Dual Index Primers Set 1 & 2) (New England 
BioLabs), to enable library pooling. Libraries from fifteen IFCs were pooled and sequenced on 
the NovaSeq6000 system (Illumina) in two runs on the S2 flow cell. 
 
ddSEQ (Bio-Rad) 
Flow cytometry analysis and cell sorting were performed on the S3e Cell Sorter using ProSort 
Software (Bio-Rad Laboratories, #12007058) for acquisition and sorting. Viable cells were sorted 
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into 1x PBS with + 0.1% BSA and kept at 4°C until scRNA-Seq. Cell concentration of sorted 
cells was determined using the TC20 Automated Cell Counter (Bio-Rad Laboratories, #1450102) 
and adjusted to a final concentration of 2,500 cells/ul. Cells were then prepared for single-cell 
sequencing using the Illumina Bio-Rad SureCell WTA 3’ Library Prep Kit for the ddSEQ 
(Illumuina, #20014280). Cells were loaded onto ddSEQ cartridges and processed in the ddSEQ 
Single-Cell Isolator (Bio-Rad Laboratories, #12004336) to isolate and barcode single cells in 
droplets. First-strand cDNA synthesis occurred in droplets, which were then disrupted for second 
strand cDNA synthesis in bulk. Libraries were prepared according to manufacturer’s instructions 
and then sequenced on the NextSeq500 system (Illumina). 
 
gmcSCRB-seq34 
Cells were sorted and processed using the alternative lysis (Guanidin) condition (gmcSCRB-seq) 
as described suitable for PBMCs in Bagnoli et al (2018). Briefly, single cells (“3 drops” purity 
mode) were sorted into 96-well DNA LoBind plates (Eppendorf) containing 5 µl lysis buffer using 
a Sony SH800 sorter (Sony Biotechnology; 100 µm chip). Lysis buffer consisted of 5 M guanidine 
hydrochloride (Sigma-Aldrich), 1% 2-mercaptoethanol (Sigma-Aldrich) and a 1:500 dilution of 
Phusion HF buffer (New England Biolabs). Samples were processed in six batches, with one batch 
of two plates and five batches of six plates. Each well was cleaned up using SPRI beads and 
resuspended in 4 µl H2O (Invitrogen) and a mix of 5 µl reverse transcription master mix, 
consisting of 20 units Maxima H- enzyme (Thermo Fisher), 2 × Maxima H- Buffer (Thermo 
Fisher), 2 mM each dNTPs (Thermo Fisher), 4 µM template-switching oligo (IDT), and 15% PEG 
8000 (Sigma-Aldrich). For libraries containing ERCCs, 30,000 molecules of ERCC spike-in Mix 
1 (Ambion) was used and the H2O (Invitrogen) was adjusted accordingly. After the addition of 
1 µl 2 µM barcoded oligo-dT primer (E3V6NEXT, IDT), cDNA synthesis and template switching 
was performed for 90 min at 42 °C. Barcoded cDNA was then pooled in 2 ml DNA LoBind tubes 
(Eppendorf) and cleaned up using SPRI beads. Purified cDNA was eluted in 17 µl and residual 
primers digested with Exonuclease I (Thermo Fisher) for 20 min at 37 °C. After heat inactivation 
for 10 min at 80 °C, 30 µl PCR master mix consisting of 1.25 U Terra direct polymerase 
(Clontech) 1.66 × Terra direct buffer and 0.33 µM SINGV6 primer (IDT) was added. PCR was 
cycled as given: 3 min at 98 °C for initial denaturation followed by 19 cycles of 15 s at 98 °C, 30 s 
at 65 °C, 4 min at 68 °C. Final elongation was performed for 10 min at 72 °C. Batch 4 was 
erroneously denatured for 10 min due to a cycler error, but left in as we consider such errors as 
possible batch variation errors. 
Following pre-amplification, all samples were purified using SPRI beads at a ratio of 1:0.8 with 
a final elution in 10 µl of H2O (Invitrogen). The cDNA was then quantified using the Quant-iT 
PicoGreen dsDNA Assay Kit (Thermo Fisher). Size distributions were checked using high-
sensitivity DNA Fragment Analyzer kits (AATI) and high-sensitivity DNA Bioanalyzer kits 
(Agilent). As the samples had large primer peaks, they were purified a second time using SPRI 
beads at a ratio of 1:0.8 and then pre-amplified for an additional 3 cycles, as above. The cDNA 
was then purified and reanalyzed as above. Samples passing the quantity and quality controls 
were used to construct Nextera XT libraries from 0.8 ng of pre-amplified cDNA. During library 
PCR, 3′ ends were enriched with a custom P5 primer (P5NEXTPT5, IDT). Libraries were pooled 
and size-selected using 2% E-Gel Agarose EX Gels (Life Technologies), cut out in the range of 
300–800 bp, and extracted using the MinElute Kit (Qiagen) according to manufacturer’s 
recommendations. Libraries were paired-end sequenced on high output flow cells of an Illumina 
HiSeq 1500 instrument. Sixteen bases were sequenced with the first read to obtain cellular and 
molecular barcodes and 50 bases were sequenced in the second read into the cDNA fragment. An 
additional 8 base i7 barcode read was done to allow multiplexing. 
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Data analysis 
 
Primary data preprocessing 
FASTQ files for each technique were collected and processed in a unified manner. We developed 
a snakemake35 workflow that streamlines all steps, including read filtering and mapping, 
quantification, downsampling and species deconvolution, and provides a Single Cell Experiment 
Object36 output with detailed metadata. We used zUMIs37, a single-cell processing tool 
compatible with all major scRNA-Seq protocols for filtering, mapping and quantification, 
ensuring comparable primary data processing between all methods. First, we discarded low-
quality reads (barcodes and UMI sequences with more than 1 base below the Phred quality 
threshold of 20) and removed barcodes with less than 100 reads.  
For techniques with known barcodes, we provided zUMIs with these barcode sequences, and used 
the automatic barcode detection function to detect the sequenced cells for other techniques. Next, 
cDNA reads were mapped to the human GRCh38, mouse GRCm38, and a human-mouse-dog 
mixed (for species level doublet detection) reference genomes using STAR38. Reads were then 
assigned to exonic and intronic features using featureCounts39 and counted using the default 
parameters of zUMIs for human-only, mouse-only and mixed bam-files, separately. The output 
expression matrix of reads mapping to both exonic and intronic regions was selected for the 
downstream analysis. Of note, we included intronic counts in the expression quantification to 
improve gene detection and to enable a comparison with the snRNA-seq derived dataset. To 
deconvolute species, detect doublets and low quality cells, the mixed-species mapped data was 
used. Cells for which >70% of the reads mapped to only one species were assigned to the 
corresponding species. The remaining cells (those for which <70% of the reads mapped to only 
one species) were removed from the downstream analysis. Finally, for each technique, a human 
and mouse Single Cell Experiment object was created by combining the expression matrix and 
the metadata. 
For subsequent data analysis, we discarded cells with <10,000 total number of reads as well as 
the cells having <65% of the reads mapped to their reference genome. Cells in the 95th percentile 
of the number of genes/cell and those having <25% mitochondrial gene content were included in 
the downstream analyses. Genes that were expressed in less than five cells were removed.  
 
Clustering 
Filtering, normalization, selection of highly variable genes (HVG), and clustering of cells were 
performed using the Seurat40 package (version 2.3.4). The read counts were log-normalized for 
each cell using the natural logarithm of 1 + counts multiplied by a scale factor (10,000). To avoid 
spurious correlations, the library sizes were regressed out, and the genes were scaled and centered. 
The scaled Z-score values were then used as normalized gene measurement input for clustering 
and for visualizing differences in expression between cell clusters. We selected HVGs by 
evaluating the relationship between gene dispersion (y.cutoff = 0.5) and the log mean expression. 
The clustering procedure projects cells onto a reduced dimensional space, and then groups them 
into subpopulations by computing a shared-nearest-neighbour (SNN) based on the Euclidean 
distance (finding highly interconnected communities). The algorithm is a variant of the Louvain 
method, which uses a resolution parameter to determine the number of clusters. 
In this step, the dimension of the subspace was set to the number of significant principal 
components (PC) based on the distribution of the PC standard deviations and by inspecting the 
ElbowPlot graph. The number of clusters was aligned to the expected biological variability, and 
cluster identities were assigned using previously described gene markers. T-SNE and UMAP 
were used to visualize the clustering distribution of cells. Cluster-specific markers were then 
identified using the Wilcoxon rank-sum test.  
Trajectory analysis and pseudo-ordering of cells was performed using the Monocle41 package 
(version 2.8.0) with the previously identified HVGs. Monocle works with the raw data and allows 
to specify the family distribution of gene measurements, which was set to a negative binomial, as 
defined in the family function from the VGAM package. As for the clustering, the expression 
space was reduced before ordering cells using the DDRTree algorithm. To validate cell 
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populations, and for cell type identification and annotation, we used pseudotime ordering of single 
cells derived from the mouse colon.  
 
Sample deconvolution and annotation 
To identify and annotate cell types and states, we analyzed the individual single-cell experiments 
separately, taking advantage of the original sequencing depth. Gene expression counts were log-
normalized to identify HVGs, as input to compute cell-to-cell distances and graph-based 
clustering (see Clustering). Cell clusters were visualized in two-dimensional space using t-SNE 
and UMAP, and then annotated by examining previously described cell population marker genes. 
All methods were able to recapitulate most cell types in both human and mouse samples, although 
in different proportions and resolutions.  
In human samples, the T-cell marker CD3 was used to differentiate T-cells from other 
populations. While the CD4 T-cells cluster was clearly identifiable (with non-overlapping 
expression of markers), CD8 T-cells and Natural Killer (NK) were often intermixed. Monocytes 
were the second most abundant cell type, including subpopulations of CD14 and FCGR3A 
monocytes. High levels of CD79A and CD79B allowed the clear identification of B-cells. 
HEK293T cells generally fell into the same cluster, separate from blood subpopulations. They 
were clearly identifiable by the high number of detected genes (up to six-fold higher than PBMC 
populations). However, there was a correlation between the expression profiles of immune cells, 
leading in some instances to mixtures of PBMCs and HEK293T cells. 
With few exceptions (Chromium), significantly fewer cells mapped to the mouse genome (half 
that of human cells, on average), leading to poorer clustering performance. However, the expected 
subpopulation composition of the colon was maintained overall. A small set of putative intestinal 
stem cells (Lgr5 and Smoc2 expression) were close (in transcriptional space) to rapidly 
proliferating transit amplifying (TA) cells (showing high ribosomal genes). Secretory cells (e.g. 
Muc2, Tff3, Agr2) resulted in a well-defined cluster. Enterocytes were more heterogeneous and 
ordered along their grade of lineage commitment. Notably, in some experiments two distinct 
clusters of enterocytes were identified, as well as a very small group of enterocyte progenitors. In 
addition to colon cells, fibroblasts and immune-cells were detected in all samples. 
 
Reference datasets 
To compare the efficiency of scRNA-seq protocols in describing the structure of a mixed 
population, we produced a reference dataset with 30,807 human and 19,749 mouse cells. Cells 
were clustered and annotated as described above. Due to the high number of cells, major cell 
types were clustered and clearly identifiable using population marker genes (Supplementary 
Fig.2a-b). However, to improve cell-to-cell annotations, we combined clustering with additional 
analyses. To annotate human blood cells, we used matchSCore2 (see Methods) using an annotated 
set of 2700 PBMCs15 as reference (Supplementary Fig.2c-d). We used cluster-specific markers 
of annotated populations as input to create a multinomial logistic model according to the 
matchSCore2 algorithm. For each unknown cell, we assigned probability values for any possible 
cell identity, and the most likely identity was used for the classification (where this probability 
was >0.5; otherwise the cell was considered unclassified). Cell identities inferred by matchSCore2 
were highly consistent with clusters, with agreement ranging from 96% for CD4 T-cells to 100% 
for B-cells. Cell-by-cell prediction helped to identify smaller cell subsets, such as FCGR3A 
monocytes, dendritic cells and megakaryocytes. For all clusters, 17% of the cells remained 
unclassified (Supplementary Fig.2c). Half of these were previously annotated as HEK293T 
cells, which split into three different clusters because they varied in number of genes 
(Supplementary Fig.2d). Cells with fewer genes (cluster HEK293T cell2 and partially 
HEK293T cell3) were classified as CD4+ T-cells, although these did not show expression of any 
of the key blood markers. For the purposes of subsequent analysis, we removed the unclear 
cluster, representing 1% of the total number of cells, as well as the unclassified cells (except cells 
in HEK293T clusters). To further validate annotations, we assigned a score to each cell, 
corresponding to the overall expression of cell type signatures from the list of the top 100 
computational markers (Supplementary Fig.2d). Transcriptional signatures revealed a set of 
cells from the HEK293T cell1 and HEK293T cell2 clusters showing high scores (>0.5, range 0-
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1) for multiple signatures. We considered these as potential doublets, and removed them. The 
remaining cells were then used to compute an unbiased set of cell-type specific markers. 
In the case of the mouse reference sample, we used clustering to dissect the colon subpopulation 
structure (excluding immune cells and fibroblasts). The largest cluster was formed by immature 
enterocytes (Supplementary Fig.3a-b). Other clusters included similar proportions of mature 
enterocytes, secretory cells, transit-amplifying cells and other undifferentiated cells. To refine 
annotations of immature cells, we ordered cells by intermediate states and projected them along 
a trajectory (see Clustering). The trajectory analysis (Supplementary Fig.3c-d) revealed 9 
different states, ranging from intestinal stem cells and transit-amplifying cells (expressing high 
levels of Lgr5, Smoc2, Top2a) to enterocytes (Slc26a3, Saa1). Based on the pseudo-ordering and 
expression levels of previously described markers, states were merged into four major groups 
(Supplementary Fig.3d). For annotation, we labeled these four groups as Intestinal Stem cells 
(ISC), Transit Amplifying cells (TA), Enterocyte progenitors (Epr), and Enterocyte (E). We 
combined this finer-grained annotation with the remaining cell types, and then computed 
population-specific gene markers for training the reference model.  
 
MatchSCore2 
To systematically compare cell types from the analysis of different methods, we used 
matchSCore2, a mathematical framework for classifying cell types based on reference data 
(https://github.com/elimereu/matchSCore2). The reference data consists of a matrix of gene 
expression counts in individual cells whose identity is known. The following preliminary steps 
were applied before training the model: 

 Normalization of the reference data 
Gene expression counts are log-normalized for each cell using the natural logarithm of 1 
+ counts per 10,000. Genes are then scaled and centered using the ScaleData function in 
the Seurat package.  

 Definition of signatures and their relative scores 
For each of the identity classes in the reference data, positive markers were computed 
using the Wilcoxon Rank sum test. The top 100 ranked markers in each class were used 
as the signature for that class. To each cell, we assigned a vector x=(x1,..,xn) of signature 
scores, where n is the number of classes in the reference sample. The i-th signature score 
is computed as follow:  

𝑧
  

 

where J is the set of genes in signature i, and zj represents the z-score of gene j. 

Statistical model 
We proposed a supervised multinomial logistic regression model to explicitly infer cell identities. 
The model learns by training with the reference dataset, where n cell types and relatively ranked 
markers are defined. We assume that the distribution of signature scores is preserved, independent 
of which technology is used. The notion behind this model is that the random variable 
X=(X1,…,Xn), where Xi is the score in signature i across all cells, follows a multinomial distribution 
M(s= X1+..+ Xn, =(1,…, n)), where i represents the proportion of the i-th cell type in the 
training set. Training and test sets were created by subsampling the reference into two datasets, 
maintaining the original proportions of cell types in both sets. The model was trained by using 
the multinom function from the nnet R package (decay=1e-04, maxit=500). To improve the 
convergence of the model function, Xi variables were scaled to the interval [0,1].  
 
Cell Classification 
For each cell, model predictions consisted of a set of probability values per identity class, and the 
highest probability was used to annotate the cell if it was >0.5; otherwise the cell resulted 
unclassified. 
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Model accuracy  
To evaluate the fitted model using our reference datasets, we assessed the prediction accuracy in 
the test set, which was around 0.9 for human and 0.85 for mouse reference. We further assessed 
matchSCore2 classifications in datasets from other sequencing methods by looking at the 
agreement between clusters and classification. Notably, the resulting average agreement was of 
80% (range: from 58% in gmcSCRB-seq to 92% in Quartz-Seq2), while the rate of unclassified 
cells was less than 2%.  
 
Downsampling 
To decide on a common downsampling threshold for sequencing depth per cell, we inspected the 
distribution of the total number of reads per cell for each technique, and chose the lowest first 
quartile (fixed to 20,000 reads/cell). We then performed stepwise downsampling (25%, 50% and 
75%) using the zUMIs downsampling function. We omitted cells that did not achieve the required 
minimum depth. 
 
Estimation of dropout probabilities 
We investigated the impact of dropout events in HEK293T, monocytes and B-cells extracted for 
each technique on downsampled data (20,000 reads/cell). For datasets with >50 cells from the 
selected populations, we randomly sampled 50 cells to eliminate the effect of differing cell 
number. The dropout probability was computed using SCDE R package42. SCDE models the 
measurements of each cell as a mixture of a negative binomial process to account for the 
correlation between amplification and detection of a transcript and its abundance, and a Poisson 
process to account for the background signal. We then used estimated individual error models for 
each cell as a function of expression magnitude to compute dropout probabilities using SCDE’s 
scde.failure.probability function. Next, we calculated the average estimated dropout probability 
for each cell type and technique. To integrate dropout measures into the final benchmarking score, 
we calculated the Area Under the Curve (AUC) of the expression prior and failure probabilities 
(Figure 2f). We expected that protocols that result in fewer dropouts would have lower AUC. 
 
Cumulative number of genes 
The cumulative number of detected genes in downsampled data was calculated separately for 
each cell type. For cell types with >50 cells annotated, we randomly selected 50 cells and 
calculated the average number of detected genes per cell after 100 permutations over n sampled 
cells, where n is an increasing sequence of integers from 1 to 50. 
 
Silhouette scores 
To measure the strength of the clusters, we calculated the Average Silhouette Width (ASW)18. 
The downsampled data (20,000 reads/cell) were clustered by Seurat40, using graph based 
clustering with the first 8 principle components and resolution of 0.6. We then computed an 
average Silhouette width for the clusters using an Euclidean distance matrix (based on principle 
components 1 to 8). We report the average Silhouette width for each technique separately. 
 
Dataset merging 
Dataset integration across studies is one of the most challenging analyses. It is important to assess 
which scRNA-seq methods integrate best, while conserving biological variability. To integrate 
datasets, we used the R package scMerge19, which uses a set of genes with stable expression levels 
across different cell types. Also, creating pseudo-replicates across datasets allows to estimate and 
correct for undesired sources of variability. To avoid differences due to sequencing depth, we 
combined downsampled count matrixes using the sce_cbind function, which includes the union 
of genes from different batches. After computing the set of highly variable genes using log-
normalized gene measurements, we then apply the scmerge function to align data from different 
experiments. Following integration, cells were clustered using normalized gene expression levels 
and HVG computed using scMerge. We used UMAP plots color-coded by clusters and cell types 
to visualize and annotate clusters with the greatest agreement between cell types and clustering.  
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Clustering accuracy 
To determine the clusterability of methods to identify cell types, we measured the probability of 
cells to be clustered with cells of the same type. Let 𝐶  , 𝑘 ∈ 1, … , 𝑁  the cluster of cells 
corresponding to a unique cell type (based on the highest agreement between clusters and cell 

types), and 𝑇  , 𝑗 ∈ 1, … , 𝑆  the set of different cell types, where C⊆T. For each cell type Tj, we 
compute the proportion pjk of Tj cells that cluster in their correct cluster Ck. We define the cell-
type separation accuracy as the average of these proportions. 
 
Mixability 
To account for the level of mixing of each technology, we used kBet20 to quantify batch effects 
by measuring the rejection rate of a Pearson’s 2 test for random neighborhoods. To make a fair 
comparison, kBet was applied to the common cell types separately by subsampling batches to the 
minimum number of cells in each cell type. Due to the reduced number of cells, the option 
heuristic was set to ‘False’, and the testSize was increased to ensure a minimum number of cells. 
Mixability was calculated by averaging cell type specific rejection rates.  
 
Benchmarking score 
To create an overall benchmarking score with which to compare technologies, we considered six 
key metrics: gene detection, overall level of expression in transcriptional signatures, cluster 
accuracy, classification probability, cluster accuracy after integration, and mixability. Each metric 
was scaled to the interval [0,1], then in order to equalize the weight of each metric score, the 
harmonic mean across these metrics was calculated to obtain the final Benchmarking scores. Gene 
detection, overall expression in cell type signatures, and classification probabilities were 
computed separately for B-cells, HEK293T cells and monocytes, and then aggregated by the 
arithmetic mean across cell types. 
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