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Abstract: 
 
The ability to maintain a sequence of items in short-term memory (STM) is a fundamental cognitive 
function. Sequential item encoding in STM has been linked to a spike-theta-phase code for 
sequentially organized spatial locations observed in the rodent hippocampus (phase precession). The 
timing of neuronal activity relative to different brain oscillations is postulated to play a key role in 
maintaining the sequence order. We recorded single neuron and local field potential activity in the 
human brain during a sequence-learning task. Spikes for two consecutive items in the sequence were 
phase-locked at distinct phases of the theta oscillation. Surprisingly, the order of phases in the 
sequence-learning task was the opposite of that observed in phase precession during navigation. 
These results suggest that a spike-phase code is employed in the human brain during sequence 
learning, but with important differences compared to the rodent spike-theta-phase-dependent coding 
scheme.  
 
Introduction: 
 
Learning to memorize and maintain a sequence of items in short-term memory (STM) is fundamental 
for successful behavior. At the cellular level, this process is linked to sustained firing activity of 
individual neurons during the delay period between two stimuli (Fuster and Alexander, 1971; Konecky 
et al., 2017; Kornblith et al., 2017), as well as by anticipatory activity before the onset of an expected 
stimulus (Reddy et al., 2015). Short-term memory processes are also linked to various brain rhythms 
(Fuentemilla et al., 2010; Raghavachari et al., 2001), and there is converging evidence that neuronal 
firing activity during short-term memory can be timed (or phase-locked) to underlying theta oscillations. 
In humans, the strength of theta phase locking is predictive of human memory strength (Rutishauser 
et al., 2010) and navigational goals (Watrous et al., 2018). In rodents, spiking activity of place cells 
(O'Keefe and Dostrovsky, 1971) is locked to specific phases of the theta rhythm during spatial 
navigation. As a rat navigates through a sequence of spatial positions, place cells that represent each 
of these locations fire at distinct phases of the underlying theta rhythm, where spikes of a neuron 
occur at increasingly early phases as the rat approaches its place field. This process has been called 
phase-precession and has been proposed to play an important role in the learning of a sequence of 
spatial positions in the rodent brain (Buzsaki and Tingley, 2018), and by extension, in the encoding 
and maintenance of any ordered list in STM (Lisman and Jensen, 2013). 
 
Here we asked whether a phase-dependent coding scheme is also observed in the human brain 
during sequence learning. Because humans are more visual creatures than rodents, we assumed that 
learning a sequence of visual objects could be analogous to learning a sequence of spatial positions in 
rodents. We hypothesized that theta phase could play an important role in stimulus encoding, and that 
the phase at which a given cell fires would vary with stimulus identity and order. In other words, while 
subjects are involved in learning a stimulus sequence, each item in the sequence might be 
represented by neuronal activity that is locked to a different theta phase. Will medial temporal lobe 
(MTL) neurons in human subjects that navigate a conceptual space defined by a sequence learning 
task, exhibit the same form of phase precession that has been observed in rodents during navigation? 
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Do MTL neurons also fire at increasingly early phases when the subject approaches the concept that 
activates the cells? 
 
Results 
 
To create an analogy with the navigation of spatial positions in rodents, we designed a conceptual 
space that consisted of a sequence of images. The viewers’ subjective impression in this conceptual 
space was that the images were displayed on the rim of a rotating “wheel” that moved in the clockwise 
direction. The wheel moved forward smoothly during the inter-stimulus interval (ISI; 0.5 seconds), 
during which period, a gray placeholder covered all the images. At the end of the ISI period, the wheel 
stopped for 1.5 seconds, and the placeholder at the topmost position of the wheel was replaced by the 
next image in the sequence (Figure 1). On 20% of trials, instead of presenting the next stimulus, 
observers were presented with two choice stimuli and had to indicate which stimulus was the next in 
the sequence. In our previous work with the same paradigm (Reddy et al., 2015), we showed that, as 
a result of sequence learning, human MTL neurons that initially responded to a particular (“preferred”) 
image on the wheel, started firing in anticipation of their preferred image, during the immediately 
preceding stimulus and the intervening ISI. This finding is reminiscent of rodent place cells that show 
anticipatory activity in sequentially ordered spatial environments (Mehta et al., 1997). In the current 
study, we ask whether theta-phase coding mechanisms observed in rodent place cells, are also 
observed while humans navigate this conceptual space. In other words, are different stimuli on the 
wheel assigned a particular theta phase for firing, and is the order of theta phases similar to that 
observed in rodents? 

 
 
Figure 1: Experimental Design. In the sequence learning 
experiment, a sequence of 5-7 images was presented to the 
subjects in a fixed order. The sequence contained one preferred 
image for a selective neuron; the other images in the sequence 
were non-preferred images for this neuron. Each image was 
presented for 1.5s followed by an ISI of 0.5s. During the image 
presentation period (1.5s), an image was presented at the 
center of the screen, flanked by gray placeholders. During the 
ISI period, a placeholder replaced the central image, and all the 
placeholders moved in the clockwise direction. At the end of the 
ISI period, the central placeholder was replaced by the next 
image in the sequence. The sequence was repeated in this 
manner 60 times in each experimental session. 
 

 
Nine human subjects learned the order of a number of stimuli presented in a pre-defined sequence, 
while we recorded spiking and LFP activity from the hippocampus, parahippocampal gyrus, and 
temporal cortex. Subjects rapidly learned the sequence order (>90% performance on test trials within 
6 sequence presentations (Reddy et al., 2015)), and consequently all trials were included in the 
analyses described below. In prior screening sessions we identified neurons that had a strong 
preference for a particular stimulus (i.e., the neuron’s preferred stimulus). The subsequent sequence-
learning paradigm was designed to include this preferred stimulus, together with 4-6 non-preferred 
stimuli. In particular, we ensured that the stimulus prior to the preferred stimulus in the sequence 
(hereafter referred to as the preceding stimulus) was a non-preferred stimulus of the cell, although 
sequence learning caused a moderate increase in the spiking responses to the preceding stimulus, as 
mentioned above (Reddy et al., 2015). Here, we compare the theta-phase of firing for the preceding 
and preferred stimuli and determine whether the newly learned neuronal responses elicited by the 
preceding stimulus are encoded at a distinct theta phase relative to the responses elicited by the 
preferred stimulus. 
 
In accordance with previous studies (Bohbot et al., 2017; Kraskov et al., 2007; Rutishauser et al., 
2010; Watrous et al., 2018), we observed prominent theta activity in the 6-10Hz range in the local field 
potential (LFP) (Figure 2A, Figure S1A). To determine whether spiking activity of the neurons was 
phase-locked to these theta oscillations during the sequence-learning task, we computed the pairwise 
phase consistency (PPC) (Vinck et al., 2010). To improve the reliability of the PPC measure, we 
included all neurons from both the screening and sequence-learning sessions with firing rates 
>=~0.5Hz and that showed a selectivity to at least one stimulus (Figure 2B, N=93; see methods for 
PPC estimation). To estimate the significance of the PPC, we simulated a baseline null (no phase-
locking) condition by time-reversing the entire LFP (but not the spike times), and re-computing the 
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PPC between spikes and the time-reversed LFP. This manipulation destroyed any spike-phase 
locking with the LFP but maintained the correlations inherent within the spike trains and LFP signals. 
The true PPC was significantly greater than the null condition at all frequencies below 25Hz (Rank-
Wilcoxon test, p< 0.0018, Bonferonni corrected for the number of frequencies tested). In addition to 
the common (and expected) 1/f decrease in PPC across frequencies, a distinct peak of phase locking 
was observed in the 6-10 Hz theta range.  
 
In the main experimental sequence-learning (SL) sessions, we recorded from 249 neurons, of which 
63 showed a selective response to a preferred stimulus. The distribution of phase preferences in the 
theta range of these neurons that showed a selective response to a preferred stimulus (N=63) during 
the SL sessions is shown in Figure 2C (see Figure S1 B, C for phase preferences in the screening 
sessions). On average the ratio of spikes fired at the preferred versus the least preferred phase of the 
theta oscillation was 1.5 in the sequence-learning sessions (Figure 2D), which is indicative of a 
pronounced influence of theta phase on the neuronal firing rate. 
 
 
 

 
 
Figure 2: Theta phase-locking of neurons. A) LFP-power (left) and time frequency map (right) of the local field potentials 
recorded during the sequence-learning task. The power of the local field potential (LFP) relative to a 1/f fit is shown here in 
decibel units (see methods). In the right panel, time 0 corresponds to the onset of the preferred stimulus. The stimulus durations 
were 1.5s, with an ISI of 0.5s between stimuli. The preceding stimulus onset was thus at -2s. The panel on the left is the 
average LFP power, collapsed over the time axis of the plot on the right. Shaded area is the SEM across neurons. The time 
frequency map shows a peak in the theta band (6-10Hz). Star symbols on the frequency axis indicate significance of a 
comparison against 0 (paired t-test, p <0.05 Bonferroni-corrected for multiple comparisons). B) The spike-LFP pairwise phase 
consistency as a function of frequency, averaged over all cell-LFP pairs (N=93 during the screening and sequence-learning 
sessions; see methods). The PPC analysis revealed a peak of spike-LFP phase locking in the theta (6-10Hz) band. The dark 
shaded curves are the SEM over cells. The shaded gray vertical regions correspond to the three frequency bands investigated 
below: 1.6-3 Hz, 6-10 Hz and 15-23 Hz. The dotted gray line is the result of a control analysis in which the LFP was time-
reversed. C) Distribution of preferred phases for all cells in the sequence learning sessions with respect to the 6-10Hz theta 
oscillation. D). Theta-band phase modulation of spikes for all stimuli in the sequence learning sessions. Each cell’s phase 
distribution was centered by subtracting the (circular) mean phase from the phase of each spike. The resultant phase 
distribution was then binned for each cell, and averaged across cells. The ratio of spikes fired at the peak preferred phase 
versus the least preferred phase is 1.5. The shaded areas correspond to the standard error of the mean across cells. See also 
Figures S1 and S5. 
 
The peak of phase locking in the theta range indicates that the neurons have a preferred phase of 
firing relative to the underlying theta oscillations. To determine whether the neurons encoded the 
preceding and preferred stimuli at different phases of the theta cycle during sequence learning, we 
next compared the phase of firing for these two stimulus types (Figure 3A) over all 63 neurons that 
were selective for one of the stimuli in the sequence-learning sessions. The neurons showed 
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significant phase locking for both these stimulus types (p<0.0005, Rayleigh test). Importantly, the 
neurons fired at distinct theta phases for the preferred and preceding stimuli (mean angle ± SEM = -
3°± 6° for the preferred and -55°± 6° for the preceding stimulus), with spikes elicited by the preceding 
stimulus occurring at an earlier phase of the theta cycle than those elicited by the preferred stimulus 
(Figure S2). The cell-wise paired difference between the phase preferences for these two stimulus 
types was significant across cells (F(1,125) = 10.5; p<0.005, Watson-William test; mean ± SEM = 58°± 
6°; see Figure 3B, middle panel), indicating that the spikes fired in response to successive stimuli 
occurred at distinct phases of the theta rhythm. The difference of ~58° between the preceding and 
preferred phases corresponds to a time difference of ~20ms with respect to an 8 Hz oscillation. The 
phase-dependent stimulus encoding did not depend on the difference in the number of spikes fired to 
each stimulus (Figure S3), i.e. it does not seem to be caused by differences in firing rates. It also 
seems unlikely that the phase difference was caused by a phase reset evoked by stimulus onset, 
because the phase locking was relatively constant for the full duration of the stimulus (1.5s). The 
absence of an influence of phase-reset was confirmed with a control analysis in which we removed 
precisely stimulus-locked spikes (see Figure S4 and Methods). 
 
 

 
 
 
Figure 3: Phase encoding of successive stimuli in the MTL. A) Phase histogram of the phase of spiking relative to the theta 
band LFP for the preferred (red) and preceding (blue) stimuli across cells (N=63). The phase distributions were significantly 
different from the uniform distribution, indicating phase locking (p <0.0005 for both stimulus types, Rayleigh test). The dashed 
colored lines correspond to the mean phase, and the red and blue angular lines correspond to the SEM across cells. The phase 
distributions have been smoothed for display purposes (see Methods), but the mean phase (dashed lines) is calculated on 
unsmoothed data. B) Phase histogram of the cell-wise difference of phases at which the cells fired for the preferred and 
preceding stimuli in three frequency bands. The difference was significant (Watson-William test, p <0.005) only in the theta 
band. The dashed lines represent the mean phase, and the angular black lines correspond to the SEM across cells. C) 
Examples of histograms of phase of spiking relative to the theta band for individual cells and the average across cells (lower 
right). The blue curves are for the preceding stimuli and the red curves for the preferred stimuli. In the average plot, the shaded 
area is the SEM across cells. The dashed vertical lines indicate the mean phases. The difference between the distributions was 
significant at p < 0.005; Watson-William test for all panels. D) left: Change in mean phase across cells as a function of time. T=0 
corresponds to the onset of the preferred stimulus. There was an ISI of 0.5s prior to the preferred stimulus (between the two 
dashed lines); the onset of the preceding stimulus occurred at -2s. Error bars represent the 95% confidence interval of the mean 
across cells, and are only plotted in time bins during which there was significant phase-locking (Rayleigh test, p<0.05). A linear 
fit through the phase values across time (-2s to 1.5s) revealed a strongly positive slope (slope = 21.8 deg/s, r2 = 0.81, p 
<0.0005). right: Mean ± SEM of the phase during the preceding and preferred periods of the left panel. The data in the left panel 
has been smoothed for display purposes; the mean phases in the right panel are the true phases calculated within each time 
period, without smoothing. The phase difference in this figure is identical to that in panel C (average across cells). See also 
Figures S2, S3 and S4. 
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The PPC analysis indicated significant phase locking at a range of frequencies below 25Hz. In 
addition to a peak of PPC in the 6-10Hz range, we found two additional peaks of PPC in the delta (1.6-
3Hz) and beta (15-23Hz) ranges (Figure 2B). To determine whether the phase-dependent stimulus 
coding observed in Figure 3A was specific to the theta band, or if it also occurred in other frequency 
bands, we repeated the analysis in the delta and beta bands. The difference in phase preference for 
the preferred vs. the preceding stimuli in all three frequency bands is shown in Figure 3B. The phase-
dependent stimulus encoding was only significant in the theta band (F(1,125) = 10.5; p<0.005, 
Watson-William test; mean ± SEM = 58°± 6°; delta: F(1,125) = 0.0002; p=0.98, -10°± 5°; beta: 
F(1,125) = 2.5; p=0.12, 5°± 5°). In all subsequent analyses, we thus focus on the theta band. Figure 
3C shows examples of phase-dependent stimulus encoding in seven representative individual 
neurons. Finally, to examine how the preferred phase evolved over a finer time scale as the sequence 
progressed from the preceding to the preferred stimuli, we plotted the mean phase across cells as a 
function of time (Figure 3D). This figure clearly shows the distinct phase-of-firing during the two time 
periods in which the stimuli were presented (F(1,125) = 10.5; p<0.005, Watson-William test), as well 
as the transition over time. A linear fit through the phase values across time (-2s to 1.5s) revealed a 
strongly positive slope (slope = 21.8 deg/s, r2 = 0.81, p <0.0005), again confirming the transition from 
one phase value to another across the two stimulus periods. 
 

 
 
Figure 4: A) Phase distribution for the preferred (red), preceding (blue), and other non-preferred (gray) stimuli in the sequence. 
The vertical dashed lines correspond to the average phase of each distribution. The dotted gray lines correspond to the phase 
distributions for the three non-preferred stimuli shown individually. The cells showed significant phase locking for all three 
stimulus types (p<0.005, Rayleigh test).  
 
Finally, we looked at the theta phase preference for the three other non-preferred stimuli in the 
sequence (i.e., if the preferred stimulus is stimulus N, we consider stimuli N-2, N+1 and N+2; Figure 
4). The neurons showed significant phase locking with respect to the theta oscillation for the three 
non-preferred stimuli (p < 0.0005, Rayleigh test). The preferred phase for the non-preferred stimuli lay 
in between the preferred phases of the preferred and preceding stimuli (mean ± SEM = -16.02 °± 
5.7°). A visual inspection of Figure 4 suggests that it is primarily the phase distribution of the preceding 
stimulus that is shifted compared to the largely overlapping distributions of the preferred and non-
preferred stimuli. This observation was confirmed by a statistical analysis (Watson-William test, p<0.05 
for preceding vs. non-preferred, p = 0.4 for preferred vs. non-preferred, and p<0.005 for preceding vs. 
preferred). We speculate that these observations suggest that the “default” phase preference of these 
neurons (i.e., the rhythmic influence of LFP oscillations that might be assigned to biophysical 
constraints, such as membrane potential fluctuations around the firing threshold) is reflected in the 
non-preferred stimuli. Indeed, the idea of a “default” phase is also suggested by the observation that 
the mean phase of the non-preferred stimuli was not significantly different from the mean phase 
computed over all the spikes fired in the screening sessions (screening mean ± SEM = -23.7 °± 6.7°; 
F(1,111) = 0.2; p=0.66; Figure S1B,C). The observed shift to ~-58° of the preceding stimuli phase 
distribution might then reflect a shift away from the “default” phase as a result of task-related learning 
of the preceding stimuli. 
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Discussion: 
 
Our results provide evidence for phase-dependent neuronal coding during sequence learning in the 
human brain. Neuronal firing activity for the neurons’ preferred and preceding stimuli in a sequence 
was phase-locked to the theta oscillation at distinct phases. Recent studies in human and non-human 
primates have investigated how a pair, or a series, of items during memory tasks is encoded in 
different brain regions. At the level of single neurons, it appears that the last presented item is the 
most reliably encoded in firing activity (Konecky et al., 2017; Kornblith et al., 2017), but these studies 
did not report phase locking to ongoing oscillations. Other studies have reported elevated theta-
gamma phase-amplitude coupling (Bahramisharif et al., 2018; Heusser et al., 2016), or spike-phase 
coding with respect to higher frequency (32Hz) oscillations (Siegel et al., 2009). Influential models of 
phase-precession and STM however, posit a key role for a spike-based code phase-locked to theta 
rhythms, an assertion that we set out to test. 
 
Although the exact role of oscillatory activity in sensory coding is still under debate (Histed and 
Maunsell, 2014), oscillatory activity in different frequency bands has been observed in relation with 
short-term memory (Lee et al., 2005; Lisman and Idiart, 1995; Pesaran et al., 2002; Siegel et al., 
2009), attention (Buschman and Miller, 2007; Fries et al., 2001) and perception (Fiebelkorn et al., 
2018; VanRullen, 2016). Spike-phase coding has also been observed in olfactory structures (Laurent, 
2002), auditory cortex (Kayser et al., 2009), and during spatial navigation in humans (Watrous et al., 
2018). Oscillations in the theta band in particular are thought to play an important role in the 
hippocampus. In rodents, phase precession is observed relative to a 7-9 Hz theta oscillation during 
spatial navigation (O'Keefe and Dostrovsky, 1971). Theta oscillations have also been observed in 
humans, in frequencies ranging from 3-9 Hz (Bohbot et al., 2017; Jacobs, 2014; Kraskov et al., 2007; 
Vass et al., 2016; Watrous et al., 2013; Watrous et al., 2018). Watrous et al., (2018) recently reported 
phase effects centered at lower theta frequencies (3Hz) for different navigational goals. However, 
unlike our study, that study did not report a consistent directionality of theta phase coding with respect 
to the navigational trajectory of the subject, a difference that might be due to the different theta 
frequency range, or the different task. To the best of our knowledge, a sequential spike-theta-phase 
code during sequence learning in humans has not been previously reported. 
 
The encoding of sequential item information has been linked to the encoding of spatial locations in 
rodents during phase precession (Lisman and Jensen, 2013). Our results differ in important respects 
from findings regarding phase-precession in rodents during navigation. When a rodent approaches the 
place field of a neuron, the spikes are fired at successively earlier phases of the theta oscillation. One 
might therefore have predicted a gradual phase precession in the sequence-learning task, with spikes 
fired at successively earlier phases as the subjects approach the preferred stimulus of the cell. 
However, we found that the phases were generally similar across the stimuli in the sequence with one 
exception: spikes elicited by the stimulus that precedes the neurons’ preferred stimulus fire at an 
earlier phase than the spikes elicited by the other stimuli in the sequence. In other words, we observed 
“phase succession” instead of phase precession during the transition from the preceding to the 
preferred stimulus (Figure 5A).  
 
An important difference between our experimental setup and that used in rodents is the stimulus 
space that was explored. In rodents, the navigational space typically consists of running in repeated 
loops in a maze. Spatial navigation in virtual environments in humans has revealed that navigational 
goals are represented in the firing activity (Ekstrom et al., 2003), and phase-locking of MTL neurons 
(Watrous et al., 2018). However, these previous studies did not observe systematical differences in 
the phase of spikes elicited by a sequence of concepts. Here, we created a conceptual navigational 
space, which consisted of repetitive sequences of images. In this space, we find a distinct spike-phase 
code for the item that precedes the preferred item in the sequence. Can we reconcile our findings with 
theories of short-term memory that propose that different items are multiplexed at different phases of 
the theta rhythm (Lisman and Idiart, 1995)? 
 
Standard theta-phase coding short-term memory (STM) models consider the encoding of a sequence 
of 5-7 stimuli (Jensen and Lisman, 1996; Lisman and Idiart, 1995), roughly equivalent to the capacity 
of 4-7 items in STM (Cowan, 2001; Luck and Vogel, 1997; Miller, 1956). Sequence encoding has been 
more broadly linked to the theta-phase coding of a sequence of 5-7 spatial locations in the rodent 
hippocampus (Buzsaki, 2010; Buzsaki and Moser, 2013; Eichenbaum et al., 1999; Lisman, 1999). 
Both coding schemes depend on the simultaneous responses of multiple neurons to different stimuli. 
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For example, in the rodent hippocampus, multiple place cells with overlapping receptive fields (place 
fields) fire at distinct phases within each theta cycle. Similarly, STM sequence coding models (Lisman, 
2010) propose that multiple neurons with selectivity for different stimuli are simultaneously active 
during memory maintenance at distinct phases within a theta cycle. Our results differ from these 
models because we only observe significant neuronal responses for two stimuli at a time (the 
“preferred” stimulus of the neuron, and the stimulus “preceding” it in the sequence), despite having a 
larger number of items (5 to 7) in our sequences. One difference between rodent place fields and the 
conceptual representations in the human MTL is that the human MTL code may be sparser than the 
coding of spatial locations in rodents (Quiroga et al., 2005). Another difference may be related to our 
task, which did not require the subjects to hold all sequence items in memory. We only requested our 
subjects to make occasional judgments about the next item in the sequence, and these two special 
items (current and future) were associated with distinct phases in the theta cycle. We note, however, 
that a similar argument could be made about phase precession in place cells in the hippocampus, 
which also occurs without an explicit task to memorize the sequence of places visited by the animal.  
 
 
 

 
 
Figure 5: Comparison between spike-theta phase locking in rodents and humans. A). (top) In this example, a rodent 
navigates through a sequence of two spatial locations (S1 and S2). The theta-phase of firing of a single place cell, 
corresponding to S2 is shown here as a function of spatial position. The thickness of the bars corresponds to the strength of 
firing. Place cell S2 fires at a certain phase when the animal is at S1, and at an earlier phase (trough of the oscillation) when the 
rodent is in the center of place field S2. Modified from (Dragoi, 2013). (bottom) A human subject views a sequence of two 
images (S1 and S2). A neuron whose preferred stimulus is S2 fires at a late phase to S2 (peak of the oscillation, ~3°; see Figure 
3 and Figure S2B), and at a relatively earlier phase to the preceding stimulus, S1. Thus, in the rodent, firing of S2 during the 
preceding stimulus S1 occurs at a later phase of the oscillation, whereas in our sequence-learning task, the spikes of S2 during 
the preceding stimulus S1 occur at an earlier phase (compared to spikes during the preferred stimuli).  
B) Let us assume that while stimulus S1 is the preferred stimulus for one neuron, it is also the preceding stimulus for the neuron 
selective to S2. (top).The firing activity of two place cells within one theta cycle, when the rodent is at S1: Place cell S1 fires at 
the earliest phase (trough) when the rodent is at the center of place field S1. At this moment, S2 fires at a relatively later phase. 
Thus, the order of spikes from S1 and S2 within one theta cycle reflects the temporal order in which the place fields will be 
traversed. (bottom) Firing activity of two neurons, selective to items S1 and S2 within one theta cycle, in our sequence-learning 
task. When S1 is presented on the screen, the neuron whose preferred stimulus is S1 fires at a late phase, near the peak of the 
oscillation. Stimulus S1 is also the preceding stimulus for the neuron whose preferred stimulus is S2. From Figure 3 we know 
that a cell’s response to the preceding stimulus occurs at an earlier phase (~55°). Thus, in a given theta cycle, the two 
successive items are represented in the reverse order compared to the temporal order of the sequence. 
 
Another important difference between our findings and place cells is in the order of spikes during the 
theta cycle. Theta-phase coding models (Jensen and Lisman, 1996) consider the response of multiple 
neurons (with distinct stimulus selectivity) within a single theta cycle (e.g., when the rat is at a 
particular spatial position). The behavior of multiple neurons coding for a given stimulus or place is 
typically inferred from single-unit recordings, by assuming that while one neuron codes a given 
stimulus as its preferred stimulus, another neuron codes the same stimulus as the one preceding its 
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own preferred stimulus (Figure 5). With this assumption in mind, we can ask about the order of all 
items within a single theta cycle, while the subject is at a particular location within a sequence of 
stimuli or places. In rodent navigation, the place cell with the earliest phase (trough of the oscillation) 
is the one with the place field at the animal’s location, and the neurons with place fields that will be 
reached later fire at later phases. In our study however, the order is reversed, because the currently 
visible item has a later phase than the upcoming stimulus (Fig. 5B). 
 
While this reversed representation within a theta cycle is intriguing, it is also worth noting that initial 
implementations of STM models (Lisman and Idiart, 1995) predicted precisely this reverse order for 
the spike-phase code. Furthermore, reverse temporal orders are also observed in the rodent 
hippocampus during awake or resting replay (Diba and Buzsaki, 2007; Foster and Wilson, 2006). 
Nevertheless, the importance of phase coding is still under dispute, given that some species, such as 
bats, have excellent navigational capabilities and similar neuronal place coding strategies, which do 
not depend on the theta rhythm (Buzsaki and Moser, 2013; Ulanovsky and Moss, 2007; Yartsev et al., 
2011). The precise role of theta-phase coding therefore remains to be determined. Hence, it is 
encouraging that it is now possible to systematically study theta phase-coding in the human brain so 
that future studies can also use this approach to test the generality of theta-phase shifts during 
sequence coding, navigation in real and conceptual spaces, STM, and other cognitive functions. 
 
Conclusion 
 
In summary, learning and maintaining the order of a series of inputs (e.g., items, spatial locations, 
odors) or events is crucial to successfully negotiating an environment. An accurate encoding of a 
sequence of ordered stimuli enables an organism to predict the future based on regularities learned in 
the past. Some authors have argued that the role of the hippocampus is to encode events that occur 
in a temporally organized sequence (Eichenbaum et al., 1999; Wallenstein et al., 1998). More 
generally, the hippocampus may structure incoming information by generating sequentially organized 
cell assemblies, each for a different input or event; in this scheme, the theta rhythm is postulated to 
organize these assemblies into meaningful sequences (Buzsaki, 2010; Buzsaki and Tingley, 2018). 
Our results are broadly consistent with these hypotheses in that we observe distinct theta phase firing 
for two successive items in a sequence. However, we also report important differences between theta-
phase encoding of sequential information in humans compared to place coding in rodents, raising 
interesting questions for future research. 
 
Methods  
Participants were nine patients (four female, age range 18-36 years) with pharmacologically 
intractable epilepsy undergoing epileptogical evaluation at the Amsterdam University Medical Centers, 
location VUmc, The Netherlands. Patients were implanted with chronic depth electrodes for 7-10 days 
in order to localize the seizure focus for possible surgical resection (Engel et al., 2005; Fried et al., 
1997). All surgeries were performed by J.C.B and S.I. The Medical Ethics Committee at the VU 
Medical Center approved the studies. The electrode locations were based entirely on clinical criteria. 
Each electrode consisted of eight microwires from which we recorded single/multi-unit activity and 
local field potentials, and a ninth microwire that served as a local reference. The signal from the 
microwires was recorded using a 64-channel Neuralynx system, filtered between 1 and 9000 Hz, 
sampled at 32KHz. On average, each patient was implanted with 34 ± 11.8 microwires. Participants 
sat in their hospital room at the Epilepsy Monitoring Unit, and performed the experimental sessions on 
a laptop computer. All patients participated in the two types of experimental sessions described below.  
 
Screening Sessions: Each day the patients first performed a screening session during which they 
were presented with a large variety of different images (famous people, relatives, animals, landmarks, 
objects etc.). Each image subtended 1.5 degrees of visual angle, and was presented at the center of 
the screen. Images were presented for 1000ms, followed by an inter-stimulus interval of 500ms. Each 
image was repeated 8 times in a randomized order. Between 7 and 51 images were used in the 
screening sessions depending on the availability of the patient. After the presentation of each image 
the patients performed a simple yes/no task, for example “Did the picture contain a human face”? The 
exact question depended on the picture set. This task ensured that patients attended to the stimuli. 
Data from the screening sessions were rapidly analyzed to determine which images were the 
"preferred" images of the neurons. “Preferred” images were defined as those that elicited a significant 
(paired t-test, p<0.05) response during the stimulus presentation period compared to the preceding 
ISI.  
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Sequence Learning (SL) Sessions: Following the screening sessions, the patients performed a total 
of 27 sequence learning (SL) sessions. The SL sessions were designed using information from the 
screening sessions. In each SL session, subjects were presented with a sequence of 5-7 images, 
always in a pre-determined order such that a given image, A, predicted the identity of the next image, 
B, and so on. Subjects were asked to remember the order of the stimuli in the sequence. Each 
stimulus was presented for 1.5s with an inter-stimulus interval (ISI) of 500ms, resulting in individual 
trials of 2000ms (Figure 1). The SL sessions were designed such that in each sequence of 5-7 
images, at least one image was the preferred image of one of our neurons. In the rare cases where 
the sequence consisted of more than one preferred image, only one of the preferred images was used 
in the subsequent analyses (in other words, the same neuron was never counted twice in an SL 
session). Additionally, in order to be included in subsequent analyses, the stimulus immediately 
preceding the preferred stimulus in the sequence was required to be a non-preferred image (i.e., it did 
not elicit a significant response during the screening session) for this neuron. The sequence was 
repeated continuously 60 times resulting in experimental sessions of ~10-14 minutes, not including 
time spent by the subject on test trials. 20% of trials were "test" trials in which, instead of being 
presented with the next image of the sequence, subjects were shown two images side by side and 
asked to decide (by pressing one of two keys on the keyboard) which of the two would be the next 
image in the sequence.  
 
To further the impression of a sequence of images we used the following display arrangement (Figure 
1): Each image was presented at the center of the screen while placeholders (empty gray squares) 
were presented to the left and right of the central image. At the end of the 1500ms presentation 
period, the central image was replaced by a gray placeholder and all the grey squares moved one 
“step” forward in a clockwise direction for the duration of the ISI, such that each placeholder eventually 
occupied the next placeholder position. At the end of the ISI the placeholder that now occupied the 
central position was replaced by the next image in the sequence. The viewer’s subjective impression 
at the end of the ISI interval was that the central image had been hidden, and then moved clockwise, 
while the central position was replaced by the next image in the sequence.  
 
Spike Detection and Sorting: Spike detection and sorting were performed with wave_clus (Quiroga 
et al., 2004). Briefly, the data were band pass filtered between 300-3000Hz and spikes were detected 
with an automatic amplitude threshold (Figure S5). Spike sorting was performed with a wavelet 
transform that extracted the relevant features of the spike waveform. Clustering was performed using 
a super-paramagnetic clustering algorithm. As in a previous study (Reddy et al., 2015), the clusters 
were classified as single- or multi-units. Multi-unit clusters reflect the activity of several neurons that 
cannot be further differentiated due to a low signal to noise ratio. As in (Reddy et al., 2015), the 
classification between single- and multi-unit was performed visually based on: 1) the spike shape and 
its variance; 2) the ratio between the spike peak value and the noise level; 3) the ISI distribution of 
each cluster; 4) the presence of a refractory period for the single-units; i.e. fewer than 1% of spikes in 
a 3ms or smaller inter- spike-interval. 
 
Data Analysis: All analyses were performed with custom-made Matlab scripts and the FieldTrip 
toolbox (Oostenveld et al., 2011). 
 
Number of neurons and their locations: Over the nine patients we recorded from 249 neurons 
(single and multi-unit) in the left and right hippocampi, temporal cortices, parahippocampal cortices, 
and the amygdala in the sequence learning sessions. To identify neurons that elicited a visual 
response to one of the stimuli in the sequence-learning sessions, we identified visually selective cells 
based on a one-way ANOVA across the stimuli (p<0.05) and visually responsive cells based on a 
paired t-test of the response to all stimuli vs. the baseline response (p<0.01). In addition, cells that 
were identified as selective during the screening sessions were also targeted if, during the sequence 
learning session, the response to the stimulus period was significantly higher than during the baseline 
period (paired t-test, p<0.05). For all these cells we ensured that the cell did not elicit a response to 
the preceding stimulus in the sequence (paired t-test, p>0.05). 63 neurons from the sequence learning 
sessions were thus identified as having preferred images. Of the 63 neurons from the sequence-
learning sessions, 37 were located in the hippocampus, four in the parahippocampal cortex (PHC), 18 
in the temporal lobe, and four in the amygdala. The results reported in this study did not vary by brain 
region.   
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Estimation of theta-band oscillatory activity 

All LFP analyses were performed with the FieldTrip toolbox in Matlab (Oostenveld et al., 2011). The 
LFP was recorded from the same microwires as the spiking activity. It was downsampled to a 1,000-
Hz sampling rate and notch filtered using a second order Butterworth filter. For each channel, we 
computed the time-frequency decomposition for 28 different frequencies: f = 2x with x ∈ {6/8, 8/8, 
10/8,…60/8} (Rutishauser et al., 2010). The time frequency decomposition was performed with the 
multitaper method over a 3 second epoch encompassing the preceding and preferred stimuli of the 
raw LFP trace, using two cycles per time-window at each frequency. We estimated whether significant 
theta activity was present in the LFP by fitting a 1/f function to the power spectrum and taking the ratio 
(in units of decibels) between the actual power spectrum and the 1/f fit (Figure 2A). Significance was 
estimated with a t-test, Bonferroni corrected for multiple comparisons (28 frequencies). In addition to 
estimating theta power with the raw traces, we also measured the power spectrum of the oscillations 
around the time of each spike (spike triggered power; Figure S1A). We extracted a 1s LFP segment 
centered on each spike and extracted the frequency spectrum of each segment. The average power 
spectrum of these LFP traces was estimated by taking the average of the absolute values (the power) 
of the spectra of all LFP segments (Fries et al., 2001). The resultant power spectrum was fitted to a 1/f 
function, and the ratio (in decibel units) computed. Significance was estimated with a t-test, Bonferroni 
corrected for multiple comparisons over 28 frequencies (Figure S1A). Both measures of quantifying 
oscillatory power revealed prominent theta activity in the 6-10Hz range. 

Estimation of spike-LFP phase-locking 

The instantaneous LFP phase was estimated using a Hanning taper over the entire duration of the 
session (i.e., without epoching), using five cycles per time-window at each frequency. A phase of zero 
corresponds to the peak of the LFP oscillation, and a phase of ± 180 corresponds to the spike being at 
the trough of the oscillation (Figure S2B). Phase-locking was evaluated 1) with the pairwise phase 
consistency (PPC) measure (Vinck et al., 2010) for all neurons that showed a visual response to at 
least one stimulus during either the screening or sequence learning experiments, and 2) with the 
Rayleigh test. The PPC at each frequency is calculated by considering the cosine of the angular 
distance (or the dot product) between all pairs of phase vectors. The PPC is equal to the average dot 
product across all pairs of phase vectors. Negative PPC values correspond to angular distances 
greater than 90°. For the PPC analysis we considered neurons from both the screening and sequence 
learning sessions that (i) showed a visual response to at least one stimulus, and (ii) that fired >500 
spikes (>=~0.5Hz firing rates over a ~15 minute session), to reduce variability in the estimation of the 
PPC. With these criteria, a total of 93 neurons from both the sequence learning and screening 
sessions were included in the PPC estimation. To estimate the significance of the PPC, we simulated 
a baseline null (no phase-locking) condition by time-reversing the entire LFP (but not the spike times), 
and re-computing the PPC between spikes and the time-reversed LFP. This manipulation destroyed 
any phase locking with the LFP but maintained any correlations inherent within the spike trains and 
LFP signals. The PPC analysis indicated 3 peaks of phase locking in the 1.6-3 Hz (delta range), 6-10 
Hz (theta range) and 15-23 Hz (beta range). For subsequent analyses, the LFPs were therefore band-
pass filtered with a second order Butterworth filter in these three frequency ranges. A phase value for 
each spike in each frequency range was extracted using the Hilbert transform on the band-passed 
signal. Phase values were assigned to each stimulus in the sequence depending on the time at which 
the spikes were emitted. In addition to the PPC, for each neuron, phase locking was also estimated by 
comparing the distribution of phase angles against the uniform distribution using the Rayleigh test.  

Stimulus specific spike-phase-locking 

To determine whether the spikes fired at different phases in response to the different stimuli, we 
assigned phase values to each stimulus depending on the time at which the spikes were fired. Phase 
values were binned into 15 bins. For visualization purposes only a smoothing of two bins in either 
direction was applied. To compare the phase distributions for different stimuli the Williams-Watson test 
from the Circular Toolbox for Matlab (Berens, 2009) was applied to the unsmoothed data. 

To control for the effect of spike number on phase between the preferred and preceding stimuli (Figure 
S3), we equalized the number of spikes for each neuron by rejecting the highest firing rate trials for the 
preferred stimulus and the lowest firing rate trials for the preceding stimuli. This procedure was 
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performed progressively until the difference in the mean number of spikes for the two stimuli was less 
than 0.005. Finally, we re-computed the preferred phases for the preceding and preferred stimuli, 
while only considering the reduced number of trials. 

Phase-Reset and Inter-trial Coherence (ITC) 

The inter-trial coherence was computed at each time and frequency point (Figure S4). On each trial of 
the preferred and preceding stimuli we extracted an LFP segment in the time window of [-0.5 1.5] sec, 
with time 0 corresponding to stimulus onset. The phase and power at each time and frequency point 
was extracted from a time frequency transform of the signal. The parameters for the time-frequency 
transform are the same as described above: namely, the multi-taper method with 2 cycles per 
frequency on the notch-filtered and down sampled signal, at 28 frequencies, and in a time interval of -
0.5s to 1.5s in steps of 50ms. The inter-trial coherence is the absolute value of the average spectrum 
normalized by its amplitude (Delorme and Makeig, 2004), and varies between zero (no phase-locking) 
and one (perfect phase-locking). Equal numbers of trials were used for the preferred and preceding 
stimuli. 
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