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Abstract

Purpose: NODDI is widely used in parameterizing microstructural brain properties. The
model includes three signal compartments: intracellular, extracellular, and free water. The
neurite compartment intrinsic parallel diffusivity (d‖) is set to 1.7 µm2·ms−1, though the
effects of this assumption have not been extensively explored. This work seeks to optimize d‖
by minimizing the model residuals.
Methods: The model residuals were evaluated in function of d‖ over the range from 0.5 to 3.0
µm2·ms−1. This was done with respect to tissue type (i.e., white matter versus gray matter),
sex, age (infancy to late adulthood), and diffusion-weighting protocol (maximum b-value).
Variation in the estimated parameters with respect to d‖ was also explored.
Results: Results show the optimum d‖ is significantly lower for gray matter relative to 1.7
µm2·ms−1 and to white matter. Infants showed significantly decreased optimum d‖ in gray and
white matter. Minor optimum d‖ differences were observed versus diffusion protocol. No
significant sex effects were observed. Additionally, changes in d‖ resulted in significant changes
to the estimated NODDI parameters.
Conclusion: Future implementations of NODDI would benefit from d‖ optimization,
particularly when investigating young populations and/or gray matter.

Introduction 1

In diffusion weighted magnetic resonance imaging (dMRI), biophysical models are used for 2

relating the dMRI signal to microstructural properties in white and gray matter [1–7]. Neurite 3

orientation dispersion and density imaging (NODDI) [7], separates the brain tissue 4

microstructure landscape into three compartments: intracellular space or neurites (axons, 5

dendrites), extracellular tissue matrix, and a free water compartment. In spite of its 6

shortcomings, much like the case of other techniques such as diffusion tensor imaging (DTI), 7

NODDI offers useful information and has been widely used in the investigation of brain tissue 8

microstructure as a function of early development, cognitive function and aging as well as a 9

number of neurological conditions [8–13]. 10

Biophysical modeling relies on simplifying assumptions about the tissue properties. Besides 11

the separation of tissue into three compartments, the NODDI model is characterized by the 12
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following features or assumptions. Each compartment is represented by its own normalized 13

signal and volume fraction. Water exchange between compartments is assumed negligible. 14

Neurites are modeled as sticks (cylinders of zero radius) for capturing highly anisotropic 15

architecture of neuronal tissue. Diffusion inside the neurites is described by a diffusivity 16

parallel to the sticks, which is referred to as the intrinsic diffusivity, d‖, and zero diffusivity 17

perpendicular to them. The orientation distribution function (ODF) of the sticks at each voxel 18

is modeled by an axially symmetric Watson distribution, W [14], which itself is characterized by 19

a concentration parameter κ and mean orientation µ. Highly aligned sticks like those seen in 20

white matter bundles are reflected by high κ values, while highly dispersed sticks like those seen 21

in gray matter fibers are reflected by low κ. The extra-neurite compartment is directionally 22

correlated with the neurite ODF, and modeled as a Gaussian anisotropic compartment. 23

The local parallel diffusivity of the extracellular space is set equal to the intra-neurite 24

intrinsic diffusivity, d‖, whereas the perpendicular diffusivity d⊥ is related to the neurite water 25

fraction, fic, and d‖ by the mean-field tortuosity model [15] as d⊥ = (1− fic)d‖. The 26

free-water compartment is modeled as having isotropic diffusion with free diffusivity 27

diso = 3 µm2·ms−1 and volume fraction fiso. The intrinsic diffusivity d‖ for NODDI is assumed 28

to be 1.7 µm2·ms−1. This is selected to be a biologically reasonable value, which approximates 29

the mean parallel diffusivity from DTI in a healthy coherent white matter region [1]. The 30

parameters that are estimated from acquired data using non-linear gradient descent and 31

heuristic initializations are the water fraction of the neurite compartment (fic), the 32

concentration (κ) and mean orientation (µ) of the Watson distribution. The signal S(b,g) 33

from the unit diffusion gradient direction g for sticks oriented along unit vector n and b-matrix 34(
bggt

)
is given by 35

S(b,g) = S0

(
(1− fiso)(ficAic + (1− fic)Aec) + fisoAiso

)
, where (1)


Aic = E

[
e−bd‖(gtn)2

]
,

Aec = e−bE[gtDe(n)g],

Aiso = e−bdiso ,

E[x] =

∮
S2

xW (n,µ;κ)dn, such that g,n,µ ∈ S2.

Aic, Aec, and Aiso, are the intra-cellular, extra-cellular, and free-water isotropic 36

compartments signal contributions respectively. W (n,µ;κ) is the Watson distribution with κ 37

concentration and oriented along µ. S0 is the un-attenuated signal i.e. S(0, 1), and 38

De(n) = ficd‖nn
t + (1− fic) d‖I3 is the axially symmetric extra-cellular apparent diffusion 39

tensor. 40

Recently, the model assumptions have been a topic of discussion in the field. The more 41

relevant discussions have focused around the fixed parallel intrinsic diffusivity and equality 42

between parallel intrinsic diffusivity of the extra- and intra-cellular compartment [16]. Of the 43

two, the equality assumption is the more difficult to assess, but has been explored in several 44

reports. While no consensus has been reached, most reports suggest that the intra-cellular 45

parallel intrinsic diffusivity is larger than the extra-cellular one [17–20]. Yet, this may depend 46

on tissue type [21] and most studies have focused on white matter. Also, some sustain that the 47

differences may not be substantial and independent validation experiments are needed [16]. 48

With respect to the fixed diffusivity assumption, [22] proposed a framework for relaxing 49

the fixed constraints. The study reported that microscopic parallel diffusivities varied across 50

the brain, and that white matter values where considerably larger than that assumed by 51

NODDI. It is important to note, however, that the ability to ”estimate intrinsic diffusivity” in 52

[22] comes at a cost, which is the reduction to two-compartment model. In this sense, then, the 53

model in [22] is not fully comparable to the model in NODDI, since the former gives up on 54

estimating the CSF volume fraction. Others [23,24] have also relaxed the fixed diffusivity 55

constraint and made it a free parameter. However, this resulted in unwanted effects on the 56
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other parameters in the form of unstable and degenerate estimates. Originally, it was 57

considered unlikely that variation in d‖ across regions and subjects was significant enough to 58

remove trends in the estimated parameters [1]. Additionally, the fixing of d‖ is necessary for 59

stability in the parameter estimates and for speeding up convergence of the fitting procedure. 60

Plus, the value that was chosen was the value that minimized the fitting errors for voxels in the 61

midsagittal plane of the corpus callosum [1]. 62

Taking into consideration the non-consensus on the equality assumption and the still 63

widespread use of the technique, here we choose to build on earlier work [25] which 64

investigated the assumption of fixed diffusivity. This consisted on the simple approach of 65

optimizing the parallel intrinsic diffusivity based on the model residuals. Results suggested 66

that the default value was reasonable in white matter, but it was sub-optimal in gray matter. 67

While recent publications have found our method useful [26,27], this earlier work only 68

considered a single axial slice from three age matched participants and dMRI data acquired 69

with the same imaging protocol. For this reason, we propose a more extensive implementation 70

of our method for optimizing the intrinsic diffusivity that considers a diverse array of data in 71

terms of age populations, imaging protocols, and is conducted across the full brain. 72

We hope for this extensive analysis to serve as a useful reference for the growing number of 73

users of NODDI in making more conscious inferences based on the model parameter estimates. 74

Materials and methods 75

Data 76

Datasets acquired with multiple b-value sequences (suitable for implementing the NODDI 77

technique [7]) were readily available for use in this work from a number of existing 78

neuroimaging studies. These include imaging data from individuals with a broad range of ages 79

and acquired with imaging protocols that vary in regards to number and magnitude of b values 80

as well as number of diffusion encoding directions. dMRI sets include infants, adolescents, 81

young adults, adults, and aging adults. All dMRI sets were collected on a 3T MR750 Discovery 82

scanner (General Electric, Waukesha, WI). A brief description of each study is provided below 83

and details are summarized in Table 1. All procedures for the included studies were approved 84

by the University of Wisconsin - Madison Institutional Review Board.

Table 1. Relevant characteristics of studies from which data were used for
this work.

Study Sex Age b-values [ms·µm−2] Directions

Neonates 50 males 54 females 1 month 0.35, 0.8, 1.5 63
Teen-I 24 males 168 females 11-15 years 0.32, 0.8, 2.5 62
Teen-II 51 males 79 females 14-20 years 0.5, 0.8, 2.0 57
Midlife-I 57 males 89 females 25-65 years 0.5, 0.8, 2.0 57
Midlife-II 62 males 76 females 25-74 years 0.4, 1.2 76
AD-risk 18 males 53 females 47-76 years 0.3, 1.2, 2.7, 4.8, 7.5 105

85

Neonates study (Neonates). Participants are from a study of neonatal white matter 86

microstructure. Diffusion scans contain 6 non-diffusion weighted volumes and diffusion encoded 87

along 63 directions. Other imaging parameters include: TR/TE = 8400/94ms, 2mm isotropic 88

resolution. 89

Teen study (Teen-I). Participants in this cohort were drawn from a study of emotion in 90

adolescents. Diffusion scans contain 6 non-diffusion weighted volumes and diffusion encoded 91

along 62 non-collinear directions. Other imaging parameters include: TR/TE = 8400/94 ms 92

and 2 mm isotropic resolution. 93

Twin teen study (Teen-II). Participants are from a cohort of 130 adolescent twins. 94

Diffusion scans contain 6 non-diffusion weighted volumes and diffusion encoded along 57 95

directions. Other parameters include 2.0 mm isotropic resolution and TR/TE = 8000/66.2 ms. 96
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Midlife meditation study (Midlife-I). Participants in this cohort were drawn from a 97

study of emotion regulation, asthma, and sleep part of the National Center for Complementary 98

and Alternative Medicine (NCCAM). Diffusion scans contain 6 non-diffusion weighted volumes 99

and diffusion encoded along 57 directions. Other parameters include 2.0 mm isotropic 100

resolution and TR/TE = 8000/66.2 ms. 101

Midlife in the US study (Midlife-II). Participants for this cohort were drawn from the 102

Midlife in the United States (MIDUS), a national longitudinal study of health and well-being 103

across the lifespan Refresher sample. Diffusion scans contain 4 non-diffusion weighted volumes 104

and diffusion encoded along 76 non-collinear directions. Other imaging parameters include: 105

TR/TE = 7000/69 ms and 2 mm isotropic resolution. 106

Preclinical Alzheimer’s disease risk study (AD-Risk). Participants were cognitively 107

unimpaired individuals with and without increased risk for Alzheimer’s disease recruited from 108

the Wisconsin Registry for Alzheimer’s Prevention and Wisconsin Alzheimer’s Disease Research 109

Center. Diffusion scans contain 7 non-diffusion weighted volumes and diffusion encoded along 110

105 non-collinear directions. Other imaging parameters include: TR/TE = 6500/102 ms, 111

sagittal slices 3mm thick, and in-plane resolution of 2.5 mm × 2.5 mm. 112

Intrinsic diffusivity optimization 113

d‖ was optimized by minimizing the model residuals. The search space was defined by the 114

interval [0.5, 3.0] µm2·ms−1 in increments of 0.1 µm2·ms−1. For each of the 26 values, the 115

model was fitted to the measured dMRI signal voxel by voxel using the Matlab (The 116

MathWorks, Inc., Natick, MA) NODDI toolbox1. Predictions of the signal were then calculated 117

at each voxel from the estimated parameters. With the measured and predicted signals for each 118

d‖ setting, the root mean squared (RMS) residual was computed at each voxel. A linear search 119

across the 26 different points was then performed for locating the value of d‖ corresponding to 120

the lowest RMS residual value per voxel. The final result was a brain map of the d‖ that 121

minimizes the RMS residual at each voxel (i.e. an optimized intrinsic diffusivity map). 122

Tissue type segmentations. 123

White matter (WM) and gray matter (GM) masks were obtained for each individual in order 124

to probe the influence of tissue type on the fitting residuals. This was conducted by running 125

FSL’s [28] FAST tool [29] with meand diffusivity (MD) and fractional anisotropy (FA) maps 126

as input channels. FA and MD maps were obtained from tensor fits using a weighted least 127

squares method. For the AD-risk study, the shells with b values of 4.8 and 7.5 ms·µm−2 were 128

excluded in the tensor fitting. 129

Influences of age, sex, and protocol 130

The availability of data from the various studies allowed for selection of several subgroups that 131

were organized according to age, sex, and protocol. With the data sets organized this way, the 132

quality-of-fit analysis was performed for the following three cases: 133

Groups for age analysis. 134

Subgroups of 16 participants (roughly half male and half female) were selected from three 135

studies as follows: One group of 16 subjects age approximately one month from the Neonates 136

study. One group of 16 subjects ages between 10 and 19 from the Teen-II study. Six groups, 16 137

subjects each, extracted from the Midlife-I study, for the six age categories of: 20-29, 30-39, 138

40-49, 50-59, and 60-65 years. Note that, except for the neonates, these data sets have 139

matching protocols so that the main difference per category was age. In order to help 140

disambiguate protocol from age influences, two additional scans were obtained for one adult: 141

one with the infant protocol and one with the adult protocol. 142

1http : //nitrc.org/projects/noddi toolbox
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Groups for sex analysis. 143

From the Teen-I study, two subgroups one of 30 females and one of 30 males were selected. 144

The two groups were matched by age (13 years old), so that the main difference between the 145

groups was sex. 146

Groups for protocol analysis. 147

Three groups of 16 subjects (roughly half females and half males) with ages ranging from 50-59 148

years were selected, one from the Midlife-I study, one from the Midlife-II study, and one from 149

the AD-risk study. In this case, the assumed main difference between the groups was the 150

acquisition protocol. 151

Results 152

The results are organized as follows. (1) We first show how variation in d‖ translates to 153

variability in the estimated parameters. (2) Then, the model RMS residuals, with respect to 154

d‖ are shown to differ between tissue types. (3) This is followed by the presentation of 155

voxel-wise optimized d‖ maps and the ways in which the optimum values are influenced by age, 156

sex, protocol and tissue type. (4) Then, differences between optimized NODDI estimated 157

parameter maps and those obtained with the default fixed d‖ are presented. Figures are best 158

viewed in color. 159

Estimated model parameters and d‖ 160

Upon completion of the various model fits, the dependence of the estimated model parameters 161

to variations in d‖ was explored. For all model parameter maps, mean values were calculated 162

over WM and GM regions. Fig 1 shows these values plotted with respect to d‖. This analysis 163

reveals a dependence on d‖ for all three parameters irrespective of the study as well as 164

variation in the comparison of parameters among the studies. For example, for gray matter 165

values of d‖ that are lower than the assumed value would weaken variation of the neurite 166

density across the teen and adult subjects. On the other hand, lower values of d‖ in gray 167

matter would enhance differences in the ODF concentration parameter across all studies. 168

Fig 1. NODDI parameter trajectories with respect to d‖. For each parameter
(Intra-cellular compartment volume fraction, fic, isotropic compartment volume fraction,
fiso, orientation concentration parameter, κ), the analysis is broken by white matter
(WM) and gray matter (GM) regions. Each point on the curves represents the mean
parameter over WM or GM at the specific d‖ value. The default operating point is
marked by the blue dashed vertical line.

Model Residuals with respect to d‖ 169

The values of d‖ that result in the closest agreement between the measured and predicted 170

signals as dictated by the RMS residuals were explored next. For each of the resulting 26 RMS 171

residual maps, mean values across WM and GM were calculated. These are plotted with 172

respect to d‖ in Fig 2-A. These plots reveal that d‖ values in GM that achieve minimum RMS 173

residuals deviate from the default setting (1.7 µm2· ms−1) for all studies. For WM, the lowest 174

values in the RMS residual curves occur in the neighborhood of the default setting. Notably, 175

most WM curves, with the exception of the Neonate study, exhibit broad ranges of lowest 176

values as compared to the majority of GM curves. The better defined minima in WM for the 177

infants could be related to a maximum b value that better matches the characteristics of the 178

young brain tissue (i.e. longer T2, low myelination, higher water content) such that diffusion 179

weighting in the signal is more adequate. This is in line with the AD-risk study, which used a 180

max b-value of 7.5 ms·µm−2 and the WM RMS residual curves are noticeably more convex. 181

The remaining studies have maximum b values that are likely on the low end of the optimal 182
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range for capturing effects of more restrictive intra-neurite environment, which could help 183

explain the shallower curves in WM. The highest overall fitting errors occur for the Midlife-II 184

and AD-Risk studies. These have the protocols that most deviate from the optimal NODDI 185

protocol in terms of number and magnitude of b-values outlined in [7]. While for the Midlife-II 186

scans the large fitting errors are directly related to a ’bad’ model fit due to the low b values, 187

the fitting errors for the AD-Risk scans may be more related to low signal to noise ratio in the 188

images with the very large b values (4.8 and 7.5 ms·µm−2).

Fig 2. Model residuals with respect to d‖ and optimized d‖ maps. (A, B)
Average root-mean-square (RMS) residual with respect to d‖ for all subjects in each
study. Each of the small size dots represents the mean RMS residual over white matter
(A) or gray matter(B) at the specific d‖ value. The large size dots represent the median
value over all the subjects in the study at the specific d‖ value. The default operating
point is marked by the blue dashed vertical line. (C) Axial view of optimized d‖ map
for one subject selected from each of the studies.

189

Optimized d‖ maps. 190

optimum intrinsic diffusivity whole brain maps were created by selecting at each voxel the 191

value that corresponded to the smallest RMS residual. Resulting optimal d‖ maps were median 192

filtered using a box kernel (size 3x3x3 in voxels). The filtering helps to enhance the underlying 193

structure in the distribution of values between white and gray matter. The pattern is spatially 194

consistent before filtering, but it is more difficult to appreciate due to the shallowness of the 195

residual curves for white matter. Fig 2-B shows optimal d‖ maps for one subject selected 196

randomly from each of the six studies. Except for the Midlife-II study, moderate to substantial 197

contrast between WM and GM regions is apparent from these maps. The non-uniformly 198

distributed d‖ in these maps suggests that a fixed diffusivity value may not be appropriate for 199

all brain regions and all populations. Also, evident is the more noisy appearance of the map for 200

the Midlife-II study participant, which could be explained by the low b value (see Table 1) and 201

the shallow, unstable GM curves in Fig 2-A that correspond to this study. This is consistent 202

with the more obvious WM-GM contrast in the map from the AD-risk study, which has the 203

protocol with the highest b value. 204

Optimized d‖ and age. 205

Optimal d‖ maps were computed for the cohort organized by age group. These maps were 206

further masked into WM and GM regions and average optimald‖ values were obtained for each 207

region. Figure Fig 3-A shows the distributions of average optimal d‖ values according to age 208

group. These plots show distinct distributions between WM and GM average optimal d‖ for all 209

age groups greater than 10 years. The majority of WM optimal d‖ values are distributed 210

around the default operating point (1.7 µm2·ms−1), while all GM optimal d‖ values are reduced 211

by at least 0.4 µm2·ms−1. These trends are fairly consistent for all distributions corresponding 212

to ages 10 years and above. For the group of less than 1 year (i.e. infants) there is a greater 213

degree of closeness between the WM and GM distributions of average optimal d‖ in comparison 214

to the rest of the age groups. In this case, optimal d‖ values fall approximately between 1.4 215

and 1.5 µm2·ms−1 for WM and 1.2 and 1.3 µm2·ms−1 for GM. For each age group, a pairwise 216

t-test was conducted in order to assess statistical significance of the tissue-wise difference in 217

average optimal d‖. The testing showed that for all groups the optimum d‖ for GM and WM 218

were significantly different (p < 0.01). A multiple group test revealed that average optimal d‖ 219

is significantly different between the infant and the rest of the older age groups in both WM 220

and GM, while no significant differences were found between any of the other groups. The 221

mean optimum d‖ values for the two additional scans on one adult, Fig 3-B, are in agreement 222

with those values from same age group for both the infant and adult protocols, pointing to the 223

fact that the observed trends are more a result of differences in age rather than in protocol. 224
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Fig 3. Optimized d‖ as function of age group and tissue type. (A) Mean
value of optimal d‖ as function of age group and tissue type. The scanning protocol for
the ¡1 year group is slightly different than that of the rest of the groups (Table 1). The
numbers from scanning one adult with the two protocols are shown in B. The dashed
horizontal line marks the default d‖ value.

Optimized d‖ and sex. 225

Optimal d‖ maps were also computed for the cohort organized according to sex. Average 226

optimal d‖ values were obtained across WM and GM regions. The distributions of average 227

optimal d‖ values according to sex category revealed significantly different values between WM 228

and GM with ranges that are consistent with the same age group (10-19 years) from the 229

age-dependence analysis. Yet, no significant effects of sex were observed, a result that is 230

compatible with the age-dependent analysis, which also showed no obvious split in optimal d‖ 231

between the male and female participants. 232

Optimized d‖ and acquisition protocol. 233

Finally, optimal d‖ maps were also computed for the cohort of subjects with data acquired 234

under differing imaging protocols. Based on the observation that the age dependence analysis 235

revealed no obvious age effects for ages 10 and above, data from the Teen-I study was also 236

included in this cohort despite the unmatched age. This resulted in 4 protocol categories. Fig 4 237

shows the distribution of WM and GM average optimal d‖ values according to imaging protocol. 238

Multiple group testing showed there exist significant differences between groups according to 239

protocol in both white and gray matter. In WM, data sets from the protocol with the lowest b 240

value present the lowest optimal d‖ when compared to the rest of the groups. However, this 241

group also had the highest residuals in general in both WM and GM (see Fig 1 - Midlife-II 242

study). The data sets from the groups with the highest b value protocol also show optimal d‖ 243

values that are lower than the default operating point. In GM, this analysis reveals a seemingly 244

decaying trend in optimal d‖ distributions with respect to maximum b value. Pair-wise t-tests 245

revealed all distributions in GM are significantly shifted down compared to WM distributions, 246

consistent with the observed trend in the previous age and sex comparisons.

Fig 4. Optimized d‖ as function of imaging protocol. Mean value of optimal d‖
as function of imaging protocol and tissue type. The dashed horizontal line marks the
default d‖ value.

247

Optimized NODDI parameter maps. 248

Optimal NODDI parameter maps were estimated for all subjects by selecting the parameter 249

value that corresponds to the optimal d‖ at each voxel. Fig 5 shows optimal ficvf , fiso, and κ 250

maps for the same subjects in Fig 2-C. For comparison, Fig 5 also contains parameter maps 251

obtained with the default setting for intrinsic diffusivity. Further, difference maps obtained by 252

subtracting the default from the optimized maps are also shown. Mean difference results in 253

white and gray matter for all subjects by study are shown on the right side column of Fig 5. 254

Optimal NODDI does not seem to produce reasonable results for the Midlife-II study. This is 255

likely a result of inadequate low b values used in the acquisition which are insufficient to 256

capture the effects from the restricted space of the tissue and translate to a bad model fit in 257

general. The difference maps point to existing biases, which are observed in the plots on the 258

right. For instance, ficvf mean differences in GM go from a couple percent to close to 30% of 259

the range of possible values. fiso mean differences in GM also reach values of higher than 20% 260

of the possible values as shown by the 7.5 ms·µm−2 b value subjects. And κ mean differences 261

can be up to values of 1.6 in WM as shown by the infants group. 262
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Fig 5. Optimized and default NODDI. Left column shows NODDI parameter
maps from fits with the default d‖, with the optimized d‖, and optimized minus default
signed difference from a subject in each study. Right column shows average difference
over white and gray matter for all subjects in each of the studies. (A) Intra-cellular
compartment volume fraction (ficvf ), (B) Isotropic compartment volume fraction (fiso),
(B) orientation concentration parameter (κ)

Discussion 263

In this study we optimized the NODDI parallel intrinsic diffusivity (d‖) by minimizing the 264

model residual for a diverse array of multi-shell dMRI data. The results suggests model 265

assumptions for d‖ may be suboptimal for specific ages (i.e., infants) and also in gray matter. 266

Although not examined, the optimal d‖ may also vary with pathology. We also observed that 267

suboptimal d‖ leads to biases in the estimated NODDI parameters. Of particular interest is a 268

drop of neurite density in gray matter observed in the optimized NODDI maps, a result that is 269

consistent with findings in a recent study [30]. 270

For gray matter, the optimal d‖ is significantly lower than 1.7 µm2·ms−1. In white matter 271

of the adult brain, values of the optimal d‖ hover around the default and below the range 272

[1.9, 2.2] µm2·ms−1 of intra-axonal diffusivities in white matter reported elsewhere [31], 273

though, further analysis (see below) suggested high FA regions in the adult brain contained 274

average optimal d‖ that falls in this range. It is important to note, however, that the ranges of 275

residual minima in white matter were broad and shallow. 276

Further, a finer grain analysis indicates that protocol and age also have an impact on the 277

optimal d‖, both in white and gray matter. The age-dependence analysis revealed that the 278

newborn brain optimized d‖ in white and gray matter are closer in value compared to those in 279

the adult brains. Both WM and GM values of optimized d‖ are different, however, from that 280

used in recent studies [24,32] that have implemented NODDI in the infant brain. The value in 281

these studies was set to 2.0 µm2·ms−1, likely because average DTI axial diffusivity in high FA 282

regions (see below) of newborns is close to this number. Interestingly, at this setting, and using 283

the 1.7 µm2·ms−1 for the adult brain, nearly any difference between the infants ODF 284

concentration parameter and that of the older age brains would be removed in gray matter. 285

Using the optimal setting for d‖, would result in appreciable differences in ODF concentration 286

parameter between the adults and the infants. On the other hand, using the optimal settings 287

for d‖, would weaken the differences in intra-cellular volume fraction between the infant and 288

the older subjects. 289

This analysis also showed that in the adult brain optimized intrinsic diffusivity values do 290

not vary appreciably with age. However, optimum d‖ values in GM are much lower than those 291

in WM and different from the default fixed value. With regards to imaging protocol, high b 292

value and more diffusion weighted volumes appeared to yield less noisy and more stable 293

optimal intrinsic diffusivity and NODDI parameter estimates. 294

In hindsight, the sub-optimality of the assumed d‖ in gray matter is not surprising since 295

this value was originally estimated in the adult corpus callosum [1]. Also, sub-optimality of 296

the current state of the model in gray matter might be related to the idea that the 297

impermeable ’stick’ representation of neurites is only adequate for myelinated axons but not for 298

dendrites or non-myelinated axons, as others have suggested [33]. In general, however, the 299

variation of optimal intrinsic diffusivity across tissue types is in agreement with findings of 300

axial diffusivity variation across the brain reported in [30]. 301

Studies have reported decreasing DTI axial diffusivity with age [34–36]. Thus, the trend of 302

increasing optimum d‖ with age in WM seen in Fig 3-A was unsettling and prompted further 303

investigation. For comparison, averages of DTI axial diffusivity over WM and GM were 304

computed for all subjects in all age groups, Figure Fig 6-A,B. The resulting axial diffusivity 305

age trajectories are in agreement with previous studies [34–36]. However, while these numbers 306

pertain to the whole of white matter, regional differences in developmental trajectories of DTI 307

quantities in the neonate brain have been observed [37]. In the infants, a further look into 308

high FA (¿0.5) regions, which reduce to portions of the corpus callosum and the internal 309

capsule, revealed that average optimal d‖ in these regions is comparable to that seen in the 310
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adult global WM. These regions in the infant are thought to be myelinated by one month after 311

birth and to have higher fiber coherence than other white matter areas [37]. The lower FA 312

regions (not shown) in the infant brain, which presumably reflect less or not-yet myelinated 313

axons and or lower fiber coherence, exhibit values of average optimal d‖ that are similar to 314

those of whole WM. For the older age groups, the axial diffusivity distributions in gray matter 315

mimic those of the optimal d‖. For the infants, this is true for both the WM and GM 316

distributions. Also, the optimal d‖ distribution comparison is less distinct for the infants than 317

for the rest of the older age groups. Based on all this, it could be speculated that the neonatal 318

gray matter neurites and white matter neurites are more similar than they are in the adults. 319

Therefore, the model fit for less coherent, non-myelinated fibers in neonatal white matter 320

would be more similar to the fit in the neonatal gray matter than to the fit in the adult whole 321

WM, as it is illustrated in Fig 3-A.

Fig 6. NODDI and DTI. Comparison of age trajectories between NODDI optimized
parallel intrinsic diffusivity and DTI axial diffusivity in global white matter (A), global
gray matter (B), and high FA white matter (C). The dashed horizontal line marks the
NODDI default d‖ value.

322

Limitations 323

Assumed equal intra- and extra-cellular d‖ 324

As mentioned in the introduction, another important assumption of the model is that of equal 325

d‖ in the intra- and extra-cellular compartments. Thus, one of the limitations of this work is 326

that it was carried out while maintaining this and other assumptions of the model. 327

In order to glimpse at the appropriateness of this assumption as it pertains to this work, a 328

similar model residual optimization was done for the case where the extra- to intra-cellular 329

parallel diffusivity ratio took on values different than 1. In this case, the model was adjusted so 330

that the extra-cellular diffusivity was expressed as a fraction of the intra-cellular diffusivity 331

value. The ratios ranged from 0.1 to 1.3 in 0.1 increments. In this case the number of fits 332

increases dramatically for each subject (26x13=338), as do the memory and time requirements. 333

Therefore, the analysis was restricted to two subjects, one infant and one adult, and for a single 334

axial slice. Additionally, in order to circumvent the long fitting times using the Matlab tool 335

box, for this part of the analysis the AMICO NODDI toolbox [38] was used instead. 336

Model RMS residuals were calculated for each of the 26 intra-cellular d‖ values in 337

[0.5 µm2·ms−1, 3.0 µm2·ms−1] and each of the 13 extra- to intra-cellular d‖ ratio values in 338

[0.1,1.3]. Average RMS residuals over WM and GM were plotted with respect to both, the 339

intra-cellular d‖ and the ratio of extra- to intra-cellular d‖. These results are shown by the 340

contour plots in Fig 7. Both in white and in gray matter, the regions of minimum residual 341

values extend over several values in the two dimensions of the graphs. These poorly defined 342

minima point to a multiplicity of solutions when constraints on the model diffusivities are not 343

imposed. Similar results have been presented by other reports [23,30], which show that 344

unconstrained multi-compartment biophysical models lead to issues in parameter estimation. 345

Particularly, the shape of the lowest residual regions in these contour plots is evocative the 346

pipe-like structures for the fitting cost function landscapes of non-constrained 347

multi-compartment models reported in [30] and [23]. 348

Fig 7. Model residuals and non-equal diffusivities. Fit errors (RMS residuals)
of NODDI model with respect to both variation in intra-cellular d‖ and variation in the
ratio of extra- to intra-cellular d‖. (A) Infant subject average fit errors over white
matter. (B) Infant subject average fit errors over gray matter. (C) Adult subject
average fit errors over white matter. (D) Adult subject average fit errors over gray
matter.
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Generalizabily 349

Great effort was made in order to make this as an exhaustive analysis as possible in terms of 350

the diversity of the data that was used. Yet, we acknowledge it is not fully generalizable to the 351

wider scope of neuroimaging biophysical modeling diffusion research, for which it should 352

consider, among others, conditions of pathology and ex-vivo experiments. Nonetheless, we 353

believe that these results are highly informative considering the broad range of ages and 354

imaging protocols investigated. Finally, this analysis was performed for Watson-NODDI only, 355

not for other flavors of the technique which include Bingham-NODDI [39] or NODDIx [40]. 356

Conclusion 357

In this work, dependence of the estimated NODDI parameters on the parallel intrinsic 358

diffusivity d‖ was observed. Optimal d‖ in white matter of the adult brain is similar to the 359

currently used value but significantly lower in gray matter. Optimal d‖ is also lower than the 360

default value for the newborn brain in white and gray matter. Effects of imaging protocol on 361

the optimal d‖ were also observed. Caution should be used and optimization considered 362

specially when conducting NODDI implementation in studies of gray matter and young 363

populations (e.g. ¡10 years of age). It is important to consider that, despite its limitations, 364

recent analysis suggests that NODDI metrics provide information that is congruent with 365

histologically equivalent metrics [41]. 366
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