1	Comparison of long-term outcomes between enteral
2	nutrition via gastrostomy and total parenteral nutrition
3	in the elderly with dysphagia: A propensity-matched
4	cohort study
5	
6	Short title: Long-term outcomes after PEG and TPN
7	
8	Shigenori Masaki ^{1¶} , Takashi Kawamoto ^{2¶}
9	
10	¹ Shigenori Masaki, Department of Surgery and Gastroenterology, Miyanomori Memorial
11	Hospital, Sapporo, Hokkaido, Japan
12	
13	² Takashi Kawamoto, Department of Neurosurgery, Miyanomori Memorial Hospital,
14	Sapporo, Hokkaido, Japan
15	
16	*Corresponding author
17	E-mail: ayukkyjp@yahoo.co.jp (SM)
18	
19	[¶] These authors contributed equally to this work.

 $\mathbf{2}$

20 Abstract

21 Background

The long-term outcomes of artificial nutrition and hydration (ANH) in the elderly with dysphagia remain uncertain. Enteral nutrition via percutaneous endoscopic gastrostomy (PEG) and total parenteral nutrition (TPN) are major methods of ANH. Although both can be a life-prolonging treatments, Japan has recently come to view PEG as representative of unnecessary life-prolonging treatment. Consequently, TPN is often chosen for ANH instead. This study aimed to compare the long-term outcomes between PEG and TPN in the elderly.

29 Methods

This single-center retrospective cohort study identified 253 elderly patients with dysphagia who received enteral nutrition via PEG (*n*=180) or TPN (*n*=73) between January 2014 and January 2017. The primary outcome was survival time. Secondary outcomes were oral intake recovery, discharge to home, and the incidence of severe pneumonia and sepsis. We performed one-to-one propensity score matching using a 0.05 caliper. The Kaplan–Meier method, log-rank test, and Cox proportional hazards model were used to analyze the survival time between groups.

37 **Results**

•		

38	Older patients with lower nutritional states, and severe dementia were more likely to
39	receive TPN. Propensity score matching created 55 pairs. Survival time was significantly
40	longer in the PEG group (median, 317 vs 195 days; P=0.017). The hazard ratio for PEG
41	relative to TPN was 0.60 (95% confidence interval: 0.39–0.92; <i>P</i> =0.019). There were no
42	significant differences between the groups in oral intake recovery and discharge to home.
43	The incidence of severe pneumonia was significantly higher in the PEG group (50.9% vs
44	25.5%, $P=0.010$), whereas sepsis was significantly higher in the TPN group (10.9% vs
45	30.9%, <i>P</i> =0.018).

46 Conclusions

PEG was associated with a significantly longer survival time, a higher incidence of
severe pneumonia, and a lower incidence of sepsis compared with TPN. These results can
be used in the decision-making process before initiating ANH.

50

51 Introduction

52 Artificial nutrition and hydration (ANH) is a medical intervention for patients suffering 53 from dysphagia due to various clinical conditions. ANH is administered via the enteral or 54 intravenous route, and there are 2 representative types of ANH: Percutaneous endoscopic 55 gastrostomy (PEG) feeding and total parenteral nutrition (TPN). PEG was initially

56	developed as an enteral feeding technique for pediatric patients with dysphagia [1,2].
57	Compared to feeding via a nasogastric tube, enteral feeding via PEG can relieve
58	laryngopharyngeal discomfort and prevent intervention failure; therefore, its use has
59	become widespread for long-term enteral feeding in multiple patient groups including
60	pediatric and geriatric populations [3]. However, studies have reported worse outcomes
61	following PEG feeding in patients with dementia [4,5]; therefore, the use of PEG in
62	elderly populations is controversial [6,7].
63	TPN is another common method of nutritional management [8,9]. Similar to tube
64	feeding, TPN is also occasionally used for ANH in elderly patients with dysphagia [10].
65	Comparing the outcomes of enteral nutrition and parenteral nutrition are major concerns
66	among clinicians. Previous studies have demonstrated conflicting results among patients
67	who received enteral nutrition versus those who received parenteral nutrition [11-13].
68	Recently, the general population in Japan has come to view only PEG as representative
69	of unnecessary life-prolonging treatment although both PEG and TPN can be a life-
70	prolonging treatment. PEG is generally avoided in elderly patients; hence, a greater
71	number of elderly patients with dysphagia choose TPN instead of PEG feeding for long-
72	term ANH [14]. The long-term outcomes of PEG feeding versus TPN in elderly patients
73	with dysphagia have previously been poorly documented. Therefore, we aimed to

compare the long-term outcomes of PEG feeding and TPN in the elderly using propensity score-matched analysis [15-17].

76 Methods

77 Study design

This study was a single-center, retrospective cohort study using propensity score-78 79 matched analysis. A total of 315 consecutive elderly patients with dysphagia who underwent PEG (n=186) or TPN (n=129) for long-term ANH between January 2014 and 80 January 2017 were considered for inclusion in the study. All PEGs were performed using 81 the modified introducer method [18]. Central venous lines for TPN included implantable 82 central venous ports (PORT), non-tunneled central venous catheters (NT-CVC) and 83 peripherally inserted central catheters (PICC). We excluded patients who had advanced 84 85 cancer, and those who required a PEG for gastric decompression. We also excluded TPN patients who had a PEG inserted before January 2014. Patients who received both PEG 86 feeding and TPN between January 2014 and January 2017 were assigned to the PEG 87 group. Finally, a total of 253 patients (180 with PEG and 73 with TPN) were included in 88 this study. 89

90 The decision for PEG feeding or TPN was made after sufficient discussion between
91 patients or their family and clinicians. In the TPN cases, the choices of PORT, NT-CVC

6

92	and PICC were decided based on the patient's or their family's request and the feasibility
93	and acceptability of each catheter in the discharge destination. Appropriate nutrition was
94	administered based on clinical evaluation by clinicians. Clinical details were obtained
95	from patients' medical charts including age, gender, height, weight, underlying diseases,
96	and blood test results. We used blood test results performed within 7 days before the start
97	of PEG feeding or TPN. Body mass index (BMI) was calculated using the data of height
98	and weight measured on admission. We investigated daily calorie intake on the seventh
99	day after the procedure in both groups. We calculated the median (interquartile range;
100	IQR) values for BMI and daily calorie intake.
101	Because of the anonymous nature of the data, the requirement for informed consent
102	was waived. Study approval was obtained from the Ethical Review Board of Miyanomori

103 Memorial Hospital.

104 Outcomes

The primary outcome was defined as survival time after the start of the procedure. The secondary outcomes included oral intake recovery, discharge to home, and the incidence of severe pneumonia and sepsis. Oral intake recovery was defined as withdrawal from PEG feeding or TPN over 1 month during the observational period. Discharge to home included discharge to private residential home and housing with health and welfare

services for the elderly. Definitions of oral intake recovery and discharge to home were 110 based on that of the Ministry of Health, Labour and Welfare of Japan [19]. The diagnosis 111 of severe pneumonia and sepsis was based on general diagnostic criteria in Japan.

Statistical analysis 113

112

We used propensity score matching to adjust baseline differences between the groups 114 [15-17]. The propensity score was calculated by logistic regression for estimating the 115probability that a patient would receive PEG feeding or TPN. We defined the following 116variables as potential confounders: Age, gender, underlying diseases (cerebrovascular 117 diseases, severe dementia, neuromuscular diseases, previous history of aspiration 118 pneumonia, ischemic heart diseases, chronic heart failure, chronic lung diseases, chronic 119liver diseases, chronic kidney diseases), and laboratory values (serum albumin, total 120 121lymphocyte count [TLC], total cholesterol [TC], hemoglobin and C-reactive protein) [20-26]. We performed multiple imputation to handle missing data. We created and analyzed 12212320 multiply imputed data sets [27,28]. The area under the receiver operating characteristic (ROC) curve was created to evaluate the performance of the logistic regression model for 124estimating propensity score [29]. One-to-one propensity score matching was performed 125126 to compare the primary and secondary outcomes between the groups using a 0.05 caliper, 127equal to 0.2 of the standard deviation of the logit of the propensity score [30,31].

8

We examined patient characteristics before and after propensity score matching between the groups. Continuous variables were compared with the use of the t-test or the Mann–Whitney U test, as appropriate, and categorical variables were compared with the use of Fisher's exact test between the groups. Survival was estimated with the Kaplan–Meier method, and the survival rate was

132compared using the log-rank test. We performed subgroup analysis for survival to 133investigate the effect of age, gender, cerebrovascular disease, severe dementia, and serum 134albumin. Data were censored on 28th February 2018. Cox proportional hazards models 135were used to estimate the hazard ratio (HR) of death for PEG feeding compared to TPN. 136 Logistic regression analyses were used to estimate the odds ratio (OR) of outcomes. The 137threshold for significance was P < 0.05. All statistical analyses were conducted using EZR 138139version 1.37, a graphical user interface for R (The R Foundation for Statistical Computing, version 3.4.1) [32]. The Packages 'rms version 5.1–2' and 'Matching version 4.9–3' of the 140141R software were used for multiple imputation and propensity score matching.

142 **Results**

A total of 253 patients met the criteria for study inclusion, 180 of whom underwent PEG and 73 of whom underwent TPN. The TPN group included 28 cases of PORT, 26 cases of NT-CVC, and 19 cases of PICC. The median length of follow-up for censored cases

1	r		۱
1	Ļ	e	
		،	

146 was 601 (range, 404–823) days.

147	In the PEG grou	p, missing va	alues for TC	were observed	d in 11 cas	es (6.1%)	. In the TPN

- group, missing TC and TLC values were observed in 1 case (1.4%) and 5 cases (6.8%),
- 149 respectively. Missing data occurred at random because TC and TLC are not included in
- 150 routine blood tests in our hospital.
- 151 Propensity score matching created 55 pairs in the PEG and TPN groups. The good fit is
- 152 confirmed by the ROC curve with an area under the curve value of 0.82 (95% confidence
- 153 interval [CI]: 0.76–0.87). The baseline characteristics before propensity score matching

154	between	the	grouns	are	shown	in	Table	1
104	UCLWCCII	unc	groups	arc	5110 W 11	ш	Ian	1.

T.L. 1 D	1			
Lanie I. Basenno	e characteristics of	patients petore	propensity score	matching
				matering.

Variable	PEG group	TPN group	P-value
	(n = 180)	(n = 73)	
Age (yr)	83	88	< 0.001
	(78–88)	(83–90)	
Sex (male)	71 (39.4%)	28 (38.4%)	1.00
Cerebrovascular diseases	107 (59.4%)	26 (35.6%)	0.001
Severe dementia	57 (31.7%)	45 (61.6%)	< 0.001
Neuromuscular diseases	10 (5.6%)	4 (5.5%)	1.00
Aspiration pneumonia	73 (40.6%)	21 (28.8%)	0.086
Ischemic heart diseases	31 (17.2%)	16 (21.9%)	0.38
Chronic heart failure	70 (38.9%)	37 (50.7%)	0.093
Chronic lung diseases	12 (6.7%)	7 (9.6%)	0.44
Chronic liver diseases	9 (5.0%)	6 (8.2%)	0.38
Chronic kidney diseases	29 (16.1%)	24 (32.9%)	0.006
Serum albumin (g/dl)	3.3	2.9	< 0.001
	(2.9–3.7)	(2.4–3.2)	
Total lymphocyte count (mm ³)	1236	1058	0.015

10

	(940–1628)	(699–1505)	
Total cholesterol (mg/dl)	160	142	0.006
	(133–187)	(115–172)	
Hemoglobin (g/dl)	11.3	10.0	< 0.001
	(10.2–12.7)	(8.9–11.7)	
C-reactive protein (mg/dl)	0.7	2.0	< 0.001
	(0.2–2.9)	(0.7–4.3)	

Values of age, serum albumin, total lymphocyte count, total cholesterol, hemoglobin, and C-reactive protein are median (IQR). Values of the other variables are number (%).

155 Patients with older age; severe dementia; chronic kidney disease; lower serum albumin,

156 TLC, TC, and hemoglobin levels, as well as higher C-reactive protein levels were more

157 likely to receive TPN. Patients with cerebrovascular disease were more likely to receive

158 PEG feeding. The baseline characteristics after propensity-score matching between the

159	groups	are	shown	in	Table	: 2 .
100	8- ° "P"		0110 11 11			

Table 2. Baseline characteristics of patients after propensity score matching.

Variable	PEG group	TPN group	<i>P</i> -value
	(n = 55)	(n = 55)	
Age (yr)	86	86	0.76
	(83–90)	(81–90)	
Sex (male)	21 (38.2%)	23 (41.8%)	0.70
Cerebrovascular diseases	18 (32.7%)	20 (36.4%)	0.69
Severe dementia	31 (56.4%)	34 (61.8%)	0.56
Neuromuscular diseases	2 (3.6%)	2 (3.6%)	1.00
Aspiration pneumonia	23 (41.8%)	19 (34.5%)	0.43
Ischemic heart diseases	11 (20.0%)	12 (21.8%)	0.82
Chronic heart failure	30 (54.5%)	25 (45.5%)	0.34
Chronic lung diseases	6 (10.9%)	4 (7.3%)	0.51
Chronic liver diseases	3 (5.5%)	2 (3.6%)	0.65
Chronic kidney diseases	17 (30.9%)	14 (25.5%)	0.53
Serum albumin (g/dl)	2.9	2.9	0.70
	(2.4–3.3)	(2.6–3.2)	

11

Total lymphocyte count (mm ³)	999	1111	0.63
	(795–1277)	(708–1481)	
Total cholesterol (mg/dl)	142	143	0.38
	(113–156)	(115–173)	
Hemoglobin (g/dl)	10.3	10.2	0.49
	(8.7–11.1)	(8.9–11.8)	
C-reactive protein (mg/dl)	2.4	2.0	0.76
	(0.3–5.7)	(0.6–5.0)	

Values of age, serum albumin, total lymphocyte count, total cholesterol, hemoglobin, and C-reactive protein are median (IQR). Values of the other variables are number (%).

160 After propensity score matching, the baseline characteristics were well balanced between

161 the groups.

162 In the PEG and TPN groups, the median BMI values (IQR) were 19.0 (3.3) and 18.8

163 (4.8), respectively. The median daily calorie intake (IQR) was 900 (0) and 770 (250)

164 kcal/d, respectively.

165 The Kaplan–Meier curve is illustrated in Fig 1. The log-rank test showed a significantly

166 longer survival time in the PEG group compared with the TPN group (median, 317 vs

167 195 days, *P*=0.017). Cox regression analysis showed that HR for the PEG group relative

168 to the TPN group was 0.60 (95% CI: 0.39–0.92; *P*=0.019).

169

170 Fig 1. Kaplan–Meier curves of the propensity-matched groups for PEG and TPN.

- 171 Propensity score matching created 55 pairs of patients. In the Cox regression analysis,
- 172 HR for PEG relative to TPN was 0.60 (95% CI: 0.39–0.92; *P*=0.019).

173

174 The secondary outcomes of propensity-matched patients in the PEG and TPN groups

are shown in **Table 3**.

Table 3. Secondary outcomes of propensity-matched patients (55 pairs) in the PEG and TPN groups.

Outcome	PEG	TPN	<i>P</i> -value	^a Risk difference
	n (%)	n (%)		% (95% CI)
Oral intake recovery	4 (7.3)	3 (5.5)	1.00	1.8 (-7.3, +10.9)
Discharge to home	7 (12.7)	4 (7.3)	0.53	5.5 (-5.7, +16.6)
Severe pneumonia	28 (50.9)	14 (25.5)	0.010	25.5 (+7.9, +43.0)
Sepsis	6 (10.9)	17 (30.9)	0.018	-20.0 (-34.7, -5.3)

^a The risk difference for the PEG group with reference to the TPN group is shown.

There were no significant differences in the rates of oral intake recovery and discharge to
 home between groups. The incidence of severe pneumonia was significantly higher in the
 PEG group (50.9% vs 25.5%, P=0.010), whereas the incidence of sepsis was significantly
 higher in the TPN group (10.9% vs 30.9%, P=0.018). Logistic regression analyses of the
 secondary outcomes in the PEG and TPN groups are shown in Table 4.
 Table 4. Logistic regression analyses of the secondary outcomes in the PEG and TPN groups.
 Outcome
 ^a Odds Ratio (95% CI)

Outcome	^a Odds Ratio (95% CI)	<i>P</i> -value
Oral intake recovery	1.36 (0.29–6.38)	0.70
Discharge to home	1.86 (0.51–6.76)	0.35
Severe pneumonia	3.04 (1.36-6.79)	0.007
Sepsis	0.27 (0.098-0.76)	0.013

^a ORs for the PEG group with reference to the TPN group are shown.

181 ORs for the PEG group with reference to the TPN group for severe pneumonia and sepsis

13

182 were 3.04 (95% CI: 1.36–6.79) and 0.27 (95% CI: 0.098–0.76), respectively.

183 Subgroup analysis for survival is shown using a forest plot in Fig 2. In all subgroups,

184 PEG consistently had a better survival compared with TPN.

185

186 Fig 2. A forest plot of hazard ratios (HRs) for survival in the different subgroups.

187 HRs from the subgroup analysis for survival between PEG and TPN are shown.

188 HRs of < 1.00 indicate better survival in PEG compared with TPN.

189

190 **Discussion**

This study investigated the long-term outcomes after PEG feeding and TPN in elderly patients using propensity score-matched analysis. We found that older patients with lower nutritional state, and severe dementia were more likely to receive TPN, whereas patients with cerebrovascular disease were more likely to receive PEG. Survival time was significantly longer in the PEG group. The incidence of severe pneumonia was significantly higher in the PEG group whereas that of sepsis was significantly higher in the TPN group.

198 Previous studies that compared the outcomes of patients managed with enteral nutrition 199 and parenteral nutrition demonstrated conflicting results. For example, with respect to

mortality, studies found that enteral nutrition was associated with lower mortality rates 200 201[11] or no effect on overall mortality [33]. It has also been demonstrated that enteral nutrition is associated with a lower risk of infection [33,34], a higher rate of postoperative 202203complications rate, and a lower rate of early recovery of oral feeding after operation [13] compared to parenteral nutrition. The general rule is that enteral feeding should be 204considered in patients with normal digestive function whereas TPN should be used if 205enteral nutrition is not feasible [35]. Contrastingly, ANH for elderly patients with 206 dysphagia can be a life-prolonging treatment [36]; therefore, the choice of enteral versus 207 parenteral nutrition is not only based on the digestive function of the patients but also on 208their clinical condition and the preferences of the patients and their family members 209[14,36,37]. This may result in selection bias and differences in the baseline characteristics 210211of the PEG feeding and TPN study groups; therefore, we performed propensity score matching to adjust baseline characteristics to compare the effect of PEG feeding and TPN 212213more accurately [15-17,23].

In this study, a comparison of baseline characteristics between the groups before propensity score matching revealed that patients with older age, lower serum albumin levels, higher C-reactive protein levels, and severe dementia were more likely to receive TPN. Older age, lower serum albumin levels, higher C-reactive protein levels, and severe

dementia were reported as poor prognostic factors after PEG [4,5,20-22,38]. Our results

218

219	indicated that PEG tended to be avoided in patients with such poor prognostic factors,
220	and as a result, TPN was chosen as the alternative modality for ANH. Furthermore, TLC,
221	TC, and hemoglobin were significantly lower in the TPN group than in the PEG group
222	before propensity score matching, suggesting that TPN tended to be chosen for patients
223	with a poorer general condition.
224	Survival analysis showed better results in the PEG group than in the TPN group. This
225	may be explained by the fact that enteral nutrition has gastrointestinal, immune, and
226	metabolic benefits compared with parenteral nutrition [35,39,40]. Additionally, in this
227	study, the daily calorie intake was higher in the PEG group than in the TPN group. This
228	difference between groups may have affected the results of the survival analysis. Previous
229	studies showed that PEG did not improve survival in patients with dementia [4,5,38]. On
230	the contrary, it has been reported that dementia was not a significant prognostic factor
231	after PEG [41]. In our subgroup analysis, PEG was associated with better survival than
232	TPN even in patients with severe dementia. Furthermore, compared to TPN, PEG showed
233	a survival benefit regardless of age, sex, cerebrovascular disease, and serum albumin level.
234	These results suggested that enteral nutrition still had a better impact on survival even in
235	elderly individuals with a poorer general condition.

16

236Most of the previous studies that compared enteral and parenteral nutrition defined 237 survival and infection rates as the primary and secondary outcomes, respectively [11,13,23,25,33,34]. Here, we placed importance on quality of life after the start of ANH, 238239and thus we chose oral intake recovery and discharge to home as the secondary outcomes. Previous studies showed that age and BMI were predictive factors of oral intake recovery 240in stroke patients with tube-feeding [42,43]. In this study, age and BMI were similar 241between groups, and there were no significant differences in oral intake recovery between 242groups. Oral intake recovery rates were low in both groups, with most patients requiring 243continuous ANH. Moreover, there were no significant differences in discharge to home 244between groups, indicating that both PEG feeding and TPN were feasible in a home 245environment [9,35,44,45]. However, the proportion of patients being discharged to their 246homes was also not high in either group, suggesting that most of the elderly patients with 247dysphagia requiring ANH were bound to stay in long-term care facilities rather than their 248own homes regardless of receiving PEG feeding or TPN. It is necessary to provide 249patients and their family members with information regarding the general clinical course 250to aid their decision-making process before initiating ANH [46]; our results add to such 251252clinical information for supporting the decision-making process.

253 The incidence of severe pneumonia was significantly higher in the PEG group. This

254	result was expected and clinically plausible because enteral nutrition administered via
255	PEG poses a risk of gastroesophageal reflux and aspiration pneumonia owing to the
256	underlying pharyngeal and laryngeal dysfunction of patients who require feeding through
257	this modality [23,35,47]. Switching from PEG feeding to TPN may be an option for
258	patients who underwent PEG feeding and repeatedly suffered from aspiration pneumonia
259	because TPN is more effective in reducing the risk of severe pneumonia than PEG feeding.
260	In contrast, as expected, the incidence of sepsis in the TPN group was significantly higher
261	than that in the PEG group. This may be due to the fact that TPN has been associated with
262	catheter-related bloodstream infections and bacterial translocation [34,48-50].
263	Furthermore, the use of NT-CVC for long-term TPN may affect the rate of catheter-
264	related bloodstream infections and the incidence of sepsis in the TPN group [51].
265	Several limitations of this study should be acknowledged. First, this was a retrospective
266	observational study without randomization; therefore, assignment to each group may
267	have been biased. Although propensity score matching was used to adjust the differences
268	in baseline characteristics, the results may still have been biased because of unmeasured
269	confounders. Second, the results of this study are applicable only to these patients who
270	were included in the paired analysis, and therefore the results may not be generalizable to
271	a broader population. Third, certain patients in the PEG group received not only PEG

feeding but also TPN depending on their clinical condition, and furthermore, the daily

18

273	calorie intake was not equal between the groups. Fourth, this was a single-center study
274	with a small sample size.
275	Conclusions
276	In summary, we performed a propensity-matched analysis to compare the outcomes of
277	PEG and TPN in the elderly. We found that compared to TPN, PEG was associated with
278	better survival and a higher incidence of severe pneumonia as well as a lower incidence
279	of sepsis, with no significant inter-group differences noted in oral intake recovery and
280	discharge to home. Further studies with a larger sample size and randomized controlled
281	design are required.

282 Acknowledgments

283 We would like to thank Editage (<u>www.editage.jp</u>) for English language editing.

284 **References**

272

- 285 1. Gauderer MW, Ponsky JL, Izant RJ Jr. Gastrostomy without laparotomy: a
- percutaneous endoscopic technique. J Pediatr Surg. 1980; 15: 872-875.
- 287 2. Ponsky JL, Gauderer MW. Percutaneous endoscopic gastrostomy: A nonoperative
- technique for feeding gastrostomy. Gastrointest Endosc. 1981; 27: 9-11.
- 289 3. Gomes CA Jr, Andriolo RB, Bennett C, Lustosa SA, Matos D, Waisberg DR, et al.

- 290 Percutaneous endoscopic gastrostomy versus nasogastric tube feeding for adults with
- swallowing disturbances. Cochrane Database Syst Rev. 2015; (5): CD008096.
- 4. Finucane TE, Christmas C, Travis K. Tube feeding in patients with advanced dementia:
- a review of the evidence. JAMA. 1999; 282: 1365-1370.
- 5. Sanders DS, Carter MJ, D' Silva J, James G, Bolton RP, Bardhan KD. Survival analysis
- in percutaneous endoscopic gastrostomy feeding: a worse outcome in patients with
- 296 dementia. Am J Gastroenterol. 2000; 95: 1472-1475.
- 6. Ticinesi A, Nouvenne A, Lauretani F, Prati B, Cerundolo N, Maggio M, et al. Survival
- in older adults with dementia and eating problems: To PEG or not to PEG?. Clin Nutr.
- 299 2016; 35: 1512-1516.
- 300 7. Cervo FA, Bryan L, Farber S. To PEG or not to PEG: a review of evidence for placing
- feeding tubes in advanced dementia and the decision-making process. Geriatrics. 2006;
- 302 61: 30**-**35.
- 8. Dudrick SJ, Copeland EM 3rd, Daly JM, Long JM 3rd, Duke JH Jr, MacFadyen BV
- Jr, et al. A clinical review of nutritional support of the patient. JPEN J Parenter Enteral
 Nutr. 1979; 3: 444-451.
- 306 9. Scolapio JS, Fleming CR, Kelly DG, Wick DM, Zinsmeister AR. Survival of home
- 307 parenteral nutrition-treated patients: 20 years of experience at the Mayo Clinic. Mayo

- 308 Clin Proc. 1999; 74: 217-222.
- 309 10. Maslow K. Total parenteral nutrition and tube feeding for elderly patients: findings
- of an OTA study. JPEN J Parenter Enteral Nutr. 1988; 12: 425-432.
- 311 11. Artinian V, Krayem H, DiGiovine B. Effects of early enteral feeding on the outcome
- of critically ill mechanically ventilated medical patients. Chest. 2006; 129: 960-967.
- 313 12. Wicks C, Somasundaram S, Bjarnason I, Menzies IS, Routley D, Potter D, et al.
- Comparison of enteral feeding and total parenteral nutrition after liver transplantation.
- 315 Lancet. 1994; 344: 837-840.
- 316 13. Perinel J, Mariette C, Dousset B, Sielezneff I, Gainant A, Mabrut JY, et al. Early
- 317 enteral versus total parenteral nutrition in patients undergoing pancreaticoduodenectomy:
- a randomized multicenter controlled trial (Nutri-DPC). Ann Surg. 2016; 264: 731-737.
- 319 14. Komiya K, Usagawa Y, Kadota J, Ikegami N. Decreasing use of percutaneous
- endoscopic gastrostomy tube feeding in Japan. J Am Geriatr Soc. 2018; 66: 1388-1391.
- 321 15. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational
- studies for causal effects. Biometrika. 1983; 70: 41-55.
- 323 16. D'Agostino RB Jr. Propensity score methods for bias reduction in the comparison of
- a treatment to a non-randomized control group. Stat Med. 1998; 17: 2265-2281.
- 325 17. Griswold ME, Localio AR, Mulrow C. Propensity score adjustment with multilevel

326	data: setting your sites of	on decreasing selection	bias. Ann Intern	Med. 2010; 152: 393-395.
-----	-----------------------------	-------------------------	------------------	--------------------------

- 18. Shigoka H, Maetani I, Tominaga K, Gon K, Saitou M, Takenaka Y. Comparison of
- modified introducer method with pull method for percutaneous endoscopic gastrostomy:
- prospective randomized study. Dig Endosc. 2012; 24: 426-431.
- 19. Ministry of Health, Labour and Welfare: "Shinryohoshukaitei ni tsuite" (Revision of
- 331 medical fee). Available from:
- https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000106602.html (2018). [cited 23
- 333 April 2019] (in Japanese).
- 20. Nair S, Hertan H, Pitchumoni CS. Hypoalbuminemia is a poor predictor of survival
- after percutaneous endoscopic gastrostomy in elderly patients with dementia. Am J
- 336 Gastroenterol. 2000; 95: 133-136.
- 337 21. Suzuki S, Tamez S, Murakami A, Taira A, Mizuhara A, Horiuchi A, et al. Survival
- 338 of geriatric patients after percutaneous endoscopic gastrostomy in Japan. World J
- 339 Gastroenterol. 2010; 16: 5084-5091.
- 340 22. Barbosa M, Magalhaes J, Marinho C, Cotter J. Predictive factors of early mortality
- 341 after percutaneous endoscopic gastrostomy placement: The importance of C-reactive
- 342 protein. Clin Nutr ESPEN. 2016; 14: 19-23.
- 23. Tamiya H, Yasunaga H, Matusi H, Fushimi K, Akishita M, Ogawa S. Comparison of

344	short-term	mortality	and	morbidity	between	parenteral	and	enteral	nutrition	for	adults
						r					

- 345 without cancer: a propensity-matched analysis using a national inpatient database. Am J
- 346 Clin Nutr. 2015; 102: 1222-1228.
- 347 24. Sun X, Luo L, Zhao X, Ye P. Controlling Nutritional Status (CONUT) score as a
- 348 predictor of all-cause mortality in elderly hypertensive patients: a prospective follow-up
- 349 study. BMJ Open. 2017; 7: e015649.
- 25. Bito S, Yamamoto T, Tominaga H. Prospective cohort study comparing the effects of
- 351 different artificial nutrition methods on long-term survival in the elderly: Japan
- 352 Assessment Study on Procedures and Outcomes of Artificial Nutrition (JAPOAN). JPEN
- 353 J Parenter Enteral Nutr. 2015; 39: 456-464.
- 26. Woo J, Chan SM, Mak YT, Swaminathan R. Biochemical predictors of short term
- mortality in elderly residents of chronic care institutions. J Clin Pathol. 1989; 42: 1241-
- 356 1245.
- 257 27. Rubin DB, Schenker N. Multiple imputation in health-care databases: an overview
- and some applications. Stat Med. 1991; 10: 585-598.
- 28. Li P, Stuart EA, Allison DB. Multiple imputation: a flexible tool for handling missing
- 360 data. JAMA. 2015; 314: 1966-1967.
- 361 29. Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S. A review of

362	the application	of propensity	score methods yielded	increasing use,	advantages in	n specific
	11	1 1 /	5	υ,	0	1

- 363 settings, but not substantially different estimates compared with conventional
- multivariable methods. J Clin Epidemiol. 2006; 59: 437-447.
- 365 30. Lunt M. Selecting an appropriate caliper can be essential for achieving good balance
- with propensity score matching. Am J Epidemiol. 2014; 179: 226-235.
- 367 31. Wang Y, Cai H, Li C, Jiang Z, Wang L, Song J, et al. Optimal caliper width for
- 368 propensity score matching of three treatment groups: a Monte Carlo study. PLoS One.
- 369 2013; 8: e81045.
- 370 32. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical
- statistics. Bone Marrow Transplantation. 2013; 48: 452-458.
- 372 33. Elke G, van Zanten AR, Lemieux M, McCall M, Jeejeebhoy KN, Kott M, et al. Enteral
- 373 versus parenteral nutrition in critically ill patients: an updated systematic review and
- meta-analysis of randomized controlled trials. Crit Care. 2016; 20: 117.
- 375 34. Braunschweig CL, Levy P, Sheean PM, Wang X. Enteral compared with parenteral
- nutrition: a meta-analysis. Am J Clin Nutr. 2001; 74: 534-542.
- 377 35. McClave SA, DiBaise JK, Mullin GE, Martindale RG. ACG clinical guideline:
- nutrition therapy in the adult hospitalized patient. Am J Gastroenterol. 2016; 111: 315-
- 379 334.

380	36. Casarett D. Ka	po J. Caplan A.	Appropriate use c	of artificial nutrit	ion and hydration —
000	<i>co. cusultus</i> , 120	pov, emp			

- fundamental principles and recommendations. N Engl J Med. 2005; 353: 2607-2612.
- 382 37. Druml C, Ballmer PE, Druml W, Oehmichen F, Shenkin A, Singer P, et al. ESPEN
- 383 guideline on ethical aspects of artificial nutrition and hydration. Clin Nutr. 2016; 35: 545-
- 384 **556**.
- 385 38. Murphy LM, Lipman TO. Percutaneous endoscopic gastrostomy does not prolong
- survival in patients with dementia. Arch Intern Med. 2003; 163: 1351-1353.
- 387 39. Li G, Gu R, Wen X, Wei D, Ming X, Chen H. The effect of early enteral nutrition on
- 388 hyperthermic intraoperative intraperitoneal chemotherapy-induced mucosal permeability
- following gastrectomy. JPEN J Parenter Enteral Nutr. 2012; 36: 213-218.
- 40. McClave SA, Martindale RG, Rice TW, Heyland DK. Feeding the critically ill patient.
- 391 Crit Care Med. 2014; 42: 2600-2610.
- 392 41. Higaki F, Yokota O, Ohishi M. Factors predictive of survival after percutaneous
- 393 endoscopic gastrostomy in the elderly: is dementia really a risk factor? Am J
- 394 Gastroenterol. 2008; 103: 1011-1016.
- 395 42. Nakadate A, Otaka Y, Kondo K, Yamamoto R, Matsuura D, Honaga K, et al. Age,
- body mass index, and white blood cell count predict the resumption of oral intake in
- subacute stroke patients. J Stroke Cerebrovasc Dis. 2016; 25: 2801-2808.

398	43. Ikenaga Y, Nakayama S, Taniguchi H, Ohori I, Komatsu N, Nishimura H, et al.
399	Factors predicting recovery of oral intake in stroke survivors with dysphagia in a
400	convalescent rehabilitation ward. J Stroke Cerebrovasc Dis. 2017; 26: 1013-1019.
401	44. Delegge MH , McClave SA , DiSario JA, Baskin WN, Brown RD, Fang JC, et al.
402	Ethical and medicolegal aspects of PEG-tube placement and provision of artificial
403	nutritional therapy. Gastrointest Endosc. 2005; 62: 952-959.
404	45. Messing B, Joly F. Guidelines for management of home parenteral support in adult
405	chronic intestinal failure patients. Gastroenterology. 2006; 130: S43-S51.
406	46. Kuraoka Y, Nakayama K. A decision aid regarding long-term tube feeding targeting
407	substitute decision makers for cognitively impaired older persons in Japan: a small-scale
408	before-and-after study. BMC Geriatr. 2014; 14: 16.
409	47. Wang D, Zheng SQ, Chen XC, Jiang SW, Chen HB. Comparisons between small
410	intestinal and gastric feeding in severe traumatic brain injury: a systematic review and
411	meta-analysis of randomized controlled trials. J Neurosurg. 2015; 123: 1194-1201.
412	48. Lissauer ME, Leekha S, Preas MA, Thom KA, Johnson SB. Risk factors for central
413	line-associated bloodstream infections in the era of best practice. J Trauma Acute Care
414	Surg. 2012; 72: 1174-1180.
415	49. Chopra V, Ratz D, Kuhn L, Lopus T, Chenoweth C, Krein S. PICC-associated

416 bloodstream infections: prevalence, patterns, and predictors. Am J Med. 2014; 127: 319-

417 328.

- 418 50. MacFie J. Enteral versus parenteral nutrition: the significance of bacterial
- translocation and gut-barrier function. Nutrition. 2000; 16: 606-611.
- 420 51. Pittiruti M, Hamilton H, Biffi R, MacFie J, Pertkiewicz M. ESPEN guidelines on
- 421 parenteral nutrition: central venous catheters (access, care, diagnosis and therapy of
- 422 complications). Clin Nutr. 2009; 28: 365-377.

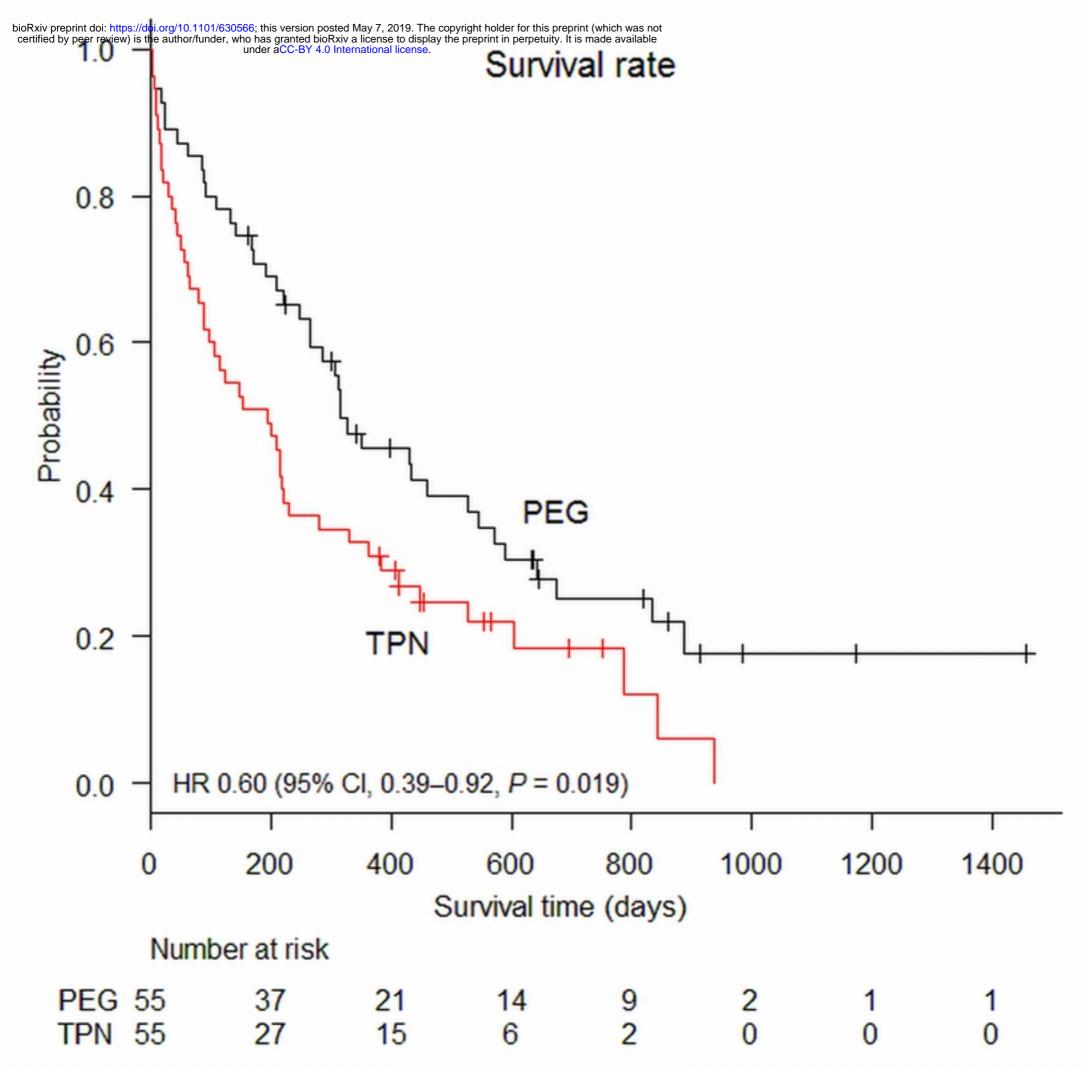


Figure1

Subgroup		No. of Patients			HR	95% CI	P-value for interaction
		PEG	TPN				
Overall		55	55	⊢ ●−−	0.60	0.39-0.92	
Age	< 90yr	36	38		0.71	0.42-1.22	
	≥ 90yr	19	17		0.44	0.21-0.91	0.36
Male		21	23	⊢-●	0.50	0.26-0.96	
Female		34	32	⊢	0.62	0.34-1.11	0.67
Cerebrovascular di	isease Yes	18	20	⊢● ──-	0.43	0.20-0.90	
	No	37	35		0.77	0.45-1.31	0.15
Severe dementia	a Yes	31	34	⊢ ● → I	0.59	0.34-1.04	
	No	24	21	⊢ →	0.68	0.34-1.34	0.82
Serum albumin	< 3.0g/dl	30	29	⊢ ●	0.64	0.36-1.13	
	≥ 3.0g/dl	25	26	⊢ ●	0.58	0.30-1.10	0.39
			c <	0.1 0.5 1 1.5 Hazard ratio PEG better TPN better	2		

Figure2