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Abstract 

Chronic opioid usage not only causes addiction behavior through the central nervous 

system (CNS), but it also modulates the peripheral immune system.  However, whether 

opioid usage positively or negatively impacts the immune system is still controversial. In 

order to understand the immune modulatory effect of opioids in a systematic and unbiased 

way, we performed single cell RNA sequencing (scRNA-seq) of peripheral blood 

mononuclear cells (PBMCs) from opioid-dependent individuals and neighborhood non-

dependent controls. We show that chronic opioid usage evokes widespread suppression 

of antiviral genes upon ex vivo endotoxin challenge in multiple innate and adaptive 

immune cell types. Furthermore, scRNA-seq revealed the same phenomenon with in vitro 

morphine treatment;   after just a short exposure to morphine stimulation,  we observed 

the same suppression of antiviral genes in multiple immune cell types. These findings 

indicate that both acute and chronic opioid exposure may be harmful to our immune 

system by suppressing the antiviral program, our body’s defense response to potential 

infection. Our results suggest that further characterization of the immune modulatory 

effects of opioid use is critical to ensure the safety of clinical opioid usage. 

 

The opioid epidemic is a major threat to the global public health that affects millions of people and 

their families. Part of the problem is caused by the rapid increase in the number of opioid 

prescriptions written by medical practices starting from the late 1990s. From 1999 to 2017, 

overdoses related to prescription opioids have dramatically increased in the United States with 

overdose deaths found to be five times higher in 2017 compared to 19991. In addition, opioids affect 

not only the CNS but also the peripheral immune system through the expression of a variety of 

opioid receptors on different immune cell types2. However, the effect of opioids on the peripheral 

immune system is complicated and involves various mechanisms. Studies have shown 

inconsistent results, where some suggest opioid usage is immunosuppressive while, in contrast, 
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others suggest opioids are immunoactivating2–4. Most of these studies focus on a particular 

immune cell subpopulation and a few candidate genes. Interestingly, epidemiological studies 

suggest that opioid usage is associated with increased susceptibility to opportunistic infections 

such as tuberculosis, HIV and pneumonia5–7.  

 

Given the extensive use of prescription opioids and the global opioid epidemic, it is important to 

understand how opioid usage modulates different cell types in the immune system. Primary cells 

such as peripheral blood immune cells are usually comprised of heterogeneous cell populations.  

It is therefore highly time-consuming and labor-intensive to separate and study the individual cell 

types and generally not feasible given the limited input material from patient samples. The recent 

development of droplet-based single cell RNA-sequencing (scRNA-seq) approaches allows 

profiling of gene expression of thousands of single cells from a limited quantity of heterogeneous 

patient samples8,9. Here, we utilize droplet-based scRNA-seq to systematically characterize cell 

type specific gene expression in the peripheral immune system of opioid-dependent individuals 

compared to controls.  

 

Using droplet-based scRNA-seq, we profiled gene expression in 57,271 single cells from the 

peripheral blood mononuclear cells (PBMCs) of 7 opioid-dependent individuals and 7 age/sex-

matched non-dependent controls (averaging 3,980 single cells per individual) (Figure 1A). To 

examine opioid usage-specific changes in gene expression in response to pathogenic stimuli, we 

stimulated PBMCs from 3 of the 7 opioid-dependent individuals and 3 of the neighborhood 

controls with lipopolysaccharide (LPS, a component of gram-negative bacteria) for 3 hours and 

profiled 22,326 single cells. We sequenced these single cells to an average depth of 21,801 reads 

per cell and detected on average 805 genes and 2,810 transcripts per cell. To identify each of the 

immune cell subpopulations, we applied dimensionality reduction methods, including principal 

component analysis (PCA) and t-stochastic neighbor embedding (t-SNE), and unsupervised 
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graph-based clustering10,11. We identified 12 immune cell types/states using expression of 

canonical gene markers (Figure 1B, Figure S1-S3). Of the naive state immune populations, we 

identified CD4+ T cells, naïve CD8+ T cells, memory CD8+ T cells, NK cells, B cells, and 

monocytes. Of the LPS-stimulated immune populations, we identified CD4+ T cells, CD8+ T cells, 

activated T cells, B cells, NK cells, and monocytes.  (Figure 1B, Figure S1-S3). We observed a 

slight shift in global gene expression states between opioid-dependent and control samples in 

most of the naïve cell types, while we observed larger differences in gene expression states in 

LPS-stimulated cell types (Figure 1B).  

 

From differential gene expression analysis for each immune subpopulation, we observed a down-

regulation of antiviral genes and interferon-stimulated genes (ISGs) in opioid-dependent samples 

compared to control samples. The suppression of antiviral genes was observed only in monocytes 

in naive state and in all immune cell subpopulations under LPS stimulation except for CD8+ T 

cells and monocytes (Figure 1C, Figure S4). This was further confirmed with gene set enrichment 

analysis of the resulting differential genes. We observed higher enrichment of defense response 

to virus and interferon signalling pathways in monocytes in naïve state and in most of the immune 

cell subpopulations in LPS stimulated state (Figure 1D). When focusing on the three major innate 

immune response transcriptional modules activated by LPS stimulation12 (Supplementary Table 

1), we found widespread suppression of antiviral genes  in opioid-dependent cells across LPS 

stimulated immune subpopulations while peaked and sustained inflammatory genes were 

modestly affected by opioid usage (Figure 1E, Figure S5-S9). Because antiviral genes are 

activated by an LPS induced type I interferon (IFNα and IFNβ) autocrine loop13, the potential 

mechanism for the suppression of antiviral genes in opioid users could be a higher expression of 

negative regulators of the interferon signaling pathway. Interestingly, we found the expression of 

two major interferon signaling inhibitors, suppressor of cytokine signaling SOCS314  and ubiquitin-

specific peptidase USP1515, to be upregulated in opioid-dependent cells in the naïve state: CD4+ 
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T cells and monocytes  for SOCS3 and NK cells, CD8+ T cells and B cells for USP15 (Figure 

S10). Taken together, our data suggest that chronic opioid usage results in widespread 

suppression of antiviral genes affecting all immune subpopulations including both innate and 

adaptive immune cell types.  

 

To examine the in vitro effect of opioids, we first treated primary human PBMCs from healthy 

individuals with a titration of morphine for 24 hours before stimulating with either a mock treatment 

(Untreated) or 100ng/mL LPS for three hours. We then performed RT-qPCR using primers against 

the major antiviral gene, ISG15, which was was the most prominent antiviral gene downregulated 

in opioid-dependent cells across cell types. We found that PBMCs pretreated with morphine for 

24 hours exhibited a dose-dependent inhibition to the induction of ISG15 after LPS stimulation 

(Figure 2A). Furthermore, this inhibition was observed as quickly as three hours after morphine 

pretreatment (Figure S11). To test whether opioid-induced suppression of the type I interferon 

inducible antiviral pathway could be recovered through administration of type I interferons, we 

pretreated primary human PBMC for 24 hours with a titration of morphine, either alone or co-

treated with 100U/mL IFNα, or IFNβ. Then we stimulated PBMCs with LPS for 3 hours and 

performed RT-qPCR against ISG15 (Figure 2B). We found that both IFNα and IFNβ co-treatment 

reversed the morphine-induced suppression of ISG15 (Figure 2B).  

 

In order to characterize this phenomenon at a genome-wide scale and in every immune cell type 

in a cost-effective way, we performed scRNA-seq with an antibody-based cell hashing  

technique16 to multiplex samples in droplet based scRNA-seq (Figure S12; see Methods) . We 

profiled 10,903 single PBMCs treated with morphine alone or co-treated with 100U/mL IFNα, or 

IFNβ for 24 hours, then stimulated with LPS for 3 hours. We found a modest but consistent 

suppression of core antiviral genes in response to morphine exposure that could be rescued by 
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co-treatment with IFNα or IFNβ across all immune cell populations except for B cells and 

monocytes (Figure S14-S18). This phenotype was most pronounced in CD4+ and CD8+ T cells 

(Figure 2C). 

 

 

Our study demonstrates that there is widespread suppression of the antiviral pathway in multiple 

innate and adaptive peripheral immune subpopulations both ex vivo and in vitro upon LPS 

stimulation. Our findings suggest a potential adverse effect from opioid usage on the defense 

response towards viral infection in the immune system. This may explain in part the higher 

susceptibility to viral infection in opioid users observed in epidemiological studies5–7,17. In addition, 

our in vitro findings also demonstrate that the observed suppression of antiviral pathway from our 

ex vivo experiments does not arise from needle sharing or presence of hepatitis C virus (HCV) 

infection in these injection opioid users. Given that most recreational opioid users inject drugs and 

many prescription opioid users are post-surgery or cancer patients under chemotherapy 

treatments, they are already more prone to infection; therefore suppression of antiviral genes with 

opioid usage brings clinical relevance and demonstrates the importance of carefully examining 

each individual case to avoid any possibility of comorbidity. Furthermore, our study demonstrated 

the utility of scRNA-seq as an unbiased tool to assess cell type specific genome-wide 

transcriptomic phenotype from limited quantity of patient samples. Upon a stimulation condition, 

such as LPS treatment, the opioid induced phenotype is much more pronounced and resembles 

the signal amplifying effect from electronic amplifiers. We anticipate this type of signal 

amplification method coupled with single cell transcriptomics will be of broad interest and can be 

applied to many other disease models where disease relevant stimuli can be used to activate 

naïve PBMCs isolated from patients that are otherwise quiescent to amplify signal over noisy 

background and thus reveal the phenotype of the disease.   
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Materials and Methods 

 

PBMC from Opioid-Dependent Individuals 

 

Frozen vials of PBMC prepared from the fresh blood of opioid-dependent (mostly heroin 

dependent), and non-dependent neighborhood control individuals were collected in  the 

Comorbidity and Trauma Study (CATS)18,19 and subsequently obtained from the biorepository of 

National Institute on Drug Abuse (NIDA, Rockville MD). We evaluated 14 age-matched subjects 

ranging from 24-45 years in age, with an equal number of male and female subjects. Cases were 

recruited from opioid replacement therapy (ORT) clinics in the greater Sydney, Australia region, 

while controls were recruited from areas in close proximity to ORT clinics (neighborhood controls). 

Cases and controls were required to be English speakers 18 years of age or older. Cases were 

participants in ORT for opioid-dependence while controls were excluded for recreational opioid 

use 11 or more times lifetime. All subjects provided written informed consent 18,19. All samples 

were stripped of personally identifying information and assigned sample ID numbers prior to 

receipt. 

 

Single Cell Transcriptomic Analysis of PBMC from Opioid-Dependent Individuals 

 

Frozen PBMCs isolated from the blood of opioid-dependent and non-dependent neighborhood 

individuals were revived, and live cells were isolated via FACS (Fluorescently Activated Cell 

Sorting) using a Sony SH800 cell sorter and a live/dead cell stain (LIVE/DEAD Fixable Green Cell 

Stain Kit, for 488nm Excitation, Thermo Fisher – L34969). Dilutions were made from all 14 

samples as outlined in the Chromium Single Cell 3’ Reagent Kit v2 User Guide (10X Genomics, 

CG00052 Rev.B), and 7000 cells per sample were used to perform the droplet-based Chromium 

Single Cell 3’ scRNA-seq method (10X Genomics, Chromium Single Cell 3’ Library and Gel Bead 
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Kit, Cat# PN-120237). 200,000 cells from 6 of the 14 samples (3 dependent and 3 non-dependent) 

were plated into a non-tissue culture treated 96-well plate in a leukocyte-supporting complete 

RPMI medium (10% HI-FBS, 1% L-Glutamate, 1% NEAA, 1% HEPES, 1% Sodium Pyruvate, 

0.1% B-Mercaptoethanol). Lipopolysaccharide (LPS) (Invivogen, LPS-EK Ultrapure, Cat# tlrl-

pekpls) was then added to a final concentration of 100ng/mL and the cells were incubated at 37˚C 

for 3 hours. Cells were then collected, washed, and diluted to 1000 cells/μL before being used to 

perform the 10X Genomics Chromium Single Cell 3’ method as outlined in the Single Cell 3’ 

Reagent Kit v2 User Guide. Briefly, 20μL  of 1000 cells/μL PBMC suspension from each 

subject/condition were combined, and 33.8 μL of cell suspension (total cell number = 33,800) was 

mixed with 66.2 μL of  RT reaction mix before being added to a Chromium microfluidics chip 

already loaded with barcoded beads and partitioning oil. The chip was then placed within the 

Chromium controller where single cells and barcoded beads were encapsulated together within 

oil droplets.  Reverse transcription was then performed within the oil droplets to produce barcoded 

cDNA. Barcoded cDNA was isolated from the partitioning oil using Silane DynaBeads (Thermo 

Fisher Scientific, Dynabeads MyONE Silane, Cat# 37002D) before amplification by PCR. 

Cleanup/size selection was performed on amplified cDNA using SPRIselect beads (Beckman-

Coulter, SPRIselect, Cat# B23317) and cDNA quality was assessed using an Agilent 2100 

BioAnalyzer and the High-Sensitivity DNA assay (Agilent, High-Sensitivity DNA Kit, Cat# 5067-

4626). Sequencing Libraries were generated from cleaned, amplified cDNA using the 10X 

Chromium Kit’s included reagents for fragmentation, sequencing adaptor ligation, and sample 

index PCR. Between each of these steps, libraries were cleaned/size selected using SPRIselect 

beads. Final quality of cDNA libraries was once again assessed using the Agilent BioAnalyzer 

High-Sensitivity DNA assay, and quality-confirmed libraries were sequenced using Illumina’s 

NextSeq platform. All reagents listed in Supplementary Table 2. 

 

PBMC from healthy Individuals used in In vitro assays 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630574doi: bioRxiv preprint 

https://doi.org/10.1101/630574


 9 

 

15 mL of fresh whole blood from healthy donors (Research Blood Components, Boston MA) was 

diluted 1:1 with warm PBS +2% FBS, mixed, and gently layered atop 30mL Ficoll-Paque density 

gradient medium (GE Healthcare, Ficoll Paque PLUS, Cat# 17-1440) in 50mL conical tubes. This 

process was repeated 7 times in processing 100mL of blood. Tubes were centrifuged for 20 min 

at 1200xg to separate leukocytes from red blood cells and plasma. The leukocyte-containing buffy 

coat was carefully transferred into new tubes, washed with warm PBS +2% FBS, counted, 

resuspended in DMSO and aliquoted. Isolated cells were then stored in liquid nitrogen until later 

experimental use.  All reagents listed in Supplementary Table 2. 

 

Controlled Substances 

 

Solid Morphine Sulfate (Sigma Aldritch, Cat# M8777-25G) was obtained with approval and 

oversight from the controlled substances sub-office of the Boston University department of 

environmental health and safety. Aliquots of a 10mM stock solution were prepared and stored for 

further use in experimentation.  All reagents listed in Supplementary Table 2 

 

Morphine Titration in PBMCs from healthy individuals 

 

Normal PBMC were revived in leukocyte-supporting complete RPMI medium and plated onto non-

tissue culture treated 96 well plates at a density of 2.0e5 cells/well (2 wells per condition, 4.0e5 

cells total). Cells were treated either with a mock treatment or a titration of Morphine Sulfate in 

RPMI complete medium (0μM, 10μM, 100μM) for 24 hours. At the end of the morphine incubation 

either medium or LPS (final concentration 100ng/mL) was added to the wells and cells were 

incubated for a further 3 hours, at the end of which the cells were collected, washed, and 

processed for total RNA using the ZymoPure QuickRNA MiniPrep kit (Zymo Research, Cat# 
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R1055). RNA samples were then used to perform RT-qPCR.  All reagents listed in Supplementary 

Table 2 

 

Interferon Rescue in Morphine Treated PBMCs from healthy individuals 

 

Normal PBMC were revived and plated as described previously and either mock treated, treated 

with morphine sulfate (100μM) alone, or morphine sulfate (100μM) in the presence of 100U/mL 

IFNα (PBL Assay Science, Human Interferon Alpha A2, Cat#11100-1) or IFNβ (R&D Systems, 

Recombinant Human IFN-B, Cat# 8499-IF-010) for 24 hours. At the end of the incubation period 

cells were again treated either with medium or LPS for 3 hours, after which they were collected, 

washed, and processed for total RNA using the ZymoPure QuickRNA MiniPrep kit. RNA samples 

were then used to perform qRT-PCR.  All reagents listed in Supplementary Table 2. 

 

RT-qPCR analysis 

 

Total RNA was isolated from cells using the ZymoPure QuickRNA MiniPrep kit. cDNA was 

synthesized using ~50ng of total RNA per sample (Thermo Fisher, SuperScript IV First-Strand 

Synthesis System, Cat# 18091200). 2 μL of cDNA per reaction was then used to perform qPCR 

(Fisher Scientific, PowerUp SYBR Greβen Master Mix, Cat# A25742) with primers against 

transcripts of the Interferon target gene ISG15 (IDT, primer sequences in supplement) We used 

primers against ActB (IDT, primer sequences in supplement) as a housekeeping gene control.  

All reagents listed in Supplementary Table 2. 

 

Cell Hashing scRNA-seq 
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Morphine titration and interferon rescue assays were performed as previously described. At the 

end of the treatment period cells were collected, washed, and each sample was “hashed” using 

unique oligonucleotide-barcoded antibodies 16 (Supplementary Table 3) to track the cells’ 

well/condition of origin.  Briefly, cells were suspended in Cell Staining Buffer (BioLegend, Cat# 

420201) and blocked using Human TruStain FcX reagent (BioLegend, Cat# 422301). Cells were 

then incubated with TotalSeq antibodies (BioLegend, Cat# 3964601, 394603, 394605, 394607, 

394609, 394611, 394613, 394615, 394617, 394619, 394623, 394625), washed with PBS, and 

filtered through 40μM cell strainers (Bel-Art, Flowmi Cell Strainer, Cat# H13680-0040). Samples 

were then normalized to 1000 cells/μL, mixed in equal measure (20μL each), and used to perform 

the Chromium Single Cell 3’ scRNA-seq method as described previously. Additional primers were 

included in the cDNA amplification step to account for the TotalSeq oligonucleotide tags. During 

the post-amplification cleanup, supernatant containing amplified TotalSeq tags was collected and 

processed parallel to the standard 10X library fraction. All reagents listed in Supplementary Table 

2. 

  

 

 

Single Cell Analysis 

 

RNA-sequencing preprocessing 

 

We used Cell Ranger version 2.1.0 (10x Genomics) to pool and process the raw RNA sequencing 

data. First, each sample sequencing library was demultiplexed based on the sample index read 

to generate FASTQ files for the paired-end reads. STAR aligner20 was used to align reads to the 

human reference genome (GRCh38). After alignment, barcode and UMI filtering as well as UMI 

counting were performed to then generate the gene-cell barcode matrix for each sample library. 
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To perform an integrative analysis with the opioid-dependent and non-dependent control samples, 

all samples were normalized by sequencing depth and each sample gene-cell barcode matrix 

was concatenated together to create a large gene-barcode matrix in which cell-to-cell and sample-

to-sample comparisons could be made. 

 

RNA-sequencing downstream and DE analysis 

 

We used Seurat suite version 2.310,11 for downstream analysis. We used Seurat quality control 

metrics to select genes and cells for further analysis. Cells with less than 300 and greater than 

2,000 detected genes were filtered out, as well as cells with greater than 10,000 UMIs were filtered 

out. Genes that were detected in less than 10 cells were removed. Gene counts for each cell were 

normalized by total expression, multiplied by a scale factor of 10,000 and transformed to log scale. 

Principal component analysis based on the highly variable genes detected (dispersion of 2) was 

performed for dimension reduction and the top 20 principal components (PCs) were selected. We 

clustered cells based on graph-based methods (KNN and Louvain community detection method) 

implemented in Seurat. The clusters and other known annotations were visualized using t-

stochastic distributed embedding (tSNE)21. 

 

To identify peripheral immune subpopulations, we performed differential expression analysis 

using Wilcoxon rank sum test between clusters to identify top expressing genes for each cluster 

for cell type identification implemented in Seurat. Cell type specific gene signatures were 

determined from the overlap of more highly expressed and canonical gene markers. In addition, 

we performed differential expression analysis within each cell type between control cells and 

opioid-dependent cells using Model-based Analysis of Single Cell Transcriptomics (MAST)22 to 

identify genes upregulated and downregulated in opioid-dependent patients compared to controls 

(Supplementary Table 4). MAST uses a Hurdle model, a two-part generalized linear model in 
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which one process accounts for zero expression and the second process accounts for positive 

expression. Differentially expressed genes were evaluated according to their log fold change 

(greater than log2(1.5)) and adjusted p-values (0.05). 

 

Cell Hashing preprocessing and analysis 

 

For hashtag oligo (HTO) quantification, we first ran Cite-seq-Count16,23 on the HTO fastq files to 

process the HTO reads with the parameters specific to 10x Genomics single cell 3’ v2 data as 

stated in (https://github.com/Hoohm/CITE-seq-Count).  In addition, we used Cell Ranger version 

2.1.1 (10x Genomics) to process the raw sequencing RNA reads and Seurat suite version 2.3 for 

downstream analyses. To identify the cells sample-of-origin, we demultiplexed the HTOs and 

removed doublets and ambiguous cells using the Seurat pipeline for demultiplexing as mentioned 

in (https://satijalab.org/seurat/hashing_vignette.html). 

 

Enrichment Analysis 

 

We performed gene enrichment analysis of the list of differential genes between opioid-dependent 

individuals and non-dependent neighborhood controls for each cell type using Metascape24 online 

tool (http://metascape.org/) . The enrichment analysis was run using default settings, and was 

assessed and visualized through a heatmap of significance (-log(P-value)). All heatmaps were 

generated using ComplexHeatmap R package25. 
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Figure 1. Single cell transcriptomics of PBMCs from opioid-dependent individuals revealed 

a widespread suppression of antiviral genes upon LPS stimulation.  a, Experimental 

workflow schematic. Peripheral blood from opioid-dependent individuals and control individuals 

were collected, PBMCs were isolated, and droplet based scRNA-seq was performed using 

Chromium Controller (10X Genomics). b, t-SNE plot of naive (51,336) and LPS (100ng/mL) 

stimulated (21,878) PBMCs were clustered (cells were filtered based on >300 and <2000 genes 

per cell, < 10000 UMIs per cell; see Methods) and identified into immune populations (top) and 

visualized by neighborhood control individuals and opioid-dependent individuals in each state 

(bottom): naive state control samples 1-7 (C1-C7), naive state opioid-dependent samples 1-7 

(O1-O7), LPS-stimulated control samples 1-3 (C1-C3 (LPS)), LPS-stimulated opioid-dependent 

samples 1-3 O1-O3 (LPS). c, Volcano plot showing fold change of gene expression (log2 scale) 

for downregulated and upregulated genes for opioid-dependent cells compared to non-dependent 

controls in naive monocytes, LPS stimulated NK cells, LPS stimulated CD4+ T cells, and LPS 

stimulated activated T cells (x-axis) with significance of 0.05 (y-axis, -log10 scale). Significant 

genes shown in black, significant antiviral genes shown in green, and insignificant genes shown 

in grey. d, Pathway enrichment analysis of significant differential genes across all naive and LPS 

stimulated cell types evaluated by -log10(P-value) as indicated by blue-purple scale (x-axis:cell 

type/state, y-axis: pathways). White represents an analysis which did not provide enrichment 

results for the specific pathway. e, Heatmap of scaled expression of core antiviral and 

inflammatory response genes (left) and average gene set expression (log expression) (right) 

observed in control and opioid-dependent  cells of LPS-stimulated samples: control samples 1-3 

(C1-C3) and  opioid-dependent samples 1-3 (O1-O3). scRNA-seq gene expression profiles were 

from PBMCs stimulated with LPS in CD4+ T cells, activated T cells, NK cells, and B cells. We 

found significant suppression of core antiviral gene expression from opioid-dependent individuals 

compared to control individuals (**** ≤ 0.0001). The three core innate immune response  gene 
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modules:12: core antiviral (Core Antiviral), peaked inflammation (Peaked Inflam), and sustained 

inflammation (Sustained Inflam) (Supplementary Table 1). 

 

Figure 2: A short exposure to morphine treatment resulted in suppression of antiviral 

genes upon LPS stimulation. a, Evaluation of mRNA expression level of ISG15 upon dose 

response to morphine. PBMCs from a healthy individual were pre-treated with a titration of 

morphine (0μM, 10μM, 100μM) for 24 hours followed by LPS (100ng/mL) stimulation for 3 hours. 

Expression of interferon pathway gene ISG15 was evaluated by RT-qPCR. Values are displayed 

as fold increase (log10) to gene expression in LPS stimulated cells over unstimulated cells. b, 

Rescue of morphine-induced suppression of ISG15 mRNA expression by IFNα/β co-incubation. 

PBMCs from a healthy individual were pre-treated with morphine as described, along with a co-

incubation of either IFNα or IFNβ and followed by LPS (100ng/mL) stimulation for 3 hours. 

Expression of ISG15 was evaluated by RT-qPCR. Values are displayed as fold increase (log10) 

to gene expression in LPS stimulated cells over unstimulated cells. c,  Cell hashing scRNA-seq 

of healthy PBMCs pre-treated with morphine as described, along with a co-incubation of either 

IFNα or IFNβ and followed by LPS (100ng/mL) stimulation for 3 hours. Heatmaps of  scaled single 

cell expression value of core antiviral genes (left) and violin plots of average core antiviral gene 

set expression (log scaled) (right) observed in LPS stimulated cells (LPS), morphine treated and 

LPS stimulated cells (Morphine + LPS), morphine and IFNα treated and LPS stimulated cells 

(Morphine + IFNα + LPS), and morphine and IFNβ treated and LPS stimulated cells (Morphine + 

IFNβ + LPS) in  CD4+ T cells and CD8+ T Cells. Significance shown between LPS and Morphine 

+ LPS, Morphine + LPS and Morphine + IFNα + LPS, and Morphine + LPS and Morphine + IFNβ 

+ LPS (**** ≤ 0.0001).   
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Figure S1. Cell type identification from scRNA-seq of naive and LPS-stimulated 
PBMCs from opioid dependent individuals and neighborhood controls using 
canonical gene markers. a, t-SNE plot of naive and LPS-stimulated PBMCs with 
identified cell types: Naive CD4+ T cells (30,388 cells), Naive CD8+ T cells (6,439 
cells), Naive CD8+ memory T cells (3,588 cells), Naive B cells (6,703 cells), Naive NK 
cells (2,439 cells), Naive monocytes (2,220 cells), LPS-stimulated CD4+ T cells (11,308 
cells), LPS-stimulated CD8+ T cells (3,019 cells), LPS-stimulated activated T cells 
(4,058 cells), LPS-stimulated B cells (2,225 cells), LPS-stimulated NK cells (566 cells), 
LPS-stimulated monocytes (261 cells), NA or no applicable cell types (1,608 cells). b, t-
SNE projection of canonical gene marker expression and number of UMIs per cell 
across all naive state and LPS stimulated subpopulations: CD4+ T cells (CD3D, IL7R), 
CD8+ T cells (CD8A), B cells (MS4A1), Naive NK cells (GNLY), Naive Monocytes 
(LYZ), activated cells (CREM), naive cells (SELL). 
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Figure S2. Top marker genes for naive state cell types. Heatmap of the top 10 
genes expressed (scaled) across cells in each naive state population. Top 10 marker 
genes were identified using a wilcoxon rank sum test over all cell types: CD4+ T cells 
(CD4+ T), CD8+ T cells (CD8+ T), CD8+ Memory T cells (CD8+ T Memory), B cells, NK 
cells, and Monocytes.  
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Figure S3. Top marker genes for LPS-stimulated state cell types. Heatmap of the 
top 10 gene markers expressed (scaled) across cells in each LPS-stimulated 
population. Top 10 marker genes were identified using a wilcoxon rank sum test over all 
cell types: CD4+ T cells (CD4+ T), CD8+ T cells (CD8+ T), Activated T cells (Activated 
T), B cells, NK cells, and Monocytes.  
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Figure S4. Differential gene expression analysis of opioid-dependent and 
neighborhood control PBMCs across naive and LPS-stimulated state cell types. 
We performed differential expression analysis within each cell type between control and 
opioid dependent cells (see Methods). Volcano plot showing fold change of genes (log2 
scale) between control and opioid-dependent cells from Naive CD4+ T cells, Naive 
CD8+ T cells, Naive CD8+ Memory T cells, Naive B cells, LPS-stimulated CD8+ T cells, 
LPS-stimulated B cells, LPS-stimulated Monocytes (x-axis) and significance of 0.05 (y-
axis, -log10 scale). Significant genes shown in black, significant antiviral genes shown 
in green, and insignificant genes shown in grey.   
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Figure S5. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules in CD4+ T cells. a, Heatmap of scaled expression of core antiviral, 
peaked inflammatory, and sustained inflammatory gene modules  (y-axis) : naive state 
control samples (Naive Control), naive state opioid-dependent samples (Naive Opioid), 
LPS-stimulated control samples (LPS Control), and LPS-stimulated opioid-dependent 
samples. b, Average antiviral gene set expression (log expression) across all sample 
cells in monocytes: C1-C7 (naive control samples 1 - 7), C1-C3 (LPS) (LPS stimulated 
control samples 1 - 3), O1-O7 (naive opioid dependent samples 1-7), O1-O3 (LPS) 
(LPS stimulated opioid dependent samples 1-3).  
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Figure S6. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules  in CD8+ T cells.  a, Heatmap of scaled expression of core antiviral, 
peaked inflammatory, and sustained inflammatory gene modules (y-axis)  for samples 
cells: naive state control samples (Naive Control), naive state opioid-dependent 
samples (Naive Opioid), LPS-stimulated control samples (LPS Control), and LPS-
stimulated opioid-dependent samples. b, Average antiviral gene set expression (log 
expression) across all sample cells in monocytes: C1-C7 (naive control samples 1 - 7), 
C1-C3 (LPS) (LPS stimulated control samples 1 - 3), O1-O7 (naive opioid dependent 
samples 1-7), O1-O3 (LPS) (LPS stimulated opioid dependent samples 1-3).  
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Figure S7. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules  in B cells. a, Heatmap of scaled expression of core antiviral, peaked 
inflammatory, and sustained inflammatory gene modules (y-axis) : naive state control 
samples (Naive Control), naive state opioid-dependent samples (Naive Opioid), LPS-
stimulated control samples (LPS Control), and LPS-stimulated opioid-dependent 
samples. b, Average antiviral gene set expression (log expression) across all sample 
cells in monocytes: C1-C7 (naive control samples 1 - 7), C1-C3 (LPS) (LPS stimulated 
control samples 1 - 3), O1-O7 (naive opioid dependent samples 1-7), O1-O3 (LPS) 
(LPS stimulated opioid dependent samples 1-3).  
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Figure S8. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules  in NK cells. a, Heatmap of scaled expression of core antiviral, peaked 
inflammatory, and sustained inflammatory gene modules  (y-axis) : naive state control 
samples (Naive Control), naive state opioid-dependent samples (Naive Opioid), LPS-
stimulated control samples (LPS Control), and LPS-stimulated opioid-dependent 
samples. b, Average antiviral gene set expression (log expression) across all sample 
cells in monocytes: C1-C7 (naive control samples 1 - 7), C1-C3 (LPS) (LPS stimulated 
control samples 1 - 3), O1-O7 (naive opioid dependent samples 1-7), O1-O3 (LPS) 
(LPS stimulated opioid dependent samples 1-3).  
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Figure S9. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules  in monocytes. a, Heatmap of scaled expression of core antiviral, 
peaked inflammatory, and sustained inflammatory gene modules (y-axis): naive state 
control samples (Naive Control), naive state opioid-dependent samples (Naive Opioid), 
LPS-stimulated control samples (LPS Control), and LPS-stimulated opioid-dependent 
samples. b, Average antiviral gene set expression (log expression) across all sample 
cells in monocytes: C1-C7 (naive control samples 1 - 7), C1-C3 (LPS) (LPS stimulated 
control samples 1 - 3), O1-O7 (naive opioid dependent samples 1-7), O1-O3 (LPS) 
(LPS stimulated opioid dependent samples 1-3).  
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Figure S10. Gene expression of interferon inhibitors in opioid-dependent and 
control cells. Dot plot of average gene expression of negative interferon regulators 
SOCS3 and USP15 (x-axis) in control cells (Control) and opioid-dependent cells 
(Opioid) across all naive state cell types: CD4+ T cells, Monocytes, NK cells, CD8+ T 
cells, CD8+ Memory T cells, and B cells (y-axis). 
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Figure S11. Evaluation of mRNA expression level of ISG15 upon dose response to 
morphine stimulation for 3 hours. PBMCs from a healthy individual were pre-treated with a 
titration of morphine (0uM, 10uM, 100uM) for 3 hours followed by LPS (100ng/mL) stimulation 
for 3 hours. Expression of interferon pathway gene ISG15 was evaluated by RT-qPCR. Values 
are displayed as fold increase (log10) to gene expression in LPS stimulated cells over 
unstimulated cells. 
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Figure S12. Sample multiplexing of in vitro morphine-treated PBMCs using 
hashtag-oligo (HTO) technology. a, t-SNE projection of the 10,903 HTO dataset. 
Cells are labelled based on sample-of-origin (12 singlet clusters with 7,176 cells) and 
doublets (3,721 cells). b, Heatmap of scaled expression of HTO sample cells and 
multiplets. Multiplets express more than one HTO.  
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Figure S13. Cell type identification of in vitro morphine-treated PBMCs. a, t-SNE 
projection of unsupervised clustering of 7,176 HTO cells. We identified cell type 
populations (top): CD4+ T cells (3,931 cells), CD8+ T cells (1,310 cells), B cells (534 
cells), NK cells (140 cells), Monocytes (1,198 cells), NA or non-applicable cell type (63 
cells). We also colored cells by the 12 HTO samples in naive and LPS-stimulated states 
(bottom).  b, t-SNE projection of canonical gene marker expression across all 
subpopulations: CD4+ T cells (CD3D, IL7R), CD8+  T cells (CD3D, CD8A), B cells 
(MS4A1), NK cells (GNLY), and Monocytes (LYZ).  
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Figure S14. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules in in vitro treated CD4+ T cells. a, Heatmap of scaled expression of 
core antiviral and inflammatory genes observed across all naive state samples (top) and 
LPS-stimulated samples (bottom). b, Average antiviral gene set expression (log 
expression) across all naive state sample cells (top) and LPS-stimulated sample cells 
(bottom).  
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Figure S15. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules in in vitro treated CD8+ T cells.  a, Heatmap of scaled expression of 
core antiviral and inflammatory genes observed across all naive state samples (top) and 
LPS-stimulated samples (bottom). b, Average antiviral gene set expression (log 
expression) across all naive state sample cells (top) and LPS-stimulated sample cells 
(bottom).  
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Figure S16. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules in in vitro treated B cells.  a, Heatmap of scaled expression of core 
antiviral and inflammatory genes observed across all naive state samples (top) and 
LPS-stimulated samples (bottom).b, Average antiviral gene set expression (log 
expression) across all naive state sample cells (top) and LPS-stimulated sample cells 
(bottom).  
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Figure S17. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules in in vitro treated NK cells.  a, Heatmap of scaled expression of core 
antiviral and inflammatory genes observed across all naive state samples (top) and 
LPS-stimulated samples (bottom). b, Average antiviral gene set expression (log 
expression) across all naive state sample cells (top) and LPS-stimulated sample cells 
(bottom).  
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Figure S18. Single cell gene expression heatmap of antiviral and inflammatory 
gene modules in in vitro treated Monocytes. a, Heatmap of scaled expression of 
core antiviral and inflammatory genes observed across all naive state samples (top) and 
LPS-stimulated samples (bottom). b, Average antiviral gene set expression (log 
expression) across all naive state sample cells (top) and LPS-stimulated sample cells 
(bottom).  
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