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Abstract It is commonplace to determine the effectiveness of the combination
of drugs by comparing the observed effects to a reference model that describes
the combined effect under the assumption that the drugs do not interact.
Depending on what is to be understood by non-interacting behavior, several
reference models have been developed in the literature. One of them is the cel-
ebrated Bliss independence model, which assimilates non-interaction with sta-
tistical independence. Intuitively, this requires the dose-response curves to have
zero as minimal effect and one as maximal effect, a restriction that was indeed
adopted by Bliss. However, we show how non-interaction can be interpreted
in terms of statistical independence, while nevertheless allowing arbitrary val-
ues for the minimal and the maximal effect. Furthermore, our reference model
allows the maximal effects of the dose-response curves to be different. In a
first step, we construct a basic reference model for the case of two drugs and
where the maximal effects of the two individual dose-response curves are as-
sumed to be equal. By relying on the notion of non-interaction in terms of
statistical independence, and by introducing two consistency principles, we
show how a unique reference model can be derived. In a second step, a more
general reference model, allowing the maximal effects to be different while still
restricting to two drugs, is then easily constructed from the basic reference
model. Finally, an induction step is applied to generalize the reference model
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to the case of an arbitrary number of drugs, allowing each dose-response curve
to have a possibly different maximal effect. Although the minimal effect of
the dose-response curves are restricted to be equal, which we show to be a
necessary consequence of consistency rules, its value is arbitrary.

Keywords Drug combinations · Reference model · Bliss independence · Zero
interaction potency

Author summary

The Bliss independence model is a very popular reference model for drug
combinations, meaning that it predicts the combined effect of doses of given
drugs under the assumption of non-interaction between these drugs. However,
because Bliss described non-interaction as statistical independence, he thought
that he had to assume that the minimal effect of all dose-response curves are
zero, while the maximal effect of all dose-response curves are one. While it is
acceptable that all dose-response curves have minimal effect zero, because this
amounts to having a common reference state (i.e. the response when no drug
at all is given), it is a severe restriction to force all dose-response curves to
have maximal effect one. On the other hand, the Bliss independence model has
the advantage that it relies on sound statistical theory, and the assimilation
of non-interaction with statistical independence is rather intuitive. We have
extended the Bliss independence model to allow the involved dose-response
curves to have different maximal effects. This has been done in a rigorous
way, where the statistical underlying theory that was used by Bliss remains
essentially intact.

1 Introduction

1.1 Background and goal of the paper

For certain diseases it has become standard practice to administer a combina-
tion of drugs instead of a single agent, stimulated by advances in omics and
cell biology (Keith, Borisy and Stockwell 2005). Examples of diseases where
one has become convinced of the superiority of combining drugs include can-
cer (Al-Lazikani, Banerji and Workman 2012; Bukowska, Gajek and Marczak
2015; Preuer et al. 2018), Parkinson’s disease (Bitner et al. 2015; Hajj et al
2015; Matsunaga, Kishi and Iwata N 2017; Przuntek et al 1992), HIV (Cih-
lar and Fordyce 2016; Scourfield, Waters and Nelson 2011; Sombogaard 2018;
Wilson, Gallant and Mayer 2009) and asthma (Breton et al 2007; Nelson 2001;
Pierarch 2001; Ruggeri et al 2012; Saleh 2008).

However, there is no a priori ground to assume that the combination of
individual drugs will result in a larger desired effect than the additive effect of
the single drugs. The additive effect in this context is, loosely speaking, to be
interpreted as the effect that one expects to result from the combination of the
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drugs based solely on knowledge of the effects of the single drugs. For a given
set of drugs there are basically three possibilities: 1. the drugs do not interact,
meaning that no superior nor inferior effect arises by combining them; 2. the
drugs do interact and thereby reinforce each other, resulting in a superior effect
compared to the additive effect, a phenomenon known as synergy; 3. the drugs
are interacting but their combination results in an effect that is inferior to the
additive effect of the single drugs, known as antagonism (Bell 2004; Tallarida
2001). Determining which of the three possibilities applies in a particular case
relies on having a theoretical model that describes the additive effect of the
single agents, referred to as the reference model. Having constructed a model
that represents the additive effect, the observed effect can then be compared to
this additive effect to determine which of the three aforementioned possibilities
hold. It should not come as a surprise that currently there does not exist a
universally accepted reference model. The reason is that the construction of
a reference model depends on the meaning of the concept of non-interaction
between drugs, since non-interaction is the key ingredient in determining the
additive effect. Indeed, any interaction between drugs will produce an effect
that was not expected based on the effects of the individual drugs. As yet, there
does not exist a standard interpretation of non-interaction in the context of
drug combinations (Foucquier and Guedj 2015).

In this paper we extend a reference model that is still very popular, de-
spite the fact that it was published a long time ago. The Bliss independence
model (Bliss 1939) was published in 1939, and relies on the statistical concept
of independence. We also describe non-interaction between drugs as statisti-
cal independence between suitably defined random variables. Our model also
shows some similarities to the zero interaction potency (ZIP) model (Yadav et
al. 2015), a recent model that has received attention from the drug combina-
tions community. More specifically, we rely on the authors’ idea to construct
a reference model by fixing a certain drug and describing what happens when
a given amount of another drug is added to it.

1.2 Outline of the paper

The paper is outlined as follows. Section 2 introduces some notation and de-
scribes the assumptions that will be maintained throughout the paper, such as
an equal minimal effect for all considered dose-response curves. The Bliss in-
dependence model and the ZIP model, which is related work to our research,
are briefly reviewed in Section 3. Bliss provided a rather ad hoc similarity
between the behavior of drugs and statistical independence, establishing the
relationship between probability and dose-response curves by restricting the
minimal effect of a dose-response curve to zero and its maximal effect to one.
We introduce a sound relationship between a given dose-response curve and
the expected value of a properly defined random variable. This establishes an
appropriate statistical setting that is equivalent to the deterministic setting
that is traditionally considered in describing the effect of a drug for a given
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dose. Furthermore, the relationship allows the dose-response curve to have
arbitrary minimal and maximal effect. The probabilistic setting is outlined
in Section 4. In Section 5 we construct our basic reference model, which ap-
plies to the combination of two drugs that have the same maximal effect. It is
shown how the basic reference model is uniquely identified from the two con-
sistency principles that are introduced in the same section. The basic reference
model is then extended, in Section 6, to dose-response curves with a possibly
different maximal effect, while still restricting to the case of two drugs. The
ideas underlying the construction of a reference model for two drugs are also
applicable in constructing a reference model that describes the effect of the
combination of an arbitrary number of non-interacting drugs, where each drug
has a dose-response curve with a possibly different maximal effect. Induction
does the trick, and the general reference model is described in Section 7. Fi-
nally, in Section 8 we illustrate our model, thereby indicating the importance
of allowing for different maximal effects.

2 Notational conventions and assumptions

The considered drugs are conveniently referred to as the first drug, the second
drug, etcetera. The dose-response curve of each drug is assumed to be given and
is denoted by fi, i ∈ N. An arbitrary dose of the ith drug is denoted by xi with
corresponding effect given by yi = fi(xi). We adopt the common assumption
that fi is strictly increasing. At dose 0 each drug obtains its minimal effect
Ai = fi(0). However, we assume throughout the paper that the minimal effect
of all involved individual dose-response curves are equal to the same value
A ≡ Ai. One can also consider this a logical or commonsense restriction,
since not applying a certain drug (which is the same as administering a dose
0 of that drug) should result in the same effect as not applying any other
drug. Indeed, in both cases no action has been taken. In terms of a thought
experiment, a patient is not able to distinguish between having administered
a dose 0 of a certain drug or a dose 0 of any other drug. In other words, logic
and commonsense require a unique reference state. However, this argument
breaks down in case the drugs are administered at different times, since the
influence of other factors might change the reference state over time. But
then consistency requires that there exists a data transformation such that
the effects of both drugs can be described with respect to a common reference
state. This is very similar to the arbitrary choice of a single origin in describing
certain physical systems in Euclidean space. The dose-response curves are
bounded above by their maximal effect Bi, in the sense that lim

xi→+∞
fi(xi) =

Bi. Since, in the case of two drugs, a reference model is meant to give us
the additive effect for the combination of a dose x1 of the first drug with
a dose x2 of the second drug, the reference model is conveniently denoted by
f1,2(x1, x2). In the more general case of n drugs, the reference model is denoted
by f1,...,n(x1, . . . , xn).
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3 Related work

3.1 Bliss independence model

For convenience in terms of notation, we review the Bliss independence model
for the case of two drugs. The Bliss independence model assumes that A = 0
and B ≡ B1 = B2 = 1. Together with the assumption that the dose-response
curves are strictly increasing, it follows that fi(xi) can be interpreted as a
probability. This interpretation allows to formulate a reference model in a
probabilistic setting, in the following way. Let a patient be given a dose xi of
the ith drug, and assume that she either encounters an effect (success) or no
effect (failure). Instead of modelling the response in terms of the given dose, the
probability of an effect can then be considered. Both are equivalent modelling
perspectives, because the given assumptions imply that fi(xi) represents both
the effect at dose xi (in the deterministic setting) and the probability of an
effect at dose xi (in the probabilistic setting). The probabilistic interpretation
can be made more explicit by introducing the event Di(xi) that the ith drug
results in an effect at dose xi. By the given arguments it then holds that the
probability of this event is given by fi(xi) = P (Di(xi)). Bliss then defines
non-interaction between the two drugs as the statistical independence of the
associated events D1(x1) and D2(x2), implying that

P
(
D1(x1) ∪D2(x2)

)
= P

(
D1(x1)

)
P
(
D2(x2)

)
(1)

= f1(x1)f2(x2) (2)

Continuing the reasoning in terms of probability, the effect of the combination
of dose x1 of the first drug with dose x2 of the second drug, is then interpreted
as the probability that at least one of the events D1(x1) and D2(x2) occurs.
Indeed, an effect will be observed when combining the two drugs if at least
one of the drugs results in an effect. Using the non-interaction principle given
by (1), and the probabilistic formulation of the probability of the union of two
events, the Bliss independence model is then given by

f1,2(x1, x2) = P
(
D1(x1) ∪D2(x2)

)
= P

(
D1(x1)

)
+ P

(
D2(x2)

)
− P

(
D1(x1) ∩D2(x2)

)
= P

(
D1(x1)

)
+ P

(
D2(x2)

)
− P

(
D1(x1)

)
P
(
D2(x2)

)
= f1(x1) + f2(x2)− f1(x1)f2(x2) (3)

3.2 Zero interaction potency

The zero interaction potency (ZIP) model applies to the case of two drugs.
Furthermore, the authors assume a Hill curve as dose-response curve, and
that the maximal effects are equal: B ≡ B1 = B2. This results in the following
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description of the individual dose-response curves:

fi(x) =
A+B

(
x
mi

)λi

1 +
(
x
mi

)λi
(4)

with mi and λi parameters.

As a first step, the authors assume that A = 0 and B = 1. The idea is
then to consider the addition of a dose x2 to a dose x1 of the first drug. Thus
the first drug is given the focus, and the question is how the effect of the first
drug changes when a certain dose of the second drug is added to it. Non-
interaction according to the authors means that the effect of this combination
can still be represented by a curve similar to the Hill curve (4) with i = 1
(i.e. the dose-response curve for the first drug). The parameters m1 and λ1
are not influenced by this combination, and thus retain their original values as
before the combination. Otherwise, the shape of the curve would be changed,
implying that the second drug would have changed the effectiveness of the first
drug. This would imply interacting behavior, contrary to the assumption that
the drugs do not interact. However, the minimal effect of the dose-response
curve of the first drug will be changed from A = 0 to A = f2(x2), since adding
a dose x2 of the second drug to a dose 0 of the first drug results, of course, in
the effect f2(x2). Denoting the effect that results by adding a dose x2 of the

second drug to a dose x1 of the first drug by f
(2)
1 (x1;x2) we then have that

f
(2)
1 (x1;x2) =

f2(x2) +
(
x
m1

)λ1

1 +
(
x
m1

)λ1
(5)

They go on by showing that the conceptual view of adding the second drug
to the first drug is equivalent to adding the first drug to the second one,

i.e. f
(2)
1 (x1;x2) = f

(1)
2 (x2;x1). The model is thus consistent with drug la-

belling, meaning that it does not matter which drug is referred to as the first
drug. Since both formulations are the same, this can be taken as the reference

model. By applying some algebra, they show that f1,2(x1, x2) ≡ f (2)1 (x1;x2) =

f
(1)
2 (x2;x1) can be written as:

f1,2(x1, x2) =

(
x1

m1

)λ1

1 +
(
x1

m1

)λ1
+

(
x2

m2

)λ2

1 +
(
x2

m2

)λ2
−

(
x1

m1

)λ1

1 +
(
x1

m1

)λ1

(
x2

m2

)λ2

1 +
(
x2

m2

)λ2
(6)

= f1(x1) + f2(x2)− f1(x1)f2(x2) (7)

which is the same as the Bliss independence model, except for the fact that
the authors restrict the dose-response curves to Hill curves. In the special case
where A = 0 and B = 1 the ZIP model is thus more restrictive than the Bliss
independence model.
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In a second step they allow thatA andB are arbitrary values. It is, however,
without motivation that they state their reference model for this more general
case:

f1,2(x1, x2) =
A+B

(
x1

m1

)λ1

1 +
(
x1

m1

)λ1
+
A+B

(
x2

m2

)λ2

1 +
(
x2

m2

)λ2
−

A+B
(
x1

m1

)λ1

1 +
(
x1

m1

)λ1

A+B
(
x2

m2

)λ2

1 +
(
x2

m2

)λ2

(8)

Seemingly, the authors combined the expressions in (4) and (6) to make an
educated guess on the proper position of A and B when the more general case
is considered.

4 Introduction of a general probabilistic setting

We make use of the idea of thinking in terms of a probabilistic setting, as in
the Bliss independence model, although we do not restrict the minimal and
maximal effects. This is done by separating, in a certain sense, the minimal and
maximal effect from the probabilistic part in the description of a dose-response
curve.

4.1 Alternative description of a dose-response curve

We introduce the following very simple, yet extremely useful theorem.

Theorem 1 Any function f(x), with x ≥ 0, that is continuous and strictly
increasing, with f(0) = A and lim

x→+∞
f(x) = B, can be written as

f(x) = A (1− g(x)) +B g(x) (9)

with g(x) a function that is continuous and strictly increasing, and for which
g(0) = 0 and lim

x→+∞
g(x) = 1.

Proof Define g(x) = f(x)−A
B−A if A < B, which clearly has the required proper-

ties. Then it follows that f(x) = A (1−g(x))+B g(x). When A = B, it follows
that f(x) = A, in which case f can still be written as (9) and this for any g
that has the required properties.

Since the function f in the theorem has exactly the properties that we require
for an individual dose-response curve (cf. Section 2), we can thus as well define
a dose-response curve in the following way.
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Definition 1 A dose-response curve f(x) is a function of the form

f(x) = A (1− g(x)) +B g(x) (10)

with g(x) a function that has the following properties:

g(0) = 0 (11)

lim
x→+∞

g(x) = 1 (12)

g(x) : continuous and strictly increasing (13)

Observe that (10) expresses a dose-response curve as a weighted combination
of the minimal effect and the maximal effect, the weights being determined by
the function g.

We introduce a convenient shorthand notation for the expression in (10).

Definition 2

F(x;A,B, g) = A (1− g(x)) +B g(x) (14)

4.2 Probabilistic interpretation of the dose-response curve

The description f(x) = A(1− g(x)) +Bg(x) for the response of a drug can be
given an elegant interpretation. Notice that (11)-(13) implies that 0 ≤ g(x) ≤
1. This means that g(x) for any fixed dose x can be interpreted as a probability.
This is similar to the Bliss independence model, with the important difference
that in our formulation it is not the dose-response curve itself that has the
meaning of a probability (which would require the minimal effect to be zero,
and the maximal effect to be one), but only a certain part of it, namely g. Again
similar to the rationale behind the Bliss independence model, the probabilistic
setting implies that a patient who is given a dose x of a drug either encounters
an effect (success) or no effect (failure). This happens at random, with the
probability of success given by g(x) and the probability of failure by 1− g(x).
Furthermore, when there is an effect, we consider the effect to be equal to the
maximal effect B, and the absence of an effect is represented by A (since the
minimal effect results from a dose 0, i.e. A corresponds to a rest state). We
denote the random variable in this probabilistic setting by Z(x):

Z(x) = B if success

= A if failure

with

P (Z(x) = B) = g(x) (15)

P (Z(x) = A) = 1− g(x)
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According to the definition of expectation, the expected value of Z(x) is given
by

E[Z(x)] = Bg(x) +A(1− g(x))

⇒ E[Z(x)] = f(x) (16)

using (10). The drug that is used in the deterministic case, where a dose
x generates a definite effect f(x) in any given patient, could be referred to
as the deterministic drug. The drug considered in the probabilistic setting,
where a dose x either generates effect A or effect B could then be referred to
as the probabilistic drug. Equation (16) then expresses a duality between the
deterministic drug and the probabilistic drug: the expected value of the effect
of the probabilistic drug equals the effect of the deterministic drug. In this
sense, the deterministic drug and the probabilistic drug are equivalent.

5 Basic reference model: two drugs and B1 = B2

As a first step, we assume that there are only two drugs to be combined and
that B ≡ B1 = B2. The reference model that will be constructed for this case
is called the basic reference model.

5.1 Introduction

Using the general description of a dose-response curve, given by (10), and
using the assumption that B1 = B2 = B, the dose-response curves of the two
drugs are described by

f1(x) = A (1− g1(x)) +B g1(x) (17)

f2(x) = A (1− g2(x)) +B g2(x) (18)

We now rely on one of the ideas that underlies the ZIP model: constructing
a reference model by taking the point of view that one of the drugs is added to
the other one, assuming that the reference model will retain certain properties
of the dose-response curve of the drug to which the other one is added. Let us
first consider the case where a dose x2 of the second drug is added to a dose x1
of a first drug. As in Section 3.2, the resulting effect is denoted as f

(2)
1 (x1;x2).

Since this function describes the response for given doses, similar to the dose-

response curve for a single drug, the expression for f
(2)
1 (x1;x2) should conform

the description of a general dose-response curve given by (10). However, the
notation in (10) is to be generalized to take two doses into account, each dose
corresponding to a different drug. This can be done as follows:

f
(2)
1 (x1;x2) = A(2)(x2)

(
1− g(2)1 (x1;x2)

)
+B(2)(x2) g

(2)
1 (x1;x2) (19)
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where A(2)(x2) and B(2)(x2) are the new minimal and maximal effects after
a dose x2 of the second drug is added to any dose x1 of the first drug. The
reason that we consider the new minimal and maximal effects to be functions
of x2 is simply that it is possible that these quantities depend on the exact
dose x2 that is added. These quantities are as yet unknown. Furthermore,
reasoning in terms of the probabilistic setting outlined in Section 4, results in

the generalization of g1(x1) to g
(2)
1 (x1;x2). Whereas g1(x1) is the probability

that dose x1 of the first drug results in an effect, g
(2)
1 (x1;x2) expresses the

probability that an effect is observed after a dose x2 of the second drug is
added to a dose x1 of the first drug. Following Bliss, we define non-interaction
as statistical independence between the random variables Z1(x1) and Z2(x2),
implying that

g
(2)
1 (x1;x2) = g1(x1) + g2(x2)− g1(x1)g2(x2) (20)

Consider now the other point of view: adding a dose x1 of the first drug to a
dose x2 of the second drug. The general description of the combined effect is

simply obtained from (19) by changing indices. This also applies to g
(1)
2 (x2;x1),

which is obtained from (20) by changing indices. It is easily seen that this

results in the same expression as for g
(2)
1 (x1;x2), given by the right hand side

of (20). The right hand side of (20) can therefore be taken as the probability
of observing an effect when a dose x1 of the first drug is combined with a dose
x2 of the second drug. That is, we do not need to consider which drug is added
to the other one in describing the probability of a combined effect. We may
thus introduce the notation g1,2(x1, x2) to represent this probability:

g1,2(x1, x2) = g1(x1) + g2(x2)− g1(x1)g2(x2) (21)

It remains to determine the unknowns A(2)(x2) and B(2)(x2). We determine
these functions by introducing two consistency principles, i.e. principles that
should be obeyed by any reference model because of logical consistency.

5.2 First consistency principle and application

The combined effect by adding a dose 0 of the second drug to a dose x1 of the
first drug is, logically speaking, the same as the effect of dose x1 of the first
drug. In other words, administering a dose 0 of the second drug is the same
as not administering that drug. The same reasoning applies, of course, when a
dose 0 of the first drug is added to a dose x2 of the second drug. This explains
the following logical principle.

Definition 3 First consistency principle

f
(2)
1 (x1; 0) = f1(x1) (22)

f
(1)
2 (0;x2) = f2(x2) (23)
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The first consistency principle allows to determine A(1)(0), A(2)(0), B(1)(0)
and B(2)(0).

Theorem 2

A(1)(0) = A(2)(0) = A (24)

B(1)(0) = B(2)(0) = B (25)

Proof If we apply (22) to (19) and (17) we find:

A(2)(0)
[
1− g1(x1)

]
+B(2)(0) g1(x1) = A (1− g1(x1)) +B g1(x1)

where we used the expression for g
(2)
1 (x1;x2) given by (20). If we choose x1 = 0

in the above equality we find that

A(2)(0) = A

In the same equality, taking on both sides the limit x1 → +∞ and using (12)
results in

B(2)(0) = B

By the same reasoning we find that A(1)(0) and B(1)(0) are as promised by
the theorem.

5.3 Second consistency principle and application

The thought experiment of adding the second drug to the first drug should
result in the same combined effect as adding the first drug to the second one.
That is, the labels ’first drug’ and ’second drug’ should be arbitrary.

Definition 4 Second consistency principle

f
(2)
1 (x1;x2) = f

(1)
2 (x2;x1) (26)

Notice that the first and the second principle together imply the equality
of the minimal effects of both dose-response curves, an assumption which was
made in Section 2. It now turns out that this is not merely a convenient or
commonsense assumption, but rather a restriction dictated by consistency.
Indeed, applying the two consistency principles given by (22)-(23) and (26) to
the case x1 = x2 = 0, we find:

f1(0) = f
(2)
1 (0; 0) = f

(1)
2 (0; 0) = f2(0) (27)

The second principle can be used to completely identify the unknown func-
tions A(1)(x1), B(1)(x1), A(2)(x2) and B(2)(x2).
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Theorem 3

B(1)(x1) = B(2)(x2) = B (28)

A(1)(x1) = A(2)(x2) = A (29)

Proof By (19) and (21) the second consistency principle is equivalent to

A(2)(x2)
(

1− g1,2(x1, x2)
)

+B(2)(x2) g1,2(x1, x2)

= A(1)(x1)
(

1− g1,2(x1, x2)
)

+B(1)(x1) g1,2(x1, x2)
(30)

Taking on both sides the limit x1 → +∞ results in:

B(2)(x2) = B(1)(+∞)

where B(1)(+∞) is shorthand for lim
x1→+∞

B(1)(x1). The above equality holds

for all x2, in particular for x2 = 0. But Theorem 2 tells us that B(2)(0) = B,
cf. (25). Thus

B(1)(+∞) = B (31)

Since a non-interacting drug cannot result in antagonistic effects, adding a
lower dose of the first drug to the second drug cannot result in a higher maximal
effect of the combination than adding a higher dose of the first drug to the
second drug. That is to say, x′1 ≥ x1 ⇒ B(1)(x′1) ≥ B(1)(x1), and therefore

B = B(1)(+∞) ≥ B(1)(x1) ≥ B(1)(0) = B

where we used (25) and (31). Consequently:

B(1)(x1) = B

and by the same reasoning:

B(2)(x2) = B

Thus we have found that B(1)(x1) = B(2)(x2) = B. If we plug this into equality
(30) we see that A(2)(x2) = A(1)(x1). This holds for all x1, x2, in particular
for x2 = 0. By (24) this implies that A(1)(x1) = A. The same reasoning results
in A(2)(x2) = A.

5.4 Reference model

We can now use the values for B(1)(x1) and A(1)(x1), given by (28) and (29),

in the description of f
(2)
1 (x1;x2), as given by (19). We thus have found our

reference model as

f1,2(x1, x2) = A
[
1− g1,2(x1, x2)

]
+B g1,2(x1, x2) (32)

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630616doi: bioRxiv preprint 

https://doi.org/10.1101/630616
http://creativecommons.org/licenses/by/4.0/


13

The second consistency principle required that f
(2)
1 (x1;x2) = f

(1)
2 (x2;x1). It

is easily seen that the above expression for the reference model is indeed in-
dependent of the choice of labelling, i.e. f1,2(x1, x2) = f2,1(x2, x1).

As an intermediate conclusion, it is useful to summarize how this refer-
ence model was obtained. We started from the common assumption that the
individual dose-response curves are increasing, obtaining a minimal effect at
dose 0 and a maximal effect at an infinite dose. Then we managed, using the
apparently obvious theorem 1, to separate the minimal and maximal effect
from the remaining part of the dose-response curve. For that remaining part,
i.e. gi(xi), i = 1, 2, it was shown how it can be interpreted as the probabil-
ity that the maximal effect is observed for a given dose xi for the ith drug.
The expected value of the associated random variable equals the dose-response
curve fi for dose xi. The dose-response function for the combination of the
drugs, i.e. the reference model, was then also assumed to have this structure,
although generalized for a combination of doses rather than for a single dose.
Two consistency principles and one non-interaction principle (essentially the
same one as introduced by Bliss, although applied at the level of g instead of
at the level of the dose-response function) resulted in the determination of the
unknowns in the reference model. It is striking that these three principles are
necessary and sufficient to completely determine the reference model. That is,
one the one hand no further assumptions are needed to completely describe
the reference model, and on the other hand the three principles are all needed
to uniquely identify the reference model.

5.5 Comparison to Bliss independence and ZIP

5.5.1 Comparison to Bliss independence

Our model generalizes the Bliss independence model. To see this, let A = 0
and B = 1. Then our reference model, given by (32), reduces to

f1,2(x1, x2) = g1,2(x1, x2)

= g1(x1) + g2(x2)− g1(x1)g2(x2)

Furthermore, with A = 0 and B = 1 it follows from (10) that gi = fi, and
thus the above expression becomes:

f1,2(x1, x2) = f1(x1) + f2(x2)− f1(x1)f2(x2)

which is equal to the Bliss independence model given by (3).

5.5.2 Comparison to ZIP

Our model generalizes ZIP in the basic case where A = 0 and B1 = B2 = B =
1. This is obvious, as our model generalizes the Bliss independence model, and
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since the Bliss independence model is itself a generalization of ZIP in the basic
case (cf. Section 3.2).

For the more general case where A and B = B1 = B2 are arbitrary, our
reference model produces another effect than ZIP. However, we notice that
there is a severe inconsistency in the ZIP model in this case. It is clear that it
should hold that f1,2(0, 0) = A, since not administering the first drug nor the
second drug should have the reference state as resulting effect. However, this
is not the effect that is produced by the ZIP model, as seen from (8):

f1,2(0, 0) = A+A−A2

= A(2−A)

which is different from A, unless A = 0 or A = 1. The inconsistency becomes
even more severe if the minimal effect A is larger than 2, since in this case the
ZIP reference model says that the reference state corresponds to a negative
value: A(2 − A) < 0. The same inconsistency applies to the maximal effect.
Of course, for effects between the minimal and maximal effect the consistency
of the model is not easily verified, as in this case there are no obvious values
to compare the value of the reference model to. However, since the reference
model is continuous, it is clear that at least effects that are close to the minimal
or maximal effect will also be incorrect. It is striking that no single reviewer
has taken the time to verify these easy to check consistency conditions.

6 More general reference model: two drugs and possibly B1 6= B2

6.1 Description

In the basic case, where the two drugs have the same minimal and the same
maximal effect, we have found that the reference model is given by

f1,2(x1, x2) = A
[
1− g1,2(x1, x2)

]
+B g1,2(x1, x2)

Let us now consider the case where, possibly, B1 6= B2, while still restricting
to the case of two drugs. We define, for later use, β = min{B1, B2}. To be
definite, and without loss of generality, let β = B1.

Notice that the term B g1,2(x1, x2) in the above expression for f1,2(x1, x2)
which applies to the basic case where B1 = B2 = B, is the term that involves
the maximal effect B. This term can be written as

B g1,2(x1, x2) = B g1(x1) +B g2(x2)−B g1(x1)g2(x2) (33)

= B1g1(x1) +B2g2(x2)−B g1(x1)g2(x2) (34)

where we used (21). This suggests that in the general case, where B1 6= B2,
the term gi(xi) is preceded by the corresponding maximal effect Bi. However,
it is not clear by which factor the term g1(x1)g2(x2) should be preceded. We
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hypothesize that it is a convex combination of B1 and B2. This implies that
f1,2(x1, x2) in the general case can be written as

f1,2(x1, x2) = A
[
1− g1,2(x1, x2)

]
+B1g1(x1) +B2g2(x2)−

(αB1 + (1− α)B2) g1(x1)g2(x2)

with α ∈ [0, 1] unknown. Since B2 ≥ B1, we should have that a infinite dose of
the second drug results in the effect B2, regardless of the dose x1 of the first
drug:

lim
x2→+∞

f1,2(x1, x2) = B2 (35)

⇔ B1g1(x1) +B2 −
(
αB1 + (1− α)B2

)
g1(x1) = B2 (36)

⇔ α = 1 (37)

where we made use of lim
x2→+∞

g2(x2) = 1. We thus have the following reference

model for the case of arbitrary B1 and B2:

f1,2(x1, x2) = A
[
1− g1,2(x1, x2)

]
+B1g1(x1) +B2g2(x2)−B1g1(x1)g2(x2)

Simple algebra shows that this reference model can also be written as, still
assuming that β = B1:

f1,2(x1, x2) =
[
A(1− g1(x1)) +B1g1(x1)

](
1− g2(x2)

)
+B2g2(x2)

= F
(
x2;F(x1, A,B1, g1), B2, g2

)
where we used Definition 2 in going to the last line. The reference model thus
has the same structure as an individual dose-response curve, as given by (14),
although the minimal effect is not a constant anymore, but another dose-
response curve, namely F(x1, A,B1, g1) = f1(x1). If β = B2, the reference
model is simply obtained by suitably changing indices.

This gives the following description of the reference model:

f1,2(x1, x2) = F
(
x2;F(x1, A,B1, g1), B2, g2

)
if β = B1 (38)

= F
(
x1;F(x2, A,B2, g2), B1, g1

)
if β = B2 (39)

6.2 Consistency of the reference model

We derive some properties possessed by the reference model, thereby demon-
strating the plausibility and logical consistency of it. We restrict to stating the
properties, without performing detailed algebraic derivations, since all prop-
erties are obtained by rather straightforward algebra. Furthermore, to be def-
inite, we assume that β = B1 and thus that the reference model is described
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by (38). The same, or similar, properties can be derived for the case where
β = B2.

We have the following:

– The reference model reduces to the basic reference model given by (32)
when B1 = B2 = B.

– The value of the reference model in (0, 0) equals A, i.e. f1,2(0, 0) = A.
Compare this to the inconsistency that is present in the ZIP model, cf.
Section 5.5.2.

– As already established, the maximal effect equals B2 and is obtained for
an infinite dose of the second drug:

lim
x2→+∞

f1,2(x1, x2) = B2

– The model obeys the first consistency principle:

f1,2(x1, 0) = f1(x1)

f1,2(0, x2) = f2(x2)

What is missing from the list of properties is the equality f1,2(x1, x2) =
f2,1(x2, x1). This is explained by the fact that the maximal effects of the drugs
are different, which results in an asymmetry between the drugs. This can be
understood as follows. Suppose that a dose x1 of the first drug is kept fixed,
while increasingly larger doses x2 of the second drug are added. The larger x2,
the closer the effect will be to B2. Consider now the other direction, where a
dose x2 of the second drug is kept fixed, while increasingly larger doses x1 of
the first drug are added to it. In this case, assuming that B1 < B2, the effect
can never become arbitrarily close to B2. Indeed, the first drug has a smaller
maximal effect than the second drug and is therefore less effective. While in
the case where B1 = B2 an infinite dose of the first drug results in the same
combined effect as an infinite dose of the second drug, irrespective of the finite
dose of the other drug, this principle does not hold in the case where B1 6= B2.
The general reference model shows that

lim
x2→+∞

f1,2(x1, x2) = B2

while

lim
x1→+∞

f1,2(x1, x2) = B1

(
1− g2(x2)

)
+B2g2(x2)

The last equation thus shows that an infinite dose x1 of the first drug results
in an effect that is between B1 and B2, depending on the dose x2 of the second
drug. On the other hand, an infinite dose x2 of the second drug results in the
maximal effect B2, irrespective of the dose x1 of the first drug.
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7 General reference model: arbitrary number of drugs and possibly
different maximal effects

7.1 Considering three drugs

We start our generalization to an arbitrary number of drugs by considering
three drugs. We label the drugs such that B1 ≤ B2 ≤ B3. Let us first combine
the first drug and the second drug. The combined effect is, as we know, given
by the reference model (38):

f1,2(x1, x2) = F
(
x2;F(x1, A,B1, g1), B2, g2

)
The combination can be considered a new single drug, to which we refer as the
zeroth drug for convenience, since the above dose-response function has the
same structure as a single-dose response curve, cf. Definition 2. To combine
it with the third drug, we notice that the zeroth drug has as maximal effect
B2 (cf. Section 6.2), which is smaller (or possibly equal) to the maximal effect
B3, by assumption. This implies that combining the zeroth drug with the
third drug can be performed in the same way as described in Section 6.1 for
the case of two single drugs. The resulting reference model f1,2,3(x1, x2, x3) is
then given by

f1,2,3(x1, x2, x3) = F

(
x3;F

(
x2;F(x1, A,B1, g1), B2, g2

)
, B3, g3

)

= F

(
x3; f1,2(x1, x2), B3, g3

)
(40)

using (38) in going to the last line.

Let us verify the special case A = 0, B1 = B2 = B3 = 1. According to
Definition 2 we then have that F(x1, A,B1, g1) = g1(x1). This implies that

F
(
x2;F(x1, A,B1, g1), B2, g2

)
= F(x1, A,B1, g1)(1− g2(x2)) + g2(x2)

= g1(x1)(1− g2(x2)) + g2(x2)

and thus f1,2,3(x1, x2, x3), given by (40), becomes

F

(
x3;F

(
x2; f1,2(x1, x2), B3, g3

)
=
(
g1(x1)(1− g2(x2)) + g2(x2)

)(
1− g3(x3)

)
+ g3(x3)

= g1(x1) + g2(x2) + g3(x3)− g1(x1)g2(x2)− g1(x1)g3(x3)− g2(x2)g3(x3)

+g1(x1)g2(x2)g3(x3)
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Notice that using (15) the right hand side of the last line equals

P
(
Z1(x1) = B1 ∪ Z2(x2) = B2 ∪ Z3(x3) = B3

)
Consequently, our reference model reduces to the Bliss independence model
for three drugs in this special case, since the special case implies that gi = fi
by (10).

7.2 Considering n drugs

The extension to an arbitrary number of drugs is now straightforward. Let us
first introduce some convenient shorthand notation.

Definition 5

fN (xN ) = f1,...,n(x1, . . . , xn)

Now label the drugs such that B1 ≤ B2 ≤ . . . ≤ Bn. The reference model
for three drugs, given by (40), then suggests the following recursion relation:

fN (xN ) = F
(
xn; fN\{n}(xN\{n}), Bn, gn

)
(41)

Of course, induction requires to proof that if fN\{n}(xN\{n}) is the reference
model for n − 1 drugs, then the reference model for n drugs is indeed given
by the above expression. However, this is easily verified by relying on the
description of constructing the reference model for two and three drugs above.

Notice the elegance of the formulation of the general reference model, given
by (41). Although an arbitrary number of drugs is involved, the description of
the reference model is still similar to the dose-response curve of a single drug,
cf. (14), although, of course, the parameters are different.

An important strength of the reference model is that it does not assume
a specific function for the individual dose-response curves. The involved dose-
response curves are only required to obey the general form of a dose-response
curve as established by Definition 1. This definition only contains some mild
assumptions on g, especially that it is increasing. In particular, it is allowed
that the dose-response curves take different functional representations, for ex-
ample one dose-response curve is a Hill curve while another one assumes an
exponential form.

8 Illustration

In this section we illustrate the difference between our reference model, to
which we will also refer as the unrestricted Bliss reference model (because
it extends the original formulation of Bliss’ reference model to allow for ar-
bitrary maximum effects), and the reference model originally developed by
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Bliss, also referred to as the restricted Bliss reference model (since it assumes
that all maximum effects are one). We first generate two artificial data sets
that represent dose-responses of two different drugs. For both data sets we
consider 50 randomly generated doses d1, . . . , d50 in [0,10]. The response of
the corresponding drug is assumed to have the following exponential form:

fi(x) = Ei

(
1− e−βix

)
(42)

with i ∈ {1, 2}, and where βi > 0 is a shape parameter. Due to the above rep-
resentation of the response, it is implicitly assumed that both minimum effects
are zero. The maximum effect is given by Ei. However, due to measurement
errors, we consider the measured responses to be given by

yi,j = fi(dj) + εj (43)

where yi,j , j = 1, . . . , 50, refers to the response to dose dj of the ith drug, and
where εj is a random number generated from the normal distribution with
mean 0 and variance 0.02. We choose:

E1 = 1

E2 = 1.5

β1 = 0.5

β2 = 1

It is important to note that the maximum effects of the two drugs are different.
After having generated the two data sets Di = {(di, yi,j) | j ∈ {1, . . . , 50}}, i ∈
{1, 2}, we construct a dose-response curve for each data set. We use the expo-
nential form as model. Since the unrestricted reference model allows arbitrary
maximum effects, the dose-response curves that will be used for this reference
model are given by f̂u1 and f̂u2 :

f̂ui (x) = Eui

(
1− e−β

u
i x
)

(44)

where the parameters Eui and βui have to be estimated from the corresponding
data set Di. In this notation the superscript ’u’ refers to ’unrestricted’. We
use the function nlsLM from R to estimate these parameters. On the other
hand, the dose-response curves that will be used for the restricted reference
model need to have maximum effect one. This requires to set E = 1 in (42),
implying that the dose-response curves to be used for the restricted reference
model are modeled by

f̂ri (x) = 1− e−β
r
i x (45)

where the single parameter βri is also estimated using nlsLM in R. Table
1 shows the estimated parameters. Figs. 1 and 2 show the estimated dose-
response curves for the first and second drug, both for the unrestricted model
and the restricted model, together with the responses yi,j . Notice that for
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the first drug the estimated dose-response curves f̂u1 (x) and f̂r1 (x) are nearly
identical, which is explained by the fact that the maximum effect is one, a
case that can be handled in the context of Bliss’ original formulation of drug
combinations. However, for the second drug there is a clear difference between
f̂u2 (x) and f̂r2 (x), since the dose-response curve to be used for the restricted

model, i.e. f̂r2 (x), assumes that the maximum effect is one, which does not
hold, since E2 = 1.5.

Finally, we compute the combined effects, as predicted by the restricted ref-
erence model and by the unrestricted reference model. These combined effects,
denoted by f̂u1,2(x1, x2) for the unrestricted reference model and by f̂r1,2(x1, x2)
for the restricted reference model, are given by

f̂u1,2(x1, x2) = f̂u1 (x1) + f̂u2 (x2)− f̂u1 (x1) f̂u2 (x2) (46)

f̂r1,2(x1, x2) = f̂r1 (x1) + f̂r2 (x2)− f̂r1 (x1) f̂r2 (x2) (47)

To illustrate the differences between both models, we compute the combined
effects for every combination of doses x1 = 0.5, 1.0, 1.5, . . . , 10 and doses
x2 = 0.5, 1.0, 1.5, . . . , 10, and this for both the restricted reference model and
the unrestricted reference model. Next, we compute the relative differences
r(x1, x2) between these combined effects, which we define as

r(x1, x2) =
|f̂u1,2(x1, x2)− f̂r1,2(x1, x2)|

0.5
(
f̂u1,2(x1, x2) + f̂r1,2(x1, x2)

) (48)

Fig. 3 shows r(x1, x2). It is seen that as long as both doses are small, the

relative difference between f̂u1,2(x1, x2) and f̂r1,2(x1, x2) is also small, as the cor-
responding responses are far from the maximum effect. The relative difference
is also small as x1 increases, because the first drug has maximum effect one,
which is in correspondence with Bliss’ assumption. Furthermore, both f̂u1 (x)

and f̂r1 (x) are very good approximations to the true first dose-response curve,
as seen from Fig. 1, explaining the small difference between the estimated
combined effects produced by both reference models. However, increasing x2
results in large differences in the predictions by both reference models. This
is because the second drug has as maximum effect 1.5, although f̂r2 (x) ap-
proximates the corresponding dose-response curve under the restriction that
the maximum effect is 1. The larger the dose of the second drug, the closer
the corresponding effect to the maximum effect, and the larger the difference
between the restricted reference model and the unrestricted reference model.
The consequences in a practical application might be severe, as the large dif-
ferences in predicted combined effects imply that the interaction between two
drugs might be evaluated incorrectly, for example by declaring that two drugs
are synergistic while the opposite might be true.
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E1 β1 E2 β2
unrestricted 1.01 0.49 1.50 0.99
restricted / 0.49 / 2.79

Table 1 Parameter estimates for the dose-response curves

Fig. 1 Estimated dose-response curves for the first data set
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Fig. 2 Estimated dose-response curves for the second data set

Fig. 3 Relative differences between f̂e
1,2(x1, x2) and f̂o

1,2(x1, x2)
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9 Conclusion

In this paper we have extended the Bliss independence model. The general-
ization is in two directions. First, the maximal effects of the considered single
drugs are not assumed to be equal. Secondly, both the minimal effect, which
is the same for all dose-response curves, as the maximal effects, are arbitrary.
Furthermore, the constructed reference model applies to an arbitrary number
of drugs. The model was obtained in several steps. First, two drugs are con-
sidered, and the corresponding dose-response curves are assumed to have the
same maximal effect. By introducing a sound and elegant statistical similarity
to the deterministic effect of a given dose of a given drug, we showed how the
non-interaction principle introduced by Bliss can still be applied under less
severe restrictions on the minimal and maximal effects. A general description
of a reference model was given, relying on the idea, as adopted by the authors
of the ZIP model, that a certain dose of the second drug is added to some
dose of the first drug. We introduced two consistency principles that uniquely
determine the unknown functions in this general description. In a second step
the basic reference model was extended to apply to two drug that possibly
have different maximal effects. Finally, the reference model was further gener-
alized to apply to an arbitrary number of drugs. This general reference model
is a genuine generalization of the reference model for two drugs, as it was
constructed in terms of a recursion relation.
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