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Abstract 12 

Biological, ecological, social, and technological systems are complex structures with multiple 13 

interacting parts, often represented by networks. Correlation matrices describing interdependency of 14 

the variables in such structures provide key information for comparison and classification of such 15 

systems. Classification based on correlation matrices could supplement or improve classification based 16 

on variable values, since the former reveals similarities in system structures, while the latter relies on 17 

the similarities in system states. Importantly, this approach of clustering correlation matrices is different 18 

from clustering elements of the correlation matrices, because our goal is to compare and cluster 19 

multiple networks – not the nodes within the networks. A novel approach for clustering correlation 20 

matrices, named “snakes-&-dragons,” is introduced and illustrated by examples from neuroscience, 21 

human microbiome, and macroeconomics. 22 

 23 
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Introduction 24 

Inherent in our human nature is the desire to group similar objects together to better 25 

understand the world around us. It is easy to compare and group objects characterized by a single 26 

(scalar) attribute. It becomes more complex when an object is characterized by a vector of multiple 27 

attributes, although numerous clustering methods already allow for useful classifications of vectors [1]. 28 

A classification task becomes challenging with increasing complexity of the object, for example, where 29 

the interaction of object parts and attributes constitutes important characteristics of an object or a 30 

system. Indeed, some of the most engaging and challenging unresolved questions in biological and social 31 

sciences center on the comparison of functions and structures of complex systems. In this case, a system 32 

can be characterized by a matrix of interdependencies between its parts and attributes. By collecting 33 

data on the attribute levels over time or another dimension resulting in repeated measures, one can 34 

generate correlation matrices that characterize attribute interdependence and reveal important 35 

structural features of the system. In this paper, we aim to extend clustering methods to a task of 36 

comparing and classifying objects characterized by correlation matrices.  37 

Existing methods for comparison of correlation matrices were developed mainly in evolutionary 38 

biology and applied to genetic and phenotypic variance-covariance matrices.  These methods represent 39 

the differences between two matrices as one number—a similarity measure or a pairwise distance 40 

calculated by random skewers (RS), T-, or S-statistics [2-5]. Briefly, the existing methods to compare 41 

matrices are as follows: Cheverud [3] applied Pielou’s “random skewers” (RS) technique [4], which 42 

multiplies target matrices by the same randomly-generated vector (“skewer”) and averages results 43 

across numerous realizations of the vector to yield a matrix distance measure. Roff et al [2] proposed 44 

the T-method that measures the distance between matrices using a single summary statistic. More 45 
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recently, Garcia proposed S-statistics, which estimates matrix distance by comparing the variance 46 

explained by the eigenvectors of each matrix [5]. These reductionist approaches have at least two 47 

limitations: (a) one number cannot adequately represent multidimensional differences; and (b) pairwise 48 

distance admits only hierarchical clustering, while other clustering methods use vectors representing 49 

multidimensional attributes of the object and might better suit the problem. 50 

Several other approaches or variations of the above methods have also been proposed, e.g., by 51 

Goodnight and Schwartz, Calsbeek and Goodnight, Phillips and Arnold, and Flury [6-10]. However, these 52 

methods are either only applicable to a specific field of study or make strict assumptions that are not 53 

plausible in many settings. For these reasons, we focus on the distance measures from Roff et al’s T-54 

method [2], Chevrud’s random skewers [3], and Garcia’s S-statistics [5] for comparison in the current 55 

study.  56 

The innovative solution proposed in our paper is to create a novel although intuitively simple 57 

theoretical concept called a “snake” vector (Fig 1a), formed by making a serpentine path through the 58 

off-diagonal terms of the correlation matrix. The “snake” vector captures information on interactions 59 

between attribute variables and thus represents the system structure. Combining “snake” vectors with 60 

various other vectors representing the state of the system, e.g., vector of attribute means and variances, 61 

and overall properties of the system, e.g. number of hubs, connectedness, and small-worldness and the 62 

degree distribution [11] of the corresponding network, yields a concatenated segmental structure. We 63 

term this more complex object a “dragon” vector (Fig 1b) to designate that the analogous structure is 64 

more elaborate than the “snake”. Dragon vectors reflect not only the structural properties, but also the 65 

state of the system and allow classification based on multiple types of characterizations of complex 66 

systems. For instance, information on the initial (or average) state of the system can be described as a 67 

vector of the initial (or average) values of its attributes (creating the “head of the dragon”), while the 68 
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snake formed from the correlation matrix of repeated measures will form the “tail of the dragon”. More 69 

information on the details of the snakes-&-dragons approach is provided in the Methods section. 70 

Importantly, the proposed approach allows the use of a legion of existing methods developed for 71 

clustering of multidimensional vectors. 72 

Fig 1. Explanation of snakes-&-dragons approach. A-snake vector. B-dragon vector. See details 73 

in the Methods section. 74 

The proposed “snakes-&-dragons” approach is illustrated by several examples. First, we 75 

clustered brain connectivity matrices derived from resting state functional magnetic resonance imaging 76 

(fMRI) experiments [12].  Then we clustered correlation matrices describing co-occurrence of the over 77 

10,000 microorganisms in the microbiome of gut, palm, forehead, and tongue regions of 52 students 78 

over seven weeks [13]; and finally we clustered the correlation matrices of macroeconomic 79 

development indicators from over 200 economies collected by the World Bank [14]. We clustered these 80 

correlation matrices using our proposed “snakes-&-dragons” approach and compared results with those 81 

derived from clustering based on existing measures of pairwise distances (random skewers, T- and S-82 

statistics). We evaluated the quality of clusters by using internal validation criteria comparing within-83 

cluster variability with between-cluster variability [15-17]. In the cases where the true cluster 84 

membership can be hypothesized, e.g., from the demographic data (for instance young vs. old), or is 85 

known as in the case of the simulated data, we determined misclassification error rates [18], and 86 

compared them using our and other approaches.  Next, we examined the number of significantly 87 

different variables across the clusters, testing all the variables used for clustering and other variables 88 

such as demographics. This provides not only the proof of cluster distinctiveness but also the 89 

information about the possible factors driving cluster membership.  We believe that the high values of 90 

cluster validation criteria together with the high percentage of significantly different variables across the 91 
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clusters could illustrate that identified clusters meet the concise definition of clustering given by Liao 92 

[19] as: “identifying structure in an unlabeled data set by objectively organizing data into homogeneous 93 

groups where the within-group-object dissimilarity is minimized and the between-group-object 94 

dissimilarity is maximized.”  95 

Materials and methods 96 

Data sets 97 

First, we briefly describe data sets used to illustrate and validate our proposed snakes-&-98 

dragons approach to clustering correlation matrices. 99 

Brain connectivity matrices from old and young healthy subjects 100 

Brain connectivity matrices arise from the observation that the blood oxygen level-dependent 101 

(BOLD) fMRI signal is correlated between spatially separated but functionally related brain regions [20-102 

21-]. Multiple fMRI studies of resting state brain activity showed that matrices of correlation coefficients 103 

of BOLD signal between brain regions (connectivity matrices) differ in health and disease, especially in 104 

mental disorders [21-22]. Several studies demonstrated changes in brain connectivity matrices related 105 

to aging [23-24]. A pilot data set of brain connectivity matrices used in our study was created at 106 

Washington University in St. Louis. It includes connectivity matrices from 20 healthy subjects older than 107 

60 (#1- #20) and 17 subjects younger than 27 (#21- #37). The data set of older subjects was obtained 108 

with permission from the Washington University Alzheimer’s Disease Research Center and served in 109 

their study as a control group (Clinical Dementia Rating = 0 and CSF biomarker negative). The data set of 110 

younger subjects is the same as used in [25-26] with mean age 23.1 years and range 18-27; all of them 111 

were screened to exclude neurological impairment and use of psychotropic medications.  Connectivity 112 

matrices with 36 functional areas were then calculated from the fMRI scans using the Washington 113 
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University pipeline described in [27]. Then the 37 connectivity matrices were clustered by using our 114 

snake vector approach, without using any demographic information.  115 

 116 

Brain connectivity matrices from the Brain Genomics Superstruct Project 117 

The Brain Genomics Superstruct Project Open Access Data Release (GSP) is a carefully vetted 118 

collection of neuroimaging, behavior, cognitive, and personality data for 1,570 human participants (ages 119 

18-35)[12]. GSP data include not only demographic data (age, handedness, sex) for all participants, but 120 

also anatomical information on the brain and its regions for each of participants. The 169 brain areas 121 

were divided into 10 networks: visual foveal (VFN), visual peripheral (VPN), dorsal attention (DAN), 122 

motor (MN), auditory (AN), cingulo-opercular (CON), ventral attention (VAN), language (LN), fronto-123 

parietal (FPN), and default mode (DMN) [26]. Connectivity matrices were calculated from the fMRI scans 124 

using the Washington University pipeline [27] for the first 500 participants of the GSP cohort that had 125 

two BOLD fMRI runs and cognitive behavioral data.  126 

Microbiome data for healthy college-age adults 127 

Flores et al collected longitudinal (10 weeks) data to analyze temporal dynamics of forehead, 128 

gut, palm, and tongue microbial communities among 85 healthy college-age adults from three US 129 

universities [13].  A 49-question demographic, lifestyle, and hygiene survey augmented the weekly 130 

sample collection. Based on relative abundance of over 10,000 microbial species measured as 131 

operational taxonomic units (OTUs) in each sample, investigators found high variability in the 132 

microbiome over time. In our study, we aim to characterize the temporal changes in the microbiome by 133 

exploring correlations between weekly samples of microbiomes within each individual. By clustering 134 
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individuals’ correlation matrices, we identified subgroups of students representing different patterns of 135 

microbiome dynamics. 136 

 137 

Macroeconomics development indicators from the World Bank 138 

Since 1960, the World Bank has collected 1,500 yearly macroeconomic development indicators 139 

from over 200 economies, including: 1) gross domestic product (GDP), 2) unemployment, 3) inflation, 4) 140 

net trade in goods, 5) labor force participation, 6) foreign direct investment, and 7) gross domestic 141 

savings [14]. As a proof-of-concept example, we used the time series data on the seven indicators to 142 

create 7-by-7 correlation matrices for each of the 200 economies and then clustered them by using 143 

snake vectors.   144 

 145 

Analytical methods 146 

In this paper, we compare and cluster correlation matrices from the above four data sets by 147 

using existing methods for matrix comparison and our novel “snakes-&-dragons” approach. 148 

 149 

Existing methods to compare matrices: random skewers, T-statistic, S-statistic 150 

Approaches to compare and calculate distances between matrices were developed in 151 

evolutionary biology and might be unfamiliar to researchers outside of that field. Therefore, we briefly 152 

describe three of the existing approaches used in this paper: random skewers (RS), T-statistic, and S-153 

statistics. The RS procedure samples from a uniform [-1, 1] distribution to form random vectors [28]. 154 

Multiplying correlation matrices by these vectors yields response vectors. If the compared correlation 155 
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matrices are similar, the responses to the same selection vector should be similar as well. The 156 

correlation among response vectors is averaged over multiple random vectors—100 replicates in our 157 

example—to estimate similarity between two objects. Another method for comparing matrices is the T-158 

statistic [2], describing dissimilarity between two matrices as the sum of the absolute differences 159 

between corresponding matrix elements. The third method is the so-called S-statistic [5]. Garcia 160 

introduced three S-statistics to represent the divergence between two correlation matrices, all based on 161 

the idea that if two covariance matrices are similar, an eigenvector set resulting from principal 162 

component analysis (PCA) of one matrix will explain a similar amount of variation in the other matrix. 163 

We considered the first, S1, which Garcia described as a general measure of differentiation, 164 

characterizing the ability of eigenvectors from one sample to explain the variation in the other sample. 165 

By contrast, S2 compares orientation of eigenvectors of the same ordinal position in the two sets and S3 166 

evaluates differences in shape of eigenvectors in the same ordinal position between the two sets. We 167 

performed hierarchical clustering based on the resulting similarity matrices. 168 

Creating “snakes-&-dragons” 169 

We propose to extract details from correlation matrices into a new object that we call a “snake” 170 

vector. The “snake” vector forms from a serpentine path through the off-diagonal terms of a correlation 171 

matrix and captures information on interactions of the variables, i.e., the system structure (Fig 1a). 172 

Many methods exist for clustering of vectors, allowing for the choice of the optimal clustering method 173 

for a given data set or problem. To augment and complement the information on the structure of the 174 

systems with the information on the state of the systems, we additionally introduce the class of objects 175 

that we call “dragon vectors” or “dragons”. Here we suggest four types of dragons. Dragon 1 integrates 176 

state descriptors and structural descriptors by concatenating the snake vector with a vector of variable 177 

means and a vector of variable variances (Fig 2a).  Dragon 2 (Fig 2b) integrates structural descriptors 178 
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with overall network property information. While the snake vector contains individual correlations 179 

between system attributes or between nodes of a network to represent structural descriptors, measures 180 

of network integration can describe the system in a different way. For example, average connectivity, 181 

number of nodes/hubs, average or shortest path length, or number of first neighbors have previously 182 

been used to characterize networks [11, 29-30]. These measures can be concatenated with the snake 183 

vector to form a dragon for clustering. Dragon 3 (Fig 2c) is created by combining correlations along 184 

multiple dimensions or locations. We used this approach in the analysis of the microbiome data set, 185 

which contains measures of microbial OTUs at four sites on the human body at several time points in 186 

many subjects. The correlation matrix for each body site yields a different snake vector. By 187 

concatenating multiple snakes, all data descriptions can influence the clustering. Similarly, Dragon 4 (Fig 188 

2d) can be created by combining different types of data, e.g., correlation matrices of clinical, 189 

transcriptomic, proteomic, and metabolomic variables derived from repeated measures combined with 190 

the genomics data and baseline demographics and clinical data, which would create the “head” of the 191 

“dragon”.   While snake vectors can be clustered as they are, since the elements of the correlation 192 

matrices are always in the range from -1 to 1, dragon vectors require several refinements prior to 193 

processing. First, clustering algorithms often gravitate toward elements of greater magnitude. We thus 194 

put all variables on a common scale to ensure all variables can fairly influence the decision-making. 195 

When a data set has a natural comparison group, e.g., with cases and controls, observations on cases 196 

can be centered and scaled using the mean and standard deviation of the corresponding variable among 197 

controls. In the absence of such a control group, as in this study, we center variables by each variable’s 198 

mean and scale by the square root of its average variance. Additionally, cluster results should not be 199 

affected by including variables reflecting redundant information. To mitigate that prospect, we suggest 200 

performing PCA on the matrix of assembled dragon vectors and then clustering based on the principal 201 

components.  202 
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Fig. 2. Four types of dragon vectors.  A-Dragon 1, includes means and variances of the variables. B- 203 

Dragon 2, includes also overall network property information. C- Dragon 3, combines correlations along 204 

multiple dimensions of the data matrix or multiple locations. D-Dragon 4 is composed of several dragons 205 

presenting different types of clinical and omics data.  206 

Clustering methods  207 

Many clustering methods exist, including k-means clustering, fuzzy k-means clustering, 208 

hierarchical clustering, k-medoids, affinity propagation, and others [1]. Choosing among algorithms and 209 

choosing the number of clusters is often achieved using internal validation statistics, such as Calinski, 210 

silhouette, or connectivity [15-16]. None of the clustering methods is ideal in all settings, and the 211 

optimal choice depends on the underlying data’s properties, which is not always recognized by the users 212 

of clustering algorithms. For example, Dolnicar found that clustering studies typically do not match data 213 

conditions with clustering methodology, but instead just use Ward’s hierarchical and k-means clustering 214 

[31]. Halkidi et al noted that many studies omit cluster validation, despite its importance and the 215 

availability of tools for implementation [17]. They suggested that new clustering algorithm development 216 

should include simulated data sets that mimic the properties of biological data to allow for controlled 217 

study of an algorithm’s sensitivity. Our group recently compared three clustering methods—hierarchical, 218 

k-means, and k-medoids—using simulated targeted proteomics data [18]. We demonstrated that k-219 

means had the lowest misclassification error for identifying biomarker signatures, but also that results 220 

varied with different correlations between biomarker levels. The study illuminated the importance of 221 

the structure of the correlation matrix of the variables in determining the optimal clustering method 222 

[18].  223 

Clustering in this study is performed using a resampling-based consensus clustering method 224 

introduced by Monti et al [32]. As implemented in our study, this method can be briefly described as 225 
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follows.  We performed 1,000 instances of random samplings with replacement, each selecting a subset 226 

including 80% of N objects (snake or dragon vectors under study). We then partitioned each of the 227 

subsets into clusters using a k-means clustering algorithm (implemented as the MATLAB® function 228 

kmeans; MathWorks, Natick, MA) with k value scanned from 2 to 8.  Then the N x N consensus matrix 229 

was created representing the results of these 1,000 partitions.  Each element of the matrix represented 230 

the proportion of times that the two objects were included in the same cluster, i.e., the ratio of the 231 

number of times a given pair of objects were included in the same cluster to the number of times both 232 

of the objects were selected in the random 80% subset. Therefore, each element of the matrix can be 233 

interpreted as a probability that two objects belong to the same cluster. Hierarchical clustering (using 234 

MATLAB® function clustergram) was then performed using elements of the consensus matrix as the 235 

distance measure between objects. Resulting clusters (for each scanned value of k) were then examined 236 

by using  Calinski’s “quality of clustering” criterion, which compared the between-cluster differences 237 

with the within-cluster differences and allowed determination of the optimal number of clusters [15].  238 

For RS, T-, and S- statistics, hierarchical clustering was used since it is the only method that can 239 

work with these measures of pairwise distances between objects (vectors, matrices). Hierarchical 240 

clustering was performed using the clustergram MATLAB function with the Ward distance option. 241 

 242 

Simulating correlation matrices with a controlled noise level 243 

When working with real data, one disadvantage is that the true cluster membership is not 244 

known, so it might be difficult to evaluate the misclassification error rate. Thus, in order to evaluate 245 

clustering of connectivity matrices using snake vectors, we created simulated data that had clear 246 

“labels” (e.g., older or younger brain connectivity matrices). In this study, we selected two substantially 247 
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different brain connectivity matrices, #1 and #29, as representatives of old and young brains, 248 

respectively (from the 37 healthy young and old subjects pilot data set described above). Based on these 249 

two prototype matrices, we simulated two matrix classes by adding a controlled amount of noise. Since 250 

correlation matrices need to satisfy certain conditions (i.e., being a positive-semidefinite matrix), we 251 

cannot just add noise to each component of the matrix. Instead, we used the procedure suggested by 252 

Schafer et al, which simulates noise by repeatedly sampling from multivariate normal distributions with 253 

given standardized covariance matrices [33].  Briefly: we take the q x q brain connectivity matrix and use 254 

it as a covariance matrix to simulate the multivariate normal distribution from which we sample n times 255 

to generate a q x n data matrix.  Then, we calculate the q x q correlation matrix from this data matrix.  256 

The higher the n the closer the new correlation matrix to the original connectivity matrix will be. 257 

Decreasing n may be viewed as adding noise, since the role of randomness is higher when the normal 258 

distribution is sampled more sparsely. This procedure allows the amount of noise to vary by changing a 259 

q/� ratio, where q is the number of variables (here number of brain regions q =36) and � the number of 260 

times the multivariate normal distribution is sampled to create a data matrix used to calculate the 261 

correlation matrix. Importantly, each time we randomly sample the multivariate normal distribution, we 262 

get a different q x n data matrix and the q x q correlation matrix, even for the same value of n.   Fig 3 263 

shows single instances of simulated correlation matrices when the q/� ratio is set to 0.1, 3, 6, 9, and 12 264 

for brain connectivity matrix #1. The similarity of the simulated matrices with the original prototypic 265 

connectivity matrix #1 is clearly decreasing.  266 

Fig 3.  Simulating connectivity matrices with increased noise level. A-original matrix #1. B –267 

simulated matrix with q/n=0.1, n=360; C – q/n=3, n=12; D- q/n=6, n=6; E-q/n=9, n=4; F- q/n=12, n=3. 268 

 269 
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Figs 4a-b demonstrate how the instances of simulated correlation matrices differ from each 270 

other for given values of n.  As seen, the variability across the instances is higher the lower the n. To test 271 

and compare the performance of the snake vector approach with the existing measures of matrix 272 

dissimilarity, we simulated 20 such matrices for each value of the q/� ratio for prototypic old and 273 

prototypic young brain connectivity matrices (#1 and #29) and conducted clustering on the 40 simulated 274 

connectivity matrices for each q/� value.  This enabled us to compare the ability of the various 275 

clustering methods to correctly classify the correlation matrices as young or old in the presence of an 276 

increased level of noise. To make better sense of what q/n means in terms of added noise and variability 277 

of the simulated connectivity matrices, we calculated the histograms of standard deviations of the 278 

elements of the simulated connectivity matrices for various q/n values (shown in Fig 5a). Clearly, 279 

standard deviations are higher for larger q/n values. Then, we defined the signal/noise ratio (SNR) 280 

describing difference between two clusters of correlation matrices as follows: 281 

��� �
�∑ ���������� 	��

�

�

�����

∑ �∑ ���,	����	��

�
��
	
�

�∑ �∑ ���,	���� 	��
�

��
	
�

�
,          (eq. 1) 282 

where � is the length of snake vectors, ��  is the i-th element of the average snake vector for cluster 1, �	�  283 

is the i-th element of the average snake vector for cluster 2, 
� is the number of simulated matrices in 284 

cluster 1, 
� is the number of simulated matrices in cluster 2, ��,� is the �-th element in the snake 285 

vector obtained from �-th simulated correlation matrix and ��,� is the �-th element in the snake vector 286 

obtained from �-th simulated correlation matrix.  Note that the numerator in eq. 1 is the Euclidian 287 

distance between the centroids of the two clusters, which is equal to the distance between the snake 288 

vectors of the prototypic connectivity matrices, while the denominator is the measure of the average 289 

within cluster Euclidian distances. Fig 5b demonstrates how SNR defined by (eq.1) depends on the q/n 290 

value.  291 
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 292 

Fig 4. Increased variability of simulated correlation matrices with increased q/n value. A-3 293 

instances of correlation matrices generated from the connectivity matrix #1 using q/n=2, n=18; B-3 294 

instances of correlation matrices generated from the connectivity matrix #1 using q/n=12, n=3.  See how 295 

variability of the matrices is increased in B (q/n=12) versus A (q/n=2). 296 

Fig 5. Explanation of increased variability of the simulated matrices.  A- histograms of standard 297 

deviations of the elements of the simulated connectivity matrices for various q/n; B- signal to noise ratio 298 

vs. q/n.  299 

Statistical Tests 300 

The statistical tests for differences across clusters in this paper include Chi-square tests 301 

(MATLAB® function crosstab) for categorical data, analysis of variance (ANOVA, MATLAB® function 302 

anova1) for continuous data that follow a normal distribution, and the Kruskal-Wallis test (MATLAB® 303 

function kruskalwallis) for continuous data that do not follow a normal distribution. We controlled for 304 

the false discovery rate from multiple hypothesis testing using the Benjamini-Hochberg procedure 305 

(MATLAB® function mafdr). 306 

Results and discussion 307 

Here we demonstrate the results of cluster analysis of the four data sets described above by 308 

using the snakes-&-dragons approach. In clustering brain connectivity matrices from the 37 young and 309 

old healthy subjects pilot data set and the GSP data set, we provide not only the results of clustering but 310 

also the comparison with existing methods of correlation matrix comparison (RS, T-, and S-statistics), 311 

and evaluation of the quality of clustering. The microbiome example serves to illustrate the use of the 312 
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dragon concept and demonstrates the Dragon 3 vector described above. The World Bank example 313 

demonstrates the broadness of the snakes-&-dragons approach and its applicability outside of the 314 

biomedical field. 315 

 316 

Brain connectivity matrices. Conventional measures vs. clustering of the snakes 317 

The pilot data set of brain connectivity matrices of young and old healthy subjects was first used 318 

to examine the existing methods of matrix comparison. Pairwise distances between 37 brain 319 

connectivity matrices were determined by using RS, T-, and S-statistics. Then, hierarchical clustering was 320 

performed using the pairwise distances. The resulting dendrograms are presented in Fig 6;   Fig 6a 321 

presents clustering based on RS, 6b on T-statistics, and 6c on S-statistics, while Fig 6d presents the 322 

results of hierarchical clustering of snake vectors.  Dendrograms differ for the above four approaches, 323 

although all of them define two large clusters. Assuming that the true cluster membership is determined 324 

by the age of the participants, with 20 old participants and 17 young, we can calculate confusion 325 

matrices (Fig 6e-6h) as well as the misclassification error rate (Table 1) for each of the dendrograms.  326 

Note that the misclassification error is the lowest when the snake vector approach is used. Interestingly, 327 

however, the snake vector approach clustered three older brains (#10, 12, and 16) into the younger 328 

brain group, while all 17 young brains were correctly clustered together (Fig 6d). Notably, the use of 329 

random skewers also resulted in clustering of these three brains into the younger group (Fig 6a), while 330 

the use of the T-statistic clustered brain #10 into the younger group, and using the S-statistic clustered 331 

both brains #10 and #16 into the younger group. The problem with clustering real data is that one never 332 

knows the true class membership. Given the consensus between the four methods with regard to brain 333 
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#10 and the consensus of three methods with regard to brain #16, it is possible that these brains 334 

preserved the properties of the young brains due to genetic or lifestyle factors despite their older age.  335 

Table 1. Misclassification error of four clustering approaches in the pilot data set of brain connectivity 336 

matrices of young and old healthy subjects. 337 

Method Old Group Young Group Misclassification Error  

True Demographics 20 17 -- 

Random Skewers + Hierarchical Clustering 14 23 16.22% 

T-statistic + Hierarchical Clustering 21 16 13.51% 

S-Statistic + Hierarchical Clustering 15 22 24.32% 

“Snake” Vector + Hierarchical 17 20 8.10% 

Fig 6. Clustering of brain connectivity matrices from pilot data set of young vs. old healthy 338 

persons. A-dendrogram based on RS, B-dendrogram based on T-statistics, C-dendrogram based on S-339 

statistics, D-dendrogram based on snake vectors, E-H- confusion matrices for the above four 340 

approaches. 341 

In order to further evaluate the quality of clustering with the snakes approach, we used the 342 

simulated data created from the prototypical young (#29) and old (#1) brain connectivity matrices, as 343 

described in the Methods section. Note that brains #29 and #1 are distinctly different according to 344 

dendrograms from all four clustering methods (Fig 6). Since we know the true cluster memberships for 345 

the simulated data, we can calculate misclassification error for each clustering algorithm (Fig 7). Here in 346 

addition to using hierarchical clustering with RS, T- and S-statistics, and snake vectors, we examined the 347 

use of snake vectors with k-means clustering and with resampling-based consensus clustering (as 348 

described in Methods section). Misclassification errors up to q/� = 4 (SNR≥1.203 as defined by eq. 1) are 349 

all zero for all methods. For q/� > 6 (SNR<0.956), clustering correlation matrices using snake vectors 350 

outperforms the existing methods by having the lowest misclassification error rates, regardless of the 351 
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clustering method used. The best performance is demonstrated by consensus clustering of snake 352 

vectors due to higher robustness to the added random noise.   353 

Fig 7. Misclassification error in clustering simulated connectivity matrices. Comparison of 354 

hierarchical clustering results for RS, T- and S-statistics, and snakes vectors, with k-means and 355 

resampling-based consensus clustering using snake vectors. Snake vectors based approaches 356 

outperform RS, T- and S-statistics based ones.  357 

 358 

Clustering of 500 brain connectivity matrices from the GSP project 359 

Next, we applied our snake vectors approach to the clustering of 500 brain connectivity matrices 360 

from the GSP project. To cluster snake vectors derived from the connectivity matrices we used the 361 

resampling-based consensus clustering method as described in the Methods section. Fig 8a presents the 362 

heat map for the 500 x 500 consensus matrix. Each element of the matrix provides the probability that 363 

two brain connectivity matrices belong to the same cluster. Consensus clustering identified two distinct 364 

clusters with sample sizes N1= 160 and N2=340. Use of the Calinski criterion also confirmed the number 365 

of clusters as two (Fig 8b).   366 

Fig 8. Resampling-based consensus clustering of 500 brain connectivity matrices from GSP 367 

project. A- Consensus matrix. Two identified clusters are presented as yellow squares (yellow color 368 

indicating the high probability of a pair of brains belonging to the same cluster). High contrast in the on-369 

diagonal and off-diagonal values of probability indicate two clusters. B- Checking the number of clusters 370 

with Calinski criterion. Calinski criterion have a maximum at k=2 indicating two clusters as well (both 371 

with snakes-&-dragons approach and with RS, T- and S-statistics).  372 
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Table 2 presents some anatomical and demographic variables of interest describing GSP 373 

participants but not used for clustering. Eight out of 81 such variables were significantly different across 374 

the two clusters; two of the variables remained significantly different after the correction for multi-375 

testing (FDR corrected p-values < 0.05) [34]. Ethnicity was significantly different (FDR corrected p-value = 376 

0.004) between the two clusters and sex was borderline significant (FDR corrected p-value = 0.055 and 377 

uncorrected p-value = 0.006), with cluster 2 having more white and female participants.  Right vs. left 378 

handedness was not significant (p=0.9).  379 

Table 2. Anatomical and demographic variables of interest describing GSP participants but not used 380 

for clustering 381 

 Cluster 1 Cluster 2   
(n =160 ) (n = 340) 

Variables   p-value FDR 

corrected p 

Age 21.113(±2.63) 21.335(±2.79) 0.304 0.607 

Race/ethnicity   <0.001 0.004 

White not Hispanic 83 (51.9%) 233 (68.5%)   

Other 77 (48.1%) 107 (31.5%)   

Sex   0.006 0.055 

Female 81 (50.6%) 216 (63.5%)   

Male 79 (49.4%) 124 (36.5%)   

Education 14.231(±1.73) 14.400(±1.72) 0.234 0.575 

Handness   0.906 0.947 

Right 145 (91.2%) 304 (89.9%)   

Left 14 (8.8%) 34 (10.1%)   

Right superior frontal thickness (mm) 2.768(±0.13) 2.798(±0.12) 0.005 0.047 

Estimated total intracranial volume 

(cm
3
) 

1558.487(±146.8) 1533.709(±140.0) 0.027 0.191 

Right hemisphere average cortical 

thickness (mm) 

2.499(±0.07) 2.514(±0.08) 0.027 0.191 

Left hemisphere hippocampal volume 

(mm
3
) 

4490.225(±428.8) 4420.709(±411.2) 0.028 0.191 

Right hemisphere hippocampal 

volume (mm
3
) 

4511.075(±446.0) 4441.971(±411.9) 0.037 0.231 

Left inferiorparietal thickness (mm) 2.434(±0.12) 2.455(±0.11) 0.04 0.232 
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Even more interesting is the comparison across the clusters of the variables that were used for 382 

clustering, i.e., the elements of the connectivity matrices. Fig 9a presents the average connectivity 383 

matrix for cluster 1 and Fig 9b for cluster 2. Fig 9c provides mean differences between connectivity 384 

matrices averaged across brains in cluster 2 and brains in cluster 1, while Fig 9d indicates by black dots 385 

which of the differences were significant (FDR corrected p-value < 0.05). A total of 8395 (out of 14196) 386 

elements of the connectivity matrices were significantly different even after the FDR correction for 387 

multi-testing [34]. Importantly, most of the significantly different elements of the connectivity matrices 388 

were not randomly distributed; they are rather concentrated within known brain subnetworks (defined 389 

in the Methods section and Fig 9 caption). Average correlation within the default mode network is 390 

significantly and substantially (over 26%) higher in cluster 2 than cluster 1, while the motor network is 391 

26% more highly correlated in cluster 1 than cluster 2. Multiple average correlations between the known 392 

subnetworks were significantly different (FDR corrected p-value < 0.05) between cluster 1 and 2 as well, 393 

as shown in Table 3, e.g., VFN and CON are almost 215% more correlated in cluster 2 than in cluster 1.  394 

Importantly, the use of the snake vector approach allows identification of these distinctly different 395 

clusters.396 
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Table 3. Significant differences in brain connectivity matrices are located mostly in the below 397 

subnetworks. Mean Difference: �2−�1. Relative Difference: �= (�2−�1)/�1, where c1 and c2 are the values 398 

of connectivity (correlation coefficients) averaged across the subnetworks in cluster 1 and cluster 2.  399 

  Mean Difference Relative Difference 

VFN-CON 0.0842 214.71% 

VPN-CON 0.0552 183.38% 

DAN-CON 0.103 104.02% 

DAN-LN -0.0952 -90.19% 

DAN-DMN -0.0836 -37.66% 

MN -0.0715 -26.80% 

MN-CON 0.1002 111.14% 

MN-LN -0.0614 -296.64% 

AN-CON 0.0829 47.57% 

AN-LN -0.0744 -559.04% 

CON-LN 0.0558 263.66% 

CON-DMN -0.0866 -45.16% 

DMN 0.0897 26.82% 

Fig 9. Mean brain connectivity matrices for two clusters identified in GSP data. A- Mean 400 

connectivity matrix for cluster 1, B- Mean connectivity matrix for cluster 2, C- Difference of mean 401 

connectivity matrices for cluster 2 and cluster 1, D- 8395 significantly different values of connectivity 402 

observed in cluster 1 vs. cluster 2. The 169 brain areas were divided into 10 networks: visual foveal 403 

(VFN), visual peripheral (VPN), dorsal attention (DAN), motor (MN), auditory (AN), cingulo-opercular 404 

(CON), ventral attention (VAN), language (LN), fronto-parietal (FPN), and default mode (DMN) [26].  405 

Using snakes-&-dragons for clustering of microbiomes of healthy college-age 406 

adults 407 

For the microbiome data described in [13] and briefly in the Methods section, we calculated the 408 

correlations across OTU counts observed at seven time points (weeks) at four body sites (gut, tongue, 409 

palm, and forehead) to explore the temporal changes in each subject’s microbiome. We created 7x7 410 
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correlation matrices for each person and each body site to represent the similarities between the 411 

observed seven weeks in terms of the microbiome composition.  We then conducted a cluster analysis 412 

using these correlation matrices and our snake vectors approach to identify subgroups of individuals 413 

sharing similar patterns of microbiome changes over time. We used three approaches to compare the 414 

above correlation matrices: 1) we clustered individuals by using data only from the gut and explored the 415 

correlation matrices for the other three sites; 2) we clustered the individuals using data from the gut, 416 

tongue, palm, and forehead separately; 3) we created dragon vectors by concatenating snake vectors 417 

for the gut, tongue, palm, and forehead and then clustered these dragon vectors.  Analyses were 418 

performed on 52 students (out of 85 total) who provided samples from all four body sites for at least 419 

seven consecutive weeks. Figs 10-11 present the correlation matrices averaged across the members of 420 

the identified clusters. Note that students were clustered not by the composition of their microbiome, 421 

but rather by the pattern of change of their microbiomes over time, i.e., the dynamics of their 422 

microbiomes. 423 

Fig 10 illustrates the first approach, where clustering is based on gut microbiome data, which 424 

resulted in three clusters named Gut 1 (n=9), Gut 2 (n=16), and Gut 3 (n=27). As seen in Fig 10a, for 425 

students in cluster Gut 1, the gut microbiome was highly correlated during weeks 2 through 5, while at 426 

weeks 1 and 6 their microbiomes were quite different from other weeks. There seems to have been 427 

some abrupt changes in the gut microbiomes of these students during weeks 1 and 6.   For students in 428 

cluster Gut 2, the gut microbiome was moderately correlated across all 7 weeks and the level of 429 

correlation between the adjacent weeks was slightly oscillating in time. Students in cluster Gut 3 had 430 

stable gut microbiomes that did not change much over time. Comparison of the correlation matrices of 431 

tongue, palm, and forehead microbiomes for the Gut 1, 2, and 3 clusters (Figs 10b-10d) demonstrates 432 

that forehead and tongue microbiomes were relatively stable over time for all gut-based clusters, while 433 
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the palm microbiome was less correlated over time. This is not surprising since palm microbiome 434 

communities are most affected by the environment in daily life.  435 

Fig 10. Correlation matrices reflecting microbiome dynamics at four body sites (gut, tongue, 436 

palm, and forehead) for three clusters of students identified based on the gut microbiome data.  437 

In the second analysis, we clustered individuals based on the data from each of the four sites 438 

separately. The correlation matrices for each site averaged across each cluster are shown in Fig 11. We 439 

have identified three clusters in each of the four sites. Among these three clusters for each site, we have 440 

one cluster that has generally large correlation across all the weeks and one cluster that has relatively 441 

small correlation across all the weeks. We also have one or two clusters for each site that has one or two 442 

weeks that are quite different from the others; it is most pronounced in Gut 1, but is also present in 443 

Palm 1, Palm 2, Forehead 1, and Tongue 1. These peculiar weeks vary from site to site, which 444 

demonstrates different dynamics of the temporal evolution of microbial communities over the seven 445 

weeks.  446 

Fig 11. Correlation matrices reflecting microbiome dynamics at four body sites (gut, tongue, 447 

palm, and forehead) for three clusters of students identified based on the microbiome data for each 448 

of the body sites. 449 

   Fig 12 provides Sankey diagrams for pairwise comparison of cluster membership across the 450 

four body sites.  Note that cluster membership was similar when clustering was based on gut and 451 

tongue microbiomes—the most similar clusters being Gut 3 and Tongue 3.  452 

Fig 12. Pairwise comparison of cluster membership across four body sites.  453 
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In the third analysis, we clustered individuals using data from all four sites together. For each 454 

individual, we concatenated snakes from each site (forehead, tongue, gut, and palm) to form a “dragon” 455 

vector. We found three clusters: Body 1, 2, 3 (Fig 13a) with 12, 18, and 22 subjects in each cluster. For 456 

cluster Body 1, only the tongue microbiomes were highly correlated over time. For cluster Body 2, both 457 

tongue and gut microbiomes were highly correlated, while only the forehead microbiome was highly 458 

correlated over time for cluster Body 3. These results suggest the existence of subtypes representing 459 

different dynamics of microbial communities throughout the body. Sankey diagrams (Fig 13b) 460 

demonstrate that the cluster Body 3 is similar in membership to Forehead 2 and is driven by the high 461 

temporal stability of the forehead microbiome in this cluster.  Cluster Body 2 is mostly formed by the 462 

members of the Tongue 3 cluster with highly stable tongue microbiome, and cluster Body 1 includes 463 

members of various site-specific clusters.   464 

Fig 13.Clustering based on dragon vectors describing microbiomes of four body sites. A-Mean 465 

dragon vectors for three clusters of students identified by clustering the concatenated snake vectors for 466 

gut, tongue, palm, and forehead. B-Sankey diagrams comparing cluster membership based on the 467 

dynamics of microbiomes at each site and all four sites’ microbiomes combined.   468 

Table 4 provides overall microbiome, demographic, and behavioral data for each of the clusters 469 

identified in the above analyses, allowing interpretation and providing possible reasons for the 470 

similarities and differences in the patterns of microbiome dynamics. Note that the actual microbiomes 471 

within the clusters could be quite different while the patterns of microbiome dynamics are similar.  The 472 

top three rows of the table characterize the diversity of the microbiome within the given site averaged 473 

across the members of each cluster.  The total number of OTUs (which can serve as one of the measures 474 

of microbiome diversity) was calculated by counting the OTUs that were observed in a sample from any 475 

week for each student and then averaged across all the students in the given cluster and rounded to the 476 
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closest integer.  Each OTU was counted only once even if it was observed at multiple weeks. Another 477 

important measure of diversity is the Shannon Index (SI), defined as  � � �∑ ������ ln �� , where ��  is the 478 

measure of relative abundance of the given OTU, i.e., the ratio of the abundance of the given OTU to the 479 

abundance of all observed OTUs, and R is the total number of observed OTUs for the given sample.  The 480 

values of the SI for each student, site, and week from the supplementary data of [13] were averaged 481 

across the weeks and across the members of the identified clusters.  The SI characterizes the diversity of 482 

the microbiome by taking into account not only the number of OTUs but their abundances as well [35]. 483 

Higher values of the index describe diverse populations; lower values of the index describe populations 484 

dominated by a single taxon (OTU). In the case of a single taxon, SI=0, while in the case of all taxa (OTUs) 485 

being represented equally SI= ln(R). In order to simplify the comparison of sites and students with 486 

different numbers of OTUs, we also calculated the normalized SI equal to SI/ln(R), which has the 487 

maximum possible value of one and minimum of zero.  488 
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Gut-based clusters 

Variables Gut 1 (n=9) Gut 2 (n=16) Gut 3 (n=27) p value Corrected p 

Number of OTUs 969 1053 1042 0.2632 0.3948 

Shannon Index 4.687 5.125 5.275 0.014 0.0652 

Normalized Shannon Index 0.817 0.871 0.883 0.029 0.0652 

Age 20.778 25.438 23.962 0.1416 0.2549 

BMI 22.915 22.446 23.077 0.7402 0.7737 

Gender    0.7468 0.7737 

Female 6 (67%) 10 (63%) 14 (54%)   
Male 3 (33%) 6 (37%) 12 (46%)   

Race /Ethnicity    0.0148 0.0652 

Caucasian 4 (44%) 14 (93%) 22 (81%)   
Hispanic 1 (11%) 1 (7%) 3 (11%)   

Other 4 (44%) 0 (0%) 2 (7%)   
University    0.0251 0.0652 

UCB 6 (67%) 6 (38%) 14 (52%)   
NAU 0 (0%) 5 (31%) 12 (44%)   
NCS 3 (33%) 5 (31%) 1 (4%)   

Use of Facial Cosmetics    0.7737 0.7737 

Never 4 (44%) 5 (31%) 9 (33%)   
Rarely 0 (0%) 3 (19%) 4 (15%)   

Occasionally 1 (11%) 1 (6%) 0 (0%)   
Regularly 1 (11%) 1 (6%) 2 (7%)   

Daily 3 (33%) 6 (38%) 12 (44%)   
Tongue-based clusters 

Variables Tongue 1 (n=5) Tongue 2 (n=10) Tongue 3 (n=37) p value Corrected p 

Number of OTUs 364 380 326 0.1945 0.3501 

Shannon Index 3.424 4.002 4.156 0.0015 0.0135 

Normalized Shannon Index 0.819 0.800 0.699 0.0033 0.0146 

Age 21.000 23.000 24.459 0.3152 0.4301 

BMI 25.878 23.613 22.231 0.1121 0.2522 

Gender 0.9759 0.9759 

Female 3 (60%) 5 (56%) 22 (59%) 

Male 2 (40%) 4 (44%) 15 (41%) 

Race /Ethnicity 0.3345 0.4301 

Caucasian 3 (60%) 8 (80%) 29 (81%) 

Hispanic 0 (0%) 1 (10%) 4 (11%) 

Other 2 (40%) 1 (10%) 3 (8%) 

University 0.0440 0.1320 

UCB 5 (100%) 4 (40%) 17 (46%) 

NAU 0 (0%) 2 (20%) 15 (41%) 

NCS 0 (0%) 4 (40%) 5 (14%) 

Use of Facial Cosmetics 0.8882 0.9759 

Never 1 (20%) 4 (40%) 13 (35%) 

Rarely 1 (20%) 2 (20%) 4 (11%) 

Occasionally 0 (0%) 0 (0%) 2 (5%) 

Regularly 1 (20%) 0 (0%) 3 (8%) 

Daily 2 (40%) 4 (40%) 15 (41%) 

 

Table 4. Overall microbiome, demographic, and behavioral data for each of the identified clusters based on 

dynamics of a) gut microbiome, b)tongue microbiome, c)palm microbiome, d)forehead microbiome, e) four 

sites microbiome.   
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Palm-based clusters 

Variables Palm 1 (n=10) Palm 2 (n=17) Palm 3 (n=25) p value Corrected p 

Number of OTUs 1552 1648 2063 0.0656 0.1969 

Shannon Index 5.449 5.533 6.099 0.0288 0.1801 

Normalized Shannon Index 0.896 0.898 0.968 0.04 0.1801 

Age 24.200 22.688 24.480 0.2662 0.4278 

BMI 22.294 22.414 23.364 0.8090 0.8090 

Gender 0.1114 0.2507 

Female 7 (70%) 6 (37%) 17 (68%) 

Male 3 (30%) 10 (63%) 8 (32%) 

Race /Ethnicity 0.5395 0.6069 

Caucasian 6 (60%) 15 (88%) 19 (79%) 

Hispanic 2 (20%) 1 (6%) 2 (8%) 

Other 2 (20%) 1 (6%) 3 (13%) 

University 0.3488 0.4485 

UCB 7 (70%) 8 (47%) 11 (44%) 

NAU 1 (10%) 5 (29%) 11 (44%) 

NCS 2 (20%) 4 (24%) 3 (12%) 

Use of Facial Cosmetics 0.2852 0.4278 

Never 3 (30%) 6 (35%) 9 (36%) 

Rarely 2 (20%) 0 (0%) 5 (20%) 

Occasionally 1 (10%) 1 (6%) 0 (0%) 

Regularly 1 (10%) 0 (0%) 3 (12%) 

Daily 3 (30%) 10 (59%) 8 (32%) 

Forehead-based clusters 

Variables Forehead 1 (n=8) Forehead 2 (n=21) Forehead 3 (n=23) p value Corrected p 

Number of OTUs 1772 1771 1465 0.0579 0.1042 

Shannon Index 5.595 4.077 5.609 <0.0001 0.0001 

Normalized Shannon Index 0.9022 0.8993 0.6704 <0.0001 <0.0001 

Age 22.875 24.600 23.565 0.6866 0.7724 

BMI 21.174 22.954 23.305 0.3887 0.4998 

Gender 0.0048 0.0144 

Female 8 (100%) 7 (35%) 15 (65%) 

Male 0 13 (65%) 8 (35%) 

Race /Ethnicity 0.1488 0.2233 

Caucasian 4 (50%) 16 (80%) 20 (87%) 

Hispanic 1 (12%) 2 (10%) 2 (9%) 

Other 3 (38%) 2 (10%) 1 (4%) 

University 0.9101 0.9101 

UCB 5 (63%) 9 (43%) 12 (52%) 

NAU 2 (25%) 8 (38%) 7 (30%) 

NCS 1 (13%) 4 (19%) 4 (17%) 

Use of Facial Cosmetics 0.0361 0.0811 

Never 4 (50%) 5 (24%) 9 (39%) 

Rarely 3 (38%) 1 (5%) 3 (13%) 

Occasionally 0 (0%) 1 (5%) 1 (4%) 

Regularly 1 (13%) 0 (0%) 3 (13%)  
Daily 0 (0%) 14 (67%) 7 (30%)  
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Body (Four body sites-based clusters) 

Variables Body 1 (n=12) Body 2 (n=18) Body 3 (n=22) p value Corrected p 

Number of OTUs 3551 3627 3221 0.0324 0.0728 

Shannon Index 4.899 5.01 4.68 0.0017 0.0153 

Normalized Shannon Index 0.602 0.612 0.581 0.0066 0.0207 

Age 21.917 24.944 24.048 0.4636 0.5961 

BMI 23.912 22.589 22.585 0.6881 0.7311 

Gender 0.0069 0.0207 

Female 10 (83%) 13 (72%) 7 (33%) 

Male 2 (17%) 5 (28%) 14 (66%) 

Race /Ethnicity 0.7311 0.7311 

Caucasian 9 (75%) 13 (72%) 18 (86%) 

Hispanic 1 (8%) 3 (17%) 1 (5%) 

Other 2 (17%) 2 (11%) 2 (9%) 

University 0.1639 0.2459 

UCB 7 (58%) 9 (50%) 10 (45%) 

NAU 1 (8%) 8 (44%) 8 (36%) 

NCS 4 (33%) 1 (6%) 4 (18%) 

Use of Facial Cosmetics Use 0.1145 0.2061 

Never 5 (42%) 7 (39%) 6 (27%) 

Rarely 2 (17%) 4 (22%) 1 (5%) 

Occasionally 1 (8%) 0 (0%) 1 (5%) 

Regularly 2 (17%) 2 (11%) 0 (0%) 

Daily 2 (17%) 5 (28%) 14 (64%) 

As noted in [13], the highest diversity in terms of the number of OTUs and the highest SI values 489 

were observed at the skin surfaces (palm and forehead) which are most exposed to contacts with the 490 

environment. However, the highest values of SI and normalized SI of all skin sites were observed for 491 

Palm 3 (SI=6.10) and Forehead 3 (SI=5.61), which demonstrated low correlation of microbiomes across 492 

the 7 weeks. The microbiomes of the forehead-based clusters were significantly affected by the use 493 

facial cosmetics (p-value 0.036), e.g., Forehead 2 is characterized by the highest percentage (67%) of 494 

members using facial cosmetics daily, relatively low value of SI=4.08, and high value of normalized SI 495 

=0.9, indicating nearly equal representation of all OTUs. 496 

Gut-based and tongue-based clusters demonstrated lower diversity in terms of lower numbers 497 

of OTUs, and lower SI and normalized SI values.  The lowest values of the Shannon Index were observed 498 

in Tongue 1 (SI=3.42) and Gut 1 (SI=4.69), which also demonstrated abrupt changes in microbiomes at 499 
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least twice in 7 weeks. The important role of the Shannon Index in predicting stability of the microbiome 500 

was already discussed in [13]; here we confirm this observation for the sites less exposed to 501 

environmental influences and identify clusters of participants with lower gut and tongue microbiome 502 

stability, which also demonstrated lower microbiome diversity. The explanation for lower diversity or 503 

stability of the microbiome in these groups of students is not clear. It might be related to race and 504 

ethnicity since the less stable clusters Gut 1 and Tongue 1 have a higher proportion of non-Caucasians 505 

and non-Hispanics (reported as race/ethnicity=other in Table 4). These clusters also have a higher 506 

proportion of students from the University of Colorado, Boulder and may be hypothetically related to 507 

some of them eating at the same places (e.g., school cafeterias).  It is possible that the lower diversity 508 

and stability is caused by the actual composition of the microbiomes and its evolution over time, 509 

analysis of which would require construction of the covariance matrices (and snakes-&-dragons) not 510 

across weeks, but across OTUs, which will be the focus of our next paper. Nevertheless, having the 511 

ability to group individuals by microbiome variability instead of microbiome composition may prove to 512 

be a powerful tool in identifying disease predilection especially given the personalized nature of the 513 

human microbiome [36-37]. Future studies could also leverage our tool using case-control studies of 514 

disease with known microbiome components to determine if temporal groupings have health relevance. 515 

 516 

Clustering snakes based on macroeconomics development indicators from the 517 

World Bank 518 

To demonstrate the use of the snake vectors approach outside of the biomedical field, we 519 

created 7x7 correlation matrices for economies of 200 countries using annual data collected by the 520 

World Bank. In particular, we looked at seven important macroeconomic indices: 1) gross domestic 521 
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product (GDP); 2) unemployment; 3) inflation; 4) net trade in goods; 5) labor force participation; 6) 522 

foreign direct investment; and 7) gross domestic savings. Fig 14 illustrates the results of clustering of 523 

these correlation matrices using our snake vectors approach. Each of the presented matrices are the 524 

average of the correlation matrices of the above seven macroeconomic indices across the economies 525 

belonging to the given cluster. We also fit linear regression models to assess the amount of variability 526 

(R
2
) in 170 other development indicators that could be explained by the eight cluster groups. Among 527 

those with highest R
2
 was annual GDP growth, which had a significant (p<0.001) association with the 528 

eight cluster groups and therefore may help to elucidate the different mechanisms that can drive 529 

economic growth. For example, cluster 6 had high positive correlations between GDP and 530 

unemployment, yet had the highest growth. Although initially unexpected, this result may inform novel 531 

strategies and new macroeconomic models for economic growth in developing countries such as India, 532 

Mongolia, and Egypt, all of which were in cluster 6. Thus, clustering on correlations between 533 

macroeconomic indicators may identify novel subgroups representing different economic structures. 534 

Fig 14. Correlation matrices of macroeconomic indices of eight identified clusters of 535 

economies. 536 

Conclusions 537 

We presented a novel method named “snakes-&-dragons” for comparing and subtyping of 538 

complex systems through clustering of vectors derived from the correlation matrices of the variables 539 

describing these systems. Using a real dataset and a simulated dataset on brain connectivity matrices, 540 

we showed that the novel approach outperformed the existing methods for comparison of correlation 541 

matrices (RS, T-, and S-statistics). In the analysis of brain connectivity matrices from the GSP project, our 542 

approach allowed identification of two clusters with distinctly different patterns of brain connectivity 543 
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not explained by differences in demographic variables.   In the analysis of the microbiome of healthy 544 

students, it allowed identification of clusters of students with distinctly different patterns of microbiome 545 

dynamics. It also allowed formulation of the hypothesis that stability of gut and tongue microbiomes is 546 

affected by the diversity of the microbiome (as described by the Shannon Index). The macroeconomic 547 

example illustrated the possibility of using the snakes-&-dragons approach outside of the biomedical 548 

field.  549 

We have developed a clustering method capable of unsupervised classification of objects based 550 

on their structures and interactions of their parts and attributes, therefore uncovering new 551 

patterns/groupings based on previously unexplored characteristics of the systems. In medicine, it could 552 

lead to identification of new, more homogeneous subtypes of complex common diseases and 553 

subsequently to more targeted treatments. As for limitations, we have not yet demonstrated all of the 554 

capabilities of the dragon vectors. For instance, in the analysis of the microbiome data it would be 555 

meaningful to combine in a dragon vector the snake vectors formed from the correlation matrices 556 

across the weeks and the correlation matrices across the OTUs. In drug discovery, it would be 557 

informative to combine correlation matrices formed from the multidimensional time series of 558 

transcriptomics and proteomics data collected at various time points after the perturbation of a cell 559 

culture with the drugs of interest. We plan to explore these capabilities in our future research. 560 

A reader of this paper may be inclined to ask, “Does it really matter how to form a snake vector, 561 

or is it just about forming a vector that includes all the elements of the upper triangle of the correlation 562 

matrix?”  Our answer to this question evolved from “Not really” to “Yes and No”, and eventually to 563 

“Well, yes”, and is worth explaining here. If there is no intrinsic order of the variables upon which 564 

correlations are calculated, then the order in which correlation matrices and snakes are formed does not 565 

matter; it is important, however, that the order of variables should be the same in all correlation 566 
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matrices under comparison and that the order of correlation coefficients used in snake formation should 567 

be the same as well. Similarly, the concatenation of multiple snakes or other data elements in the 568 

formation of dragons should be consistent across objects. In case an intrinsic order of variables does 569 

exist, the situation is different. Take, for instance, the situation where different time points are 570 

compared as in our microbiome example; in this case, the first “off-diagonal” of the matrix 571 

demonstrates the correlations between measurements separated by one week, the second “off-572 

diagonal” separated by two weeks, etc. Creating snakes in any other way than the serpentine of “off-573 

diagonals” would violate this natural order. Imagine now the situation where the system has “memory” 574 

of limited duration (such as in a Markov process); in this case, the correlation matrix would look like a 575 

ribbon of nonzero elements along the diagonal and several “off-diagonals” with zeros everywhere else, 576 

so the snake vectors representing such matrices could be truncated. Another case of intrinsic order is 577 

physical distance. We believe that the snake vector approach could be useful in analysis of Hi-C data [38-578 

40], where the conformation of DNA in the chromosomes is derived from the matrix of distances 579 

between the nucleotides or larger elements of genome. In this case, the intrinsic variable is the distance 580 

from the beginning of the DNA chain. The periodicity of the elements of the snake vectors constructed 581 

as an off-diagonal serpentine would be informative of the DNA conformation. These matrices are huge, 582 

so the truncation of the snake vectors that represent them are computationally beneficial when 583 

possible. Even more interesting is the situation where the intrinsic order is distance in 3D space, e.g., the 584 

distance from the tumor or a lesion to the multiple locations in which biomarkers are measured. In this 585 

case, a higher dimensional analog of a correlation matrix is required which should be described by 586 

objects more complex than snakes-&-dragons, bringing to mind creatures like Zmey Gorynych from 587 

Russian folk tales – a dragon with 3 heads [41].  588 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630665doi: bioRxiv preprint 

https://doi.org/10.1101/630665


32 

 

Acknowledgements 589 

Data were provided in part by the Brain Genomics Superstruct Project of Harvard University and 590 

the Massachusetts General Hospital (Principal Investigators: Randy Buckner, Joshua Roffman, and 591 

Jordan Smoller), with support from the Center for Brain Science Neuroinformatics Research Group, the 592 

Athinoula A. Martinos Center for Biomedical Imaging, and GSP Open Access Documentation the Center 593 

for Human Genetic Research. Twenty individual investigators at Harvard and MGH generously 594 

contributed data to the overall project.  595 

The authors want to thank Dr. Shimony from Washington University for providing pre-processed 596 

connectivity matrices and for helpful discussions. We also thank the Washington University Alzheimer’s 597 

Disease Research Center for providing normative fMRI data. 598 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630665doi: bioRxiv preprint 

https://doi.org/10.1101/630665


33 

 

References 599 

1. Duda RO, Hart PE, Stork DG. Pattern classification, 2nd ed. 2001. Wiley, New York. 600 

2. Roff DA, Mousseau TA, Howard DJ. Variation in genetic architecture of calling song among 601 

populations of Allonemobius socius, A. fasciatus and a hybrid population: drift or selection? 602 

Evolution. 1999; 53:216-224. 603 

3. Cheverud JM. Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus 604 

oedipus) and saddle-back (S. fuscicollis) tamarins. J Evol Biol. 1996; 9:5-42 605 

4. Pielou EC. Probing multivariate data with random skewers: a preliminary to direct gradient 606 

analysis. Oikos. 1984; 42:161-165. 607 

5. Garcia C. A simple procedure for the comparison of covariance matrices. BMC Evol Biol. 2012; 608 

12:222. 609 

6. Goodnight CJ, Schwartz JM. A bootstrap comparison of genetic covariance matrices. Biometrics. 610 

1997; 53:1026-1039. 611 

7. Calsbeek B, Goodnight CJ. Empirical comparison of G matrix test statistics: Finding biologically 612 

relevant change. Evolution. 2009; 63:2627-2635. 613 

8. Phillips PC, Arnold SJ. Hierarchical comparison of genetic variance-covariance matrices. I. Using the 614 

Flury hierarchy. Evolution. 1999; 53:1506-1515. 615 

9. Flury B. Common principal components and related multivariate models. 1988. John Wiley & Sons. 616 

10. Haber A. A comparative analysis of integration indices. Evol Biol. 2011; 38:476-488. 617 

11. Barabasi A-L, Oltvai ZN. Network Biology: Understanding the cell’s functional organization. Nature 618 

Reviews. Genetics. 2004; 5:101. 619 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630665doi: bioRxiv preprint 

https://doi.org/10.1101/630665


34 

 

12. Holmes AJ, Hollinshead M, O’Keefe TM, Petrov VI, Fariello GR, Wald LL, et al. Brain Genomics 620 

Superstruct Project initial data release with structural, functional, and behavioral measures. 621 

Scientific data. 2015; 2: 150031.  622 

13. Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D, Chase J, et al. Temporal variability is a 623 

personalized feature of the human microbiome. Genome Biology. 2014; 15:531. 624 

14. The World Bank 2016. World development indicators. Washington, DC: The World Bank (producer 625 

and distributor). Available at: http://data.worldbank.org/data-catalog/world-development-626 

indicators. Accessed 9/21/16. 627 

15. Calinski RB, Harabasz J. A dendrite method for cluster analysis. Commun Stat. 1974; 3:1-27. 628 

16. Rouseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J 629 

Comput Appl Math. 1987; 20(1):53-65. 630 

17. Halkidi M, Batistakis Y, Vazirgiannis M. On clustering validation techniques. J Intell Inf Syst. 2001; 631 

17:107. 632 

18. Andreev VP, Gillespie BW, Helfand BT, Merion RM. Misclassification errors in unsupervised 633 

classification methods. Comparison based on the simulation of targeted proteomics data. J 634 

Proteomics Bioinform. 2016; S14:005. 635 

19. Liao TW. Clustering of time series data -a survey. Pattern Recognit. 2005; 38:1857-1874.  636 

20. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting 637 

human brain using echo-planar MRI. Magn Reson Med. 1995; 34: 537–541. 638 

21. Uddin LQ, Menon V. Introduction to special topic – resting state brain activity: implications for 639 

systems neuroscience.  Frontiers in Systems Neuroscience. 2010; 4: 5-6. 640 

22. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Frontiers in 641 

Systems Neuroscience. 2010; 4:126-134. 642 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630665doi: bioRxiv preprint 

https://doi.org/10.1101/630665


35 

 

23. Andrews-Hanna JR, Snyder A Z, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL. Disruption of 643 

large-scale brain systems in advanced aging. Neuron. 2007; 56: 924–935. 644 

24. Langan J, Peltier SJ, Bo J, Fling BW, Welsh RC, Seidler RD. Functional implications of age differences 645 

in motor system connectivity. Frontiers in Systems Neuroscience. 2010; 4:78-88. 646 

25. Hacker CD, Laumann TO, Szrama NP, Baldassarre A, Snyder AZ, Leuthardt EC, et al. Resting state 647 

network estimation in individual subjects. Neuroimage. 2013; 82:616-633. 648 

26. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic 649 

resonance imaging. Nat Rev Neurosci. 2007; 8: 700–711. 650 

27. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, 651 

characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2014;84:320-41. 652 

28. Cheverud JM, Marroig G. Comparing covariance matrices: random skewers method compared to 653 

the common principal components model. Genet Mol Biol 2007; 30(2):461-469. 654 

29. Sun SY, Liu ZP, Zeng T, Wang Y, Chen L. Spatio-temporal analysis of type 2 diabetes mellitus based 655 

on differential expression networks. Scientific Reports. 2013; 3:2268. 656 

30. Albert R, Barabasi AL. Statistical mechanics of complex networks. Reviews of Modern Physics. 657 

2002; 74:47-97. 658 

31. Dolnicar S. A review of unquestioned standards in using cluster analysis for data-driven market 659 

segmentation. CD Conference Proceedings of the Australian and New Zealand Marketing Academy 660 

Conference 2002 (ANZMAC 2002). Deakin University, Melbourne, December 2-4, 2002. 661 

32. Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering : A resampling-based method for 662 

class discovery and visualization of gene expression microarray data. Machine Learning. 2003; 663 

52:91-118. 664 

33. Schafer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and 665 

implications for functional genomics. Stat Appl Genet Mol Biol. 2005; 4:32. 666 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630665doi: bioRxiv preprint 

https://doi.org/10.1101/630665


36 

 

34. Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach 667 

to multiple testing. J Royal Statistical Society, Ser B. 1995; 57:289-300. 668 

35. Magurran A. Measuring Biological Diversity. Oxford: Blackwell Publishing; 2004. 669 

36. Turnbaugh PJ, Ley RE, Hamady M, Frazer-Liggett CM, Knight R, Gordon JI. The human microbiome 670 

project. Nature. 2007; 449:804-10. 671 

37. Costello EK, Lauber CL, Hamady M, Frierer N, Gordon JI, Knight R. Bacterial community variation in 672 

human body habitats across space and time. Science. 2009; 326: 1694-7.  673 

38. Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: 674 

interpreting chromatin interaction data. Nat Rev Genet. 2013; 14(6):390-403. 675 

39. Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to 676 

characterize global chromosomal architecture. Nature Genetics. 2011; 43:1059-1065. 677 

40. Flot J-F, Marie-Nelly H, Koszul R. Contact genomics: scaffolding and phasing (meta)genomes using 678 

chromosome 3D physical signatures. FEBS Letters. 2015; 589: 2966-2974.  679 

41. https://en.wikipedia.org/wiki/Slavic_dragon  680 

 681 

 682 

 683 

 684 

 685 

 686 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630665doi: bioRxiv preprint 

https://doi.org/10.1101/630665


 

Fig 1. Explanation of snakes-&-dragons approach: a)-snake vector. b)-dragon vector. 
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Fig 2. Four types of dragon vectors:  a) - Dragon 1, includes means and variances of the variables; b) - 

Dragon 2, includes also overall network property information; c) - Dragon 3, combines correlations along 

multiple dimensions of the data matrix or multiple locations; d) - Dragon 4 is composed of several 

dragons presenting different types of clinical and omics data.  
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Fig 3.  Simulating connectivity matrices with increased noise level: a) - original matrix #1. b) - simulated 

matrix with q/n=0.1, n=360; C – q/n=3, n=12; D- q/n=6, n=6; E-q/n=9, n=4; F- q/n=12, n=3. 
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Fig 4. Increased variability of simulated correlation matrices with increased q/n value: a) - 3 instances of 

correlation matrices generated from the connectivity matrix #1 using q/n=2, n=18; b) - 3 instances of 

correlation matrices generated from the connectivity matrix #1 using q/n=12, n=3.  See how variability 

of the matrices is increased in B (q/n=12) versus A (q/n=2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630665doi: bioRxiv preprint 

https://doi.org/10.1101/630665


 

Fig 5. Explanation of increased variability of the simulated matrices:  a) - histograms of standard 

deviations of the elements of the simulated connectivity matrices for various q/n; b) - signal to noise 

ratio vs. q/n.  
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Fig 6. Clustering of brain connectivity matrices from pilot data set of young vs. old healthy persons: a) - 

dendrogram based on RS, b) - dendrogram based on T-statistics, c) - dendrogram based on S-statistics, 

d) - dendrogram based on snake vectors, E-H- confusion matrices for the above four approaches. 
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Fig 7. Misclassification error in clustering simulated connectivity matrices. Comparison of hierarchical 

clustering results for RS, T- and S-statistics, and snakes vectors, with k-means and resampling-based 

consensus clustering using snake vectors. Snake vectors based approaches outperform RS, T- and S-

statistics based ones.  
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Fig 8. Resampling-based consensus clustering of 500 brain connectivity matrices from GSP project: a) - 

Consensus matrix. Two identified clusters are presented as yellow squares (yellow color indicating the 

high probability of a pair of brains belonging to the same cluster). High contrast in the on-diagonal and 

off-diagonal values of probability indicate two clusters; b) - Checking the number of clusters with 

Calinski criterion. Calinski criterion have a maximum at k=2 indicating two clusters as well (both with 

snakes-&-dragons approach and with RS, T- and S-statistics).  
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Fig 9. Mean brain connectivity matrices for two clusters identified in GSP data: a) - Mean connectivity 

matrix for cluster 1, b) - Mean connectivity matrix for cluster 2, c) - Difference of mean connectivity 

matrices for cluster 2 and cluster 1, d) - 8395 significantly different values of connectivity observed in 

cluster 1 vs. cluster 2. The 169 brain areas were divided into 10 networks: visual foveal (VFN), visual 

peripheral (VPN), dorsal attention (DAN), motor (MN), auditory (AN), cingulo-opercular (CON), ventral 

attention (VAN), language (LN), fronto-parietal (FPN), and default mode (DMN) [26].  
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Fig 10. Correlation matrices reflecting microbiome dynamics at four body sites (gut, tongue, palm, and 

forehead) for three clusters of students identified based on the gut microbiome data.  
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Fig 11. Correlation matrices reflecting microbiome dynamics at four body sites (gut, tongue, palm, and 

forehead) for three clusters of students identified based on the microbiome data for each of the body 

sites. 
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Fig 12. Pairwise comparison of cluster membership across four body sites.  
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Fig 13. Clustering based on dragon vectors describing microbiomes of four body sites: a) - Mean dragon 

vectors for three clusters of students identified by clustering the concatenated snake vectors for gut, 

tongue, palm, and forehead; b) - Sankey diagrams comparing cluster membership based on the 

dynamics of microbiomes at each site and all four sites’ microbiomes combined.   
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Fig 14. Correlation matrices of macroeconomic indices of eight identified clusters of economies. 
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