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Abstract 
 
Multi-zinc finger proteins are the largest class of human transcription factors, whose DNA-binding specificity is 
often encoded by a subset of their tandem Cys2His2 zinc finger (ZF) domains. However, the molecular code that 
underlies ZF-DNA interaction is incompletely understood, and in most cases the ZF subset that is responsible for 
in vivo DNA binding is unknown. We developed a context-aware machine-learning-based model of DNA 
recognition and combined it with molecular dynamics analyses to uncover new structural aspects of ZF-DNA 
interaction, including novel residues that contribute to sequence specificity. By combining this model with in vivo 
binding data, we identified the sequence preference and the ZF subset that is responsible for DNA binding in 
~30% of all human multi-ZF proteins, showing that in vivo DNA binding is primarily driven by ~50% of the ZFs. 
Analysis of genetic variation within and across species showed that DNA-binding ZFs are under strong selective 
pressure, and a pan-cancer analysis across 18 tissues revealed hundreds of genes whose expression is 
affected by somatic coding mutations in DNA-binding ZFs. Together, these results suggest that the regulatory 
consequences of mutations in ZFs depend on their in vivo DNA-binding functionality, which in turn is determined 
by a combination of context as well as ZF-intrinsic features. 
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Introduction 
 
Cys2His2 zinc finger proteins (C2H2-ZFPs) make up the largest class of human transcription factors (TFs): the 
human genome encodes ~750 C2H2-ZFPs, which constitutes ~45% of all human TFs. Most C2H2-ZFPs 
recognize distinct DNA sequences, which form the most diverse regulatory lexicon of all human TFs1. These 
proteins are characterized by the presence of multiple DNA-binding domains known as Cys2His2 zinc fingers 
(ZFs). Each ZF typically interacts with three to four nucleotides2, and the amino acid-base interactions of 
consecutive ZFs determine the overall DNA sequence specificity of each C2H2-ZFP. 

The molecular principles that dictate the relationship between the amino acid sequence of ZFs and their 
preference for specific DNA sequences have been studied for decades. Earlier studies mostly focused on the 3D 
structure of a few C2H2-ZFPs3 and a limited number of mutation analyses4 to derive simple models of DNA 
recognition by ZFs, highlighting the role of four “specificity residues” in determining the binding preference (Fig. 
1a). Extensive in vitro binding data from thousands of ZFs has enabled recent studies to generate more complex 
“recognition codes” by correlating the amino acid sequences of the ZFs with their binding preferences1,5-7. These 
machine-learning-based recognition models have enabled the discovery of integral and unexpected roles for 
C2H2-ZFPs8 and new insights into their evolution9,10. 

However, these models have substantial limitations; most importantly, they are derived from in vitro 
experiments in which individual ZFs are tested in an unnatural context (e.g. as fusion to ZFs of other proteins1,6), 
disregarding the influence of adjacent ZFs on DNA binding specificity11. Furthermore, most recognition models 
are based on the identity of the four specificity residues, ignoring the potential contribution of other ZF positions. 
As a result of these limitations, the predictions made by existing recognition codes only partially match the 
observed in vivo preferences of C2H2-ZFPs1,11. 

Understanding the relationship between ZFs and in vivo DNA binding has been further complicated by the 
fact that not all ZFs of a C2H2-ZFP engage with the DNA: The human C2H2-ZFPs on average contain ~10 ZFs1, 
which would correspond to a binding footprint of ~30 nucleotides. However, the binding sites of C2H2-ZFPs are 
often much shorter12, suggesting that only a fraction of the ZFs interact with the DNA while other ZFs might be 
involved in other functions such as mediating protein-protein13 or protein-RNA14 interactions. Currently, the DNA-
engaging ZFs of only a small subset of C2H2-ZFPs have been characterized15-17, preventing a comprehensive 
functional stratification of ZFs. 

Here, we take advantage of a large set of recently published in vivo C2H2-ZFP binding preferences18,19 and 
combine them with in vitro data1 to derive a recognition code of ZF-DNA interaction that is significantly more 
accurate than existing models. We show that this code captures the contribution of non-canonical ZF residues as 
well as adjacent ZFs to DNA binding preference, and provides an amino acid-resolution map of ZF-DNA 
interaction. Furthermore, by combining this recognition code with ChIP-seq and ChIP-exo binding data, we 
identify the ZF domains that engage with DNA in vivo, and examine the evolutionary pressures acting on these 
DNA-engaging ZFs across species and across individuals in the human population. 
 
 
Results 
 
Base-specificity of C2H2-ZF proteins is not limited to canonical contact residues 
 
The canonical model of C2H2-ZF interaction with DNA primarily includes four “specificity residues”, each of 
which interacts with four specific sites on the DNA. However, this model is obtained from a limited number of 
protein-DNA complex structures, mutation experiments, and in vitro data. In order to examine whether other ZF 
residues might contribute to sequence-specificity, we correlated the protein sequence of 836 ZF domains from 
157 human C2H2-ZF proteins with their in vivo binding preferences. Specifically, we used ChIP-seq and ChIP-
exo data from two previously published large-scale datasets18,19 in order to identify the in vivo binding preference 
of each protein. We then divided the de novo-identified motifs into three-nucleotide partitions (triplets) each 
representing the binding preference of one ZF domain, and examined whether the amino acid identity at each 
ZF position is informative about the base preference at different positions of the triplet. We observed highly 
significant dependencies between amino acid identity and DNA base identity for all expected canonical 
interactions (Fig. 1b). However, the significant correlations were not limited to these positions, and included 
other interactions, e.g. between residue +2 and DNA triplet position +3, and residue +6 and all three DNA triplet 
positions as well as DNA position +3 of the upstream triplet (Fig. 1b). 
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Figure 1. The canonical model of C2H2-DNA interaction only explains a subset of possible contacts. (a) Schematic 
representation of the canonical interactions between ZF positions –1, +2, +3, and +6 with a DNA triplet. Red and blue depict 
interaction with forward and reverse strand, respectively. Residue numbers are relative to the start of ZF alpha helix. (b) 
Associations between the identity of different ZF residues and each of four bases at different DNA positions, based on in vivo 
motifs. After splitting in vivo motifs into triplets, the probability of each base at each triplet position was discretized into two 
bins, and a chi-square test was used to examine the association of discretized probabilities with amino acid identity at each 
ZF position, including the N-terminal and C-terminal neighbors of the directly contacting ZF. The color gradient represents the 
P-value of the test. The border color of the squares represents the level of significance after Benjamini-Hochber correction for 
multiple hypothesis testing. Data underlying this figure are included in Table S1. (c) A 1μs-long MD simulation was used to 
measure the average all-atom contacts between each residue of Egr1 and the nucleotide bases of the forward and reverse 
strand of the target DNA, based on PDB structure 4X9J. The color gradient stands for the average number of contacts 
observed per frame of MD simulations, with red and blue representing contact with forward and reverse DNA strands, 
respectively. The dots represent significant associations based on correlation analysis of in vivo binding preferences, with the 
dot colour mirroring the border colour in panel a. Underlying data are provided in Table S2. (d) Structural illustration of a non-
canonical hydrogen bond between position +2 of Egr1 ZNF1 and the reverse strand base at position 9 of the DNA sequence 
(i.e. position 3 of the third triplet), which can be observed at ~17% occupancy. (e) The planar guanidino group of Arginine in 
position +6 of ZF1 forms a π-π stacking interaction with reverse strand base of the DNA position 9 (~50% occupancy). 
 

In order to understand whether these non-canonical associations may actually correspond to interactions 
between ZF residues and target DNA bases, we used molecular dynamics (MD) to track the amino acid-base 
contacts in the Egr1-DNA complex. Interestingly, many of the correlations observed from in vivo binding 
preferences can be captured as hydrogen bonds and other non-covalent interactions (e.g. van der Waals, ionic, 
or stacking interactions) in the Egr1-DNA complex (Fig. 1c). Example structures highlighting some of these 
contacts are shown in Fig. 1d,e, including a non-canonical hydrogen bond and a π-π stacking interaction 
between DNA and positions +2 and +6 of ZF1, respectively. Together, these analyses suggest that amino acid-
base interactions are not limited to the canonical model, which has also been suggested previously based on 
analysis of C2H2-ZFP structural data20. Given that these associations can be captured using available in vivo 
binding preferences, we set to develop a computational recognition code that takes into account these non-
canonical interactions, including the interactions between a DNA triplet and neighboring C2H2-ZFs. 

 
Combining in vitro and in vivo data results in an improved context-aware recognition code  
 
The in vivo binding preferences of C2H2-ZFPs provide the opportunity to capture non-canonical ZF-DNA 
contacts as well as the effect of neighboring ZFs on DNA sequence recognition. The available in vitro data1, on 
the other hand, provide a higher coverage and larger training dataset for modeling ZF-DNA interactions. 
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Therefore, we sought to obtain a “compound recognition code” (hereafter referred to as C-RC), which combines 
in vitro and in vivo data in order to obtain optimal prediction accuracy. We performed a systematic feature 
selection to identify the ZF residues that maximize prediction accuracy when they are used as input to random 
forest regression models21 that predict specificity for each of four bases at each DNA triplet position (Fig. 2a). 
We identified different features that optimize prediction accuracy in different contexts – the contexts that we 
considered included whether the ZF was located at the N-terminus, C-terminus, or the middle of a DNA-
engaging ZF-array (Fig. S1). 

In addition, we also examined whether different encodings of the amino acids can improve prediction 
accuracy by reducing the number of parameters of the recognition code. Previous attempts at developing a 
C2H2-ZF recognition code have considered the 20 amino acids as unrelated identities, e.g. through one-hot 
encoding1. However, amino acids with similar biochemical and/or structural properties often have similar 
propensities for interaction with different bases. Therefore, we specifically examined the possibility that encoding 
the amino acids by their biochemical properties (Fig. 2b) may reduce the complexity of the parameters that our 
computational model needs to learn, and therefore increase the model accuracy and generalizability. This 
encoding indeed allowed the random forest to learn simpler rules that were shared among amino acids with 
similar properties (Fig. 2c and Fig. S2) and resulted in significantly better predictions in different training-
validation scenarios (Fig. 2d). 

The final recognition code consists of 36 random forests: 12 random forests for each of the N-terminal, C-
terminal, or middle ZF contexts, with each random forest predicting the preference for binding to one of the four 
possible bases at one of the three DNA triplet positions (Fig. S1). We benchmarked the performance of our C-
RC using different evaluation schemes. First, we used 50 randomly selected ZF-target pairs from ChIP-seq data, 
which were excluded from all stages of the random forest training, including feature selection. As shown in Fig. 
2e, C-RC outperformed a previous B1H-based recognition code (B1H-RC)1 in predicting the base preferences 
for 11 out of 12 base-position combinations. Next, we compared the accuracy of C-RC with two available 
approaches, the B1H-RC1 and ZFModels5, using protein-binding microarray (PBM) data from a set of non-animal 
C2H2-ZFPs10 and a set of synthetic C2H2-ZFPs created from concatenating different ZFs from different 
proteins22. C-RC produced motifs that were significantly more similar to the PBM motifs than both B1H-RC and 
ZFModels predictions in both datasets (Fig. 2f,g), suggesting that the new code outperforms the state-of-the-art 
irrespective of the nature of the reference data (in vivo or in vitro) or the source of the protein (human, non-
animal, or synthetic). 

 
The new recognition code reflects known and novel structural features of ZF-DNA interaction 
 
Random forests are ensembles of large number of trees, which are not directly interpretable. To understand how 
C-RC works, we examined the output of the code for 100,000 randomly generated ZFs, each with one adjacent 
ZF on each side. By correlating the output of C-RC with the amino acid identities at each of the central or 
adjacent ZF positions, we were able to obtain a simplified picture of the average effect of each amino acid at 
each position on the recognition of different bases. This simplified representation ignores more complicated 
features that might be encoded in the random forest model, such as the non-linear dependencies of different 
positions. Nonetheless, it reveals key features, such as the associations between different positions of the ZF 
and target the DNA. Many of these associations are consistent with the canonical model of ZF-DNA interaction 
as shown in Fig. 3a. However, the model also encodes strong associations that are not part of the canonical 
model, most prominently between position 3 of the DNA triplet and position +6 of the N-terminal neighboring ZF 
(Fig. 3b). 

To understand whether these novel associations are structurally relevant, we performed MD simulations of 
the CCCTC-binding factor (CTCF) in complex with its cognate DNA, and indeed identified a non-canonical 
interaction between position +3 of the DNA triplet that is adjacent to ZF5 and residue +6 of ZF4 (Fig. 3c,d). 
Consistent with this observation, C-RC predicts that mutations in residue +6 of ZF4 on average negatively affect 
this interaction (Fig. 3e). In fact, systematic application of this in silico mutation strategy revealed a quantitative 
relationship between the associations predicted by C-RC and the strength of H-bonds observed in MD 
simulations, (Fig. 3f). This analysis suggests that C-RC not only enables the identification of non-canonical 
interactions, but also allows us to predict the strength of canonical interactions given the sequence of the ZFP 
and its target DNA. 
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Figure 2. Training and evaluation of C-RC. (a) Schematic representation of the procedure for training C-RC. Thirty-six 
models were trained separately (top left), corresponding to recognition of four bases at three DNA positions in three different 
contexts. Feature selection for each model included selection of residues to be considered for each ZF, as well as the choice 
of ZFs (top right). See Fig. S1 for detailed representation of the selected features for each model. (b) Encoding the amino 
acids by their biochemical properties. The heatmap (top) represents the biochemical properties we considered. The PCA-
transformed values are shown in the scatterplot at the bottom. Underlying data are provided in Table S3. (c) Visual 
representation of example rules learned by random forest after encoding the amino acids by their biochemical properties. We 
generated 40,000 “pseudo-amino acids” by dividing the PCA plot in panel (b) into a 200´200 grid, and then generated 40,000 
random ZFs by sampling (without replacement) these pseudo-amino-acids for each of the 12 ZF positions. The color gradient 
in the graphs shows the predicted affinity of these random ZFs for recognition of base T at position 1 of DNA triplet (T1), 
recognition of A2, or recognition of C3, as indicated beside each graph (see Fig. S2 for additional base-position 
combinations). The ZFs are projected on the scatterplot based on the PCA coordinates of the pseudo-amino-acid at position 
+6, +3, or –1, as indicated beside each graph. (d) The performance of the recognition code for predicting the probability of 
each base at each triplet position, when the amino acids are encoded as categorical variables (20 individual identities) or 
using the PCA-transformed biochemical properties. We used 5-fold cross-validation on B1H motifs1 (top) or ChIP-seq 
motifs18 (middle), or trained the recognition code on B1H motifs and tested on ChIP-seq motifs (bottom), ensuring that any ZF 
present in the ChIP-seq data was removed from the B1H training set. (e) Comparison of the performance of C-RC and a 
B1H-based recognition code1 (B1H-RC) for predicting the base probabilities at different triplet positions for 50 ChIP-seq ZFs 
that were excluded from the feature selection procedure and model training. (f) Systematic comparison of C-RC, B1H-RC, 
and ZFModels predictions vs. PBM motifs from non-animal C2H2-ZFPs10 and chimeric C2H2-ZFP constructs22. Pearson 
correlation similarity of motif pairs are calculated by MoSBAT-e23. P-values are based on two-tailed paired t-test. (g) As an 
example, MoSBAT-e comparison of the motifs predicted by C-RC, B1H recognition code, and ZFModels5 vs. the motif 
obtained by PBM10 for a C2H2-ZFP from Rhizopus delemar (UniProt ID I1BM86) is shown. 
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Figure 3. C-RC quantitatively predicts amino acid-base interactions. (a) The average contribution of each amino acid at 
different ZF positions for recognition of each base at different DNA triplet positions. Each panel represents recognition of one 
base, indicated above the figure, in a specific DNA triplet position, indicated on the right; each column represents one amino 
acid, each row represents one ZF position, and the color gradient denotes the contribution toward specificity (red: increased 
preference for the specified base; blue: decreased preference). The specificity residues that, according to the canonical 
model, contribute to the recognition of each DNA position are shown with green arrows. (b) Recognition of base C at position 
1 of the DNA triplet. The bar graph on the right shows the squared sum of values at each ZF position. The black arrow 
represents a potential new interaction with position +6 of the N-terminal neighboring ZF. (c) H-bonds identified from MD 
simulations of CTCF in complex with its target DNA. The interactions in the canonical C2H2-ZF model are shown with green 
border. The non-canonical interaction highlighted in panel b is shown here with black border. Underlying data are provided in 
Table S4. (d) The Arginine at position +6 of ZNF4 forms a non-canonical interaction with position –1 of its cognate DNA 
triplet. The interaction exists in two dominant conformations: a hydrogen bond (23% of MD simulation frames) between the 
Arginine and the base (top) and a stacking overlap (30%) between Arginine and the guanidino group and the DNA base 
(bottom). (e) The predicted preference of variants at position +6 of ZF4 for binding to G at DNA position 9 (i.e. position –1 
relative to the ZF4-associated triplet). The wild-type amino acid is highlighted in blue. (f) Scatterplots for the recognition code-
predicted associations vs. MD simulation-based H-bonds. In each plot, each dot represents one ZF. The graphs represent 
the amino acid-base pairs for which at least one H-bond and at least one non-zero association based on the recognition code 
was found. The spearman correlations are shown, along with their associated P-values (two-tailed). 
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A domain-resolution map of in vivo DNA binding reveals broad conservation of DNA-binding ZFs and low 
conservation of non-binding ZFS 
 
Human C2H2-ZFPs on average contain ~10 ZFs per protein1, which is substantially longer than what would be 
expected from the binding preference of most transcription factors, suggesting that only a fraction of the ZFs of 
most proteins engage with DNA. Combining in vivo binding data with the predicted DNA preferences of the ZFs 
enables the identification of the ZF domains that engage with DNA in vivo24. We therefore sought to combine our 
new recognition code with the genomic binding sites of human C2H2-ZFPs to characterize their in vivo binding 
preferences and the ZF domains that engage with the DNA. We used a previously described framework24, which 
starts by predicting the binding preferences of all possible ZF arrays contained in a C2H2-ZFP. It then identifies 
the ZF array whose binding preference maximally explains the observed in vivo binding sequences, along with 
its optimized binding motif. We applied this framework to previously published ChIP-seq and ChIP-exo data18,19, 
limiting the results to cases where the C-RC predictions and in vivo-optimized motifs had significant similarity at 
P<0.001. We identified significant motifs for 109 ChIP-seq and 126 ChIP-exo datasets (Fig. 4a and Fig. S3, 
respectively), encompassing a total of 209 unique proteins. 

Several lines of evidence from the analysis of the in vivo data point to substantially improved performance of 
the C-RC compared to the state-of-the-art, adding to the benchmarking results presented in the previous 
sections. First, in both ChIP-seq and ChIP-exo data, the C-RC was able to predict in vivo-enriched motifs for 
more C2H2-ZFPs than B1H-RC (Fig. 4b). Particularly, in the ChIP-exo data, the new recognition code was able 
to increase the number of proteins with significant motifs by ~25%. Secondly, for datasets that produced 
significant motifs using both the B1H-RC and the new recognition code, C-RC was able to identify a larger 
number of ZFs that engage with DNA (Fig. 4b). Thirdly, for these common proteins, the motifs identified by C-
RC had overall higher quality, as measured by the area under the receiver operating characteristic curve 
(AUROC) for distinguishing real binding sites from dinucleotide-randomized sequences (Fig. 4b). 

Based on the motifs identified by combining C-RC and ChIP-seq data, on average about 56% of the ZFs of 
each protein appear to engage with DNA in vivo (45% for ChIP-exo data), although these ZFs vary substantially 
in terms of their sequence specificity, as measured by the information content of the 3-nucleotide motif that 
corresponds to each ZF (Fig. 4a and Fig. S3). Interestingly, we observed that DNA-engaging ZFs are overall 
more conserved across vertebrates than non-binding ZFs or ZFs that bind to DNA with low sequence specificity 
(measured by information content of their associated motifs). This trend can be seen when we aggregate all ZFs 
from all C2H2-ZFPs that have ChIP-seq data (Fig. 5a), as well as when we analyze the ZF domains of each 
C2H2-ZFP individually (Fig. 5b). We also separately analyzed the conservation pattern of ZF domains in C2H2-
ZFPs that contain a KRAB domain – these C2H2-ZFPs are relatively recent and are often involved in repression 
of transposable elements1,9,18,19. Surprisingly, despite their overall lower conservation across vertebrates, likely 
due to their more recent origin, the correlation between conservation and DNA-binding can be clearly seen in 
KRAB-containing C2H2-ZFPs (Fig. S4a), suggesting that DNA-binding ZFs are more conserved than non-
binding ZFs both in KRAB-containing and non-KRAB C2H2-ZFPs. 

The higher conservation of DNA-engaging ZFs suggests that mutations in these regions are overall more 
deleterious than mutations in ZFs that do not bind DNA (which may potentially have other functions). We set out 
to confirm this hypothesis by analysis of population-level genetic variations in human ZFs. Using genetic 
variation data from gnomAD, which encompasses variants identified from >140,000 individuals, we observed 
that missense variations in ZFs that engage with DNA with high specificity are significantly less frequent than 
missense variations in ZFs that do not engage with DNA or have low sequence specificity (Fig. 5c). We also 
specifically examined the frequency of rare missense variants (minor allele frequency < 10–5) and more common 
variants (minor allele frequency > 0.001), reasoning that extremely rare variants are likely to be recent and, 
therefore, have not been filtered by negative selection yet, as opposed to common variants25. We noticed that 
common variants are significantly depleted from DNA-engaging ZFs compared to non-binding or low-specificity 
ZFs (Fig. 5d), suggesting that these ZFs are under stronger negative selection. This trend holds for both KRAB-
containing C2H2-ZFPs and non-KRAB C2H2-ZFPs (Fig. 5d), confirming the pattern that we observed by 
analysis of ZF conservation across vertebrates. Nonetheless, we observed overall stronger depletion of common 
variants in non-KRAB C2H2-ZFPs, to the extent that non-DNA-binding ZFs of these proteins appear to harbor 
the same ratio of common and rare variants as DNA-binding ZFs of KRAB proteins (Fig. 5d). This trend 
suggests a stratified model of selective pressure on the ZFs based on their function, in which mutations at the 
DNA-binding ZFs of non-KRAB proteins are overall the most deleterious ones, whereas mutations at the non-
DNA-binding ZFs of KRAB proteins are least affected by negative selection (Fig. 5e). 
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Figure 4. C-RC improves identification of motifs and the associated ZFs from in vivo data. (a) Motifs identified by 
recognition code-assisted analysis of ChIP-seq data for C2H2-ZFPs. For each protein, the domain structure is shown on the 
left (only the ZF domains). The bar graph shows the AUROC for distinguishing the binding site sequences from dinucleotide-
shuffled sequences. The ZFs that correspond to the identified motifs are highlighted, with the colour gradient representing the 
sequence-specificity of the ZF (as measured by information content). See Fig. S3 for ChIP-exo motifs. Position-specific 
frequency matrices are provided in Data Files S1 and S2. (b) Comparison of the number of motifs (middle) and the number 
of ZFs associated with the motifs (top), as identified by the B1H-RC or C-RC using ChIP-seq data18 (left) or ChIP-exo data19 
(right). For common motifs, the AUROC values of the optimized versions are compared in the scatterplots at the bottom. 
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Figure 5. DNA-binding ZFs are under stronger purifying selection for both KRAB and non-KRAB C2H2-ZFPs. (a) 
PhyloP26 conservation score profile across ZFs that do not engage with DNA (i.e. IC=0) and those that engage with varying 
sequence-specificity. Each set of three columns represents one codon in the ZF-encoding sequence, and each row 
represents one set of ZFs, binned by the information content (IC) of their associated triplet in the in vivo motif. The box size 
represents the average phyloP score, whereas the color gradient represents the difference of conservation compared to ZFs 
that do not engage with DNA (P-value based on one-tailed t-test). Data provided in Table S5a. (b) Correlation of the phyloP 
score profile of each C2H2-ZFP with the IC of the ZFs. The inset illustrates an example in which the phyloP score of the ZFs 
(bar plot above the ZNF667 domain structure) correlates with the IC of the ZF-associated triplets (color of the ZF domains, 
similar to Fig. 4a). For each C2H2-ZFP, the P-value associated with the Pearson correlation is shown using the color of the 
associated bar (two-tailed correlation t-test). The overall P-value for deviation of the mean of correlations from zero is also 
shown (two-tailed t-test). Also see Fig. S4. (c) Minor allele frequencies of non-synonymous variants for ZFs that do not 
engage with DNA (IC=0), ZFs with low sequence-specificity (IC<1), and ZFs with high sequence-specificity (IC³1). Each dot 
represents one ZF, and the y-axis shows the sum of frequencies of all non-synonymous minor alleles that overlap with the 
ZF. P-value is based on two-tailed t-test. Data provided in Table S5b. (d) Overlap of rare and common non-synonymous 
variants with ZFs that engage with DNA with high specificity (IC³1) and ZFs that do not engage or have low specificity (IC<1). 
The top table represents all C2H2-ZF proteins with ChIP-seq-based motifs, whereas the next two tables are stratified based 
on absence or presence of a KRAB domain in the protein. (e) A schematic model showing the inferred deleteriousness of 
variants in different ZFs, as suggested by the frequencies of common and rare variants. 

 
 

Mutations in DNA-binding ZFs accompany widespread expression changes in target genes across cancers 
 

The tight association between conservation and DNA-binding ability across all ZF residues (Fig. 5a) implies that 
mutations in the majority of ZF positions are detrimental to the ZF-DNA interaction. Given that C2H2 zinc fingers 
are frequently mutated in cancer27, we studied transcriptome changes associated with ZF somatic mutations 
across 2538 tumour samples and 18 cancer types28 (Table S6), in order to understand the gene regulatory 
consequences of these mutations. For each C2H2-ZFP, we selected the samples with no copy number 
alterations (CNAs) at the ZFP locus, and then modeled the association between expression of each gene and 
the presence of at least one missense mutation in the DNA-binding zinc fingers of the C2H2-ZFP, while 
correcting for the confounding effect of tissue of origin (cancer type), the cancer type-specific effects of sex and 
age, and CNAs at the target gene (see Methods). This pan-cancer meta-analysis revealed substantial 
association between genome-wide gene expression and somatic mutations at the DNA-binding ZFs of specific 
C2H2-ZFPs (Fig. 6a, Data File S3). 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2020. ; https://doi.org/10.1101/630756doi: bioRxiv preprint 

https://doi.org/10.1101/630756
http://creativecommons.org/licenses/by-nc/4.0/


A DNA recognition code for probing the in vivo functions of zinc finger transcription factors at domain resolution	

	 11	

 
Figure 6. Expression of ZFP target genes are associated with somatic mutations in DNA-binding ZFs. (a) Volcano plot 
for association of gene expression and somatic mutations in DNA-binding ZFs for 1,304,830 gene-ZFP pairs. The x-axis 
represent the effect size of the somatic mutation, and the y-axis represents the associated P-value. (b) Enrichment of ChIP-
seq-based ZFP-gene regulatory connections among the ZFP-gene pairs with varying degrees of mutation-expression 
association. ZFP-gene pairs were grouped into 100 equally populated bins based on the mutation effect size (x-axis) and, in 
each bin, the enrichment of ZFP-gene pairs that represent a ChIP-seq-based regulatory link relative to expectation was 
calculated (see Methods). The y-axis represents log-odds of regulatory links, each circle represents one bin, and the circle 
size/color represents P-value (logistic regression). (c) For 63 ZFPs that have RNA-seq data from over-expression in HEK293 
cells18, we binned the ZFP-gene pairs based on the joint distribution of the effect sizes of ZFP over-expression (y-axis) and 
somatic mutations (x-axis) in DNA-binding ZFs (left) or non-DNA-binding ZFs (right). For each bin, the log-odds for ChIP-seq-
based ZFP-gene regulatory links relative to expectation is shown using the color of boxes in the heatmap, while the size of 
the boxes correspond to P-value (logistic regression, see Methods). The histograms and the dotted lines represent the 
distribution of effect sizes and the boundaries of the bins. (d) Similar to panel (b) but limited to SP1-gene pairs. Genes are 
binned into 20 equally populated bins based on the effect size of SP1 mutation.  (e) C2H2-ZFPs whose ChIP-seq-based 
regulatory targets are enriched among genes that are positively or negatively associated with the ZFP somatic mutation. A 
logistic regression was used to assess the significance of the association between the presence of a peak near gene TSS 
and the effect size of mutation on gene expression (see Methods), separately for somatic mutations in DNA-binding ZFs 
(blue bars) and non-DNA-binding ZFs (white bars). The y-axis shows the regression coefficient, and the error bars represent 
standard error of mean. Only significant ZFPs (FDR<0.005) are shown. 
 

Several lines of evidence suggest that these ZFP-gene associations reflect bona fide regulatory interactions: 
First, we observed a significant overlap between the ZFP-gene associations we identified by analysis of somatic 
mutations and the direct ZFP-gene associations identified by ChIP-seq (Fig. 6b). Secondly, this overlap is 
consistent with disruption of ZFP function, as revealed by analysis of RNA-seq data from over-expression of 63 
ZFPs18 (Table S7): we found that direct ZFP targets (based on ChIP-seq) overall respond in opposite directions 
to somatic mutations and ZFP over-expression (Fig. 6c). Specifically, in vivo ZFP binding site are enriched 
among genes that are up-regulated as a result of ZFP over-expression and down-regulated in samples with 
somatic mutations in DNA-binding ZFs. A similar pattern can be seen for genes that are down-regulated after 
ZFP over-expression and up-regulated in mutant samples. In contrast to somatic missense mutations in DNA-
binding ZFs, somatic mutations in ZFs that do not bind DNA in vivo did not show such a pattern (Fig. 6c), 
suggesting that only mutations in DNA-binding ZFs have a transcriptomic signature that opposes phenotypic 
activation of the ZFP. 

Thirdly, we found that the direct regulatory targets of each ZFP (Data File S4) overall show a consistent 
response to somatic mutations in DNA-binding ZFs. For example, SP1 binding sites are specifically enriched 
near the transcription start sites (TSS’s) of genes that are down-regulated as a result of SP1 mutation (Fig. 6d). 
Overall, we found 15 ZFPs in which somatic mutation of DNA-binding ZFs leads to a consistent response in their 
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direct targets (FDR < 0.005). In contrast, somatic mutations of non-DNA-binding ZFs showed a similarly 
significant pattern in only three ZFPs (Fig. 6e). Finally, we observed that loss of heterozygosity (LOH) in each 
ZFP locus leaves a gene expression signature that is highly consistent with that of somatic missense mutations 
in DNA-binding ZFs (Fig. 7a), suggesting that somatic mutations of DNA-binding ZFs, which are often 
monoallelic, have regulatory effects similar to LOH. 
 
Gene expression signatures of somatic mutations demarcate ZFP regulons  
 

The above results enabled us to identify the set of genes whose expression is significantly affected by the 
missense mutations that disrupt DNA-binding capability of each C2H2-ZFP, which should represent part of that 
ZFP’s regulon, including direct and/or indirect targets. To increase statistical power, we leveraged the LOH-
associated gene expression changes, and used them as a prior to identify mutation-associated expression 
changes using independent hypothesis weighting (IHW29) (Fig. 7b). Overall, we identified 3366 significant ZFP-
gene associations (FDR < 0.2) between 2456 genes and 95 C2H2-ZFPs (Fig. 7c, Table S8). The size of the 
identified ZFP regulons ranged from only 1 gene for ZNF35 to 201 genes for ZBTB48, suggesting varying 
degrees of power for detecting gene regulatory effects of different ZFPs based on analysis of somatic mutations. 

To evaluate the fidelity of these regulons, we examined the agreement between our mutation-based ZFP-
gene associations and the co-expression of ZFP-gene pairs. Genes that are part of a TF’s regulon (including 
direct and indirect targets of the TF) often show coordinated expression across different samples in way that 
reflects the expression level of the TF itself. Therefore, we expect the genes that are dysregulated as a result of 
a ZFP mutation to be associated with that ZFP’s expression if they are part of the ZFP regulon. This association 
should be observed even across samples that have neither CNA nor any mutation at the ZFP locus (an example 
is shown in Fig. 7d). Overall, we observed a trend consistent with this expectation across multiple cancer types: 
We identified 83 ZFP-cancer pairs for which there was a significant association between mutation-based 
regulatory links and co-expression. Among these significant associations, ~81% (67 out of 83, binomial P<10–8) 
had the expected direction, i.e. genes that were down-regulated as a result of ZFP mutation were positively 
correlated with ZFP expression, and mutation-up-regulated genes were negatively correlated with ZFP 
expression (Fig. 7e). Together, these results support the notion that somatic missense mutations in DNA-binding 
ZFs hamper the regulatory function of the ZFPs, allowing identification of their direct and indirect targets. 
 
Discussion 
 
Our analyses indicate that the compound recognition code (C-RC) provides a more accurate model of DNA 
binding by C2H2-ZFs than existing models, as a result of incorporating in vivo binding data during model 
construction. Interestingly, this improvement was achieved by inclusion of in vivo binding preferences of less 
than 840 human zinc fingers, leaving open the possibility of further improvements as additional in vivo data 
become available for C2H2-ZFPs. Furthermore, our molecular dynamics analyses suggest that C-RC can 
quantitatively infer the contribution of different ZF residues to DNA specificity, including new potential 
interactions beyond the canonical model such as π-π stacking of planar amino acids with DNA bases. These 
interactions appear to occur as a result of alternate conformations of the amino acid side chains at the DNA-
protein interface – this might explain why they were not reported earlier in the X-ray crystal structures of C2H2-
ZPFs, which often represent only the most stable conformation.  

By combining the C-RC with ChIP-seq and ChIP-exo data, we were able to obtain a domain-resolution map 
of ZFP-DNA interactions for a total of 209 C2H2-ZFPs, which suggested that ~50% of ZF domains engage with 
DNA in vivo. We observed that DNA-engaging ZFs are more conserved across species than ZF domains that do 
not engage with DNA. This trend in conservation, however, is not limited to the base-contacting residues and 
can be observed in all ZF residues, suggesting that non-base-contacting residues are also under stronger 
selective pressure in ZFs that engage with DNA compared to ZFs that do not engage with DNA in vivo. This 
observation is consistent with a role of non-base-contact residues in DNA-binding (e.g. through interaction with 
DNA backbone, as suggested by recent studies10). On the other hand, the relative lower sequence conservation 
in ZFs that do not bind DNA may reflect alternative functions that allow higher tolerance to mutations in the 
protein sequence. 
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Figure 7. Gene expression signatures of somatic mutation in DNA-binding ZFs. (a) Consistence between the effect of ZFP somatic 
mutations and ZFP loss-of-heterogeneity (LOH). ZFP-gene pairs were grouped into 20 bins based on the expression effect size of ZFP LOH 
(x-axis), and within each sample, the number of ZFP-gene pairs that pass P-value threshold of 0.01 for positive association or negative 
association with somatic mutation was calculated (y-axis). The color gradient shows the log-odds of positive mutation effect size (red) or 
negative mutation effect size (blue). (b) Identification of significant associations between ZFP somatic mutation and gene expression, using 
the association between ZFP LOH and gene expression as a prior for increased statistical power. Each dot represents one ZFP-gene pair, 
with significant gene pairs (IHW-adjusted FDR<0.2) shown in red. (c) Heatmap of significant ZFP-gene associations (top). Each column is 
one ZFP, each row is one gene, and the colour gradient shows the size of the effect of somatic mutation in the DNA-binding ZFs of each 
ZFP on the expression of each gene. As an example, genes that are significantly associated with DNA-binding ZF mutations in ZNF454 are 
shown at the bottom heatmap, with each column representing one mutation-containing tumour sample. The cancer type of each sample is 
shown on top of the heatmap. (d) The correlation between ZNF454 expression across UCEC tumours and expression of its regulon. Each 
row is a gene, in the same order as the bottom heatmap of panel (c). Each column is one sample, limited to those that do not have any 
somatic alteration in the ZNF454 locus. (e) Concordance between ZFP mutation effect size and ZFP-gene co-expression. For each ZFP and 
each cancer type, the Pearson correlation between the genome-wide effect size of somatic DNA-binding ZF mutation and the ZFP-gene 
expression correlations were calculated (see Methods).  The color gradient shows the Pearson correlation, with red depicting correlations 
that are in the expected direction and blue representing correlations that are opposite of the expected direction. The box size shows the 
associated P-value (t-test). Significant Pearson correlations are shown with a black border (FDR<0.01) or grey border (FDR<0.05). 

 
Interestingly, this pattern can be found not only in non-KRAB C2H2-ZFPs, but also in KRAB proteins, whose 

functions in regulating gene expression are less understood. This observation suggests that mutations in the 
DNA-binding domains of KRAB proteins are deleterious, which is also supported by depletion of common 
genetic variants in DNA-binding ZFs at the population level. This is a surprising finding given that there are few 
known disease-linked KRAB proteins, and highlights the need for better characterization of the functions of these 
proteins in genome regulation. In fact, our pan-cancer analysis revealed a substantial number of genes whose 
expression is significantly associated with somatic mutations in the DNA-binding ZFs of KRAB proteins (Fig. 7b), 
suggesting that mutations in these proteins have widespread consequences on the transcriptome. 

A question that needs to be addressed is whether the KRAB proteins that we analyzed are representative of 
all KRAB-containing C2H2-ZFPs: We limited our analyses to the C2H2-ZFP binding sites that do not overlap 
with endogenous repeat elements (EREs) due to their confounding effect on motif finding24; however, a large 
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number of the KRAB protein binding sites are in EREs1,18,19, which may result in the identification of high-quality 
motifs for fewer KRAB C2H2-ZFPs. Indeed, we were able to obtain high-quality motifs for only 25% of the KRAB 
proteins that almost exclusively bind to ERE regions (i.e. >90% of top 500 peaks in EREs). In contrast, for the 
rest of KRAB proteins, we had >97% success rate in finding high-quality motifs that match the recognition code 
predictions, suggesting that our results may be biased against exclusive ERE binders. We note, however, that 
this group likely forms a relative minority of KRAB proteins (12 out of 55 KRAB proteins with ChIP-seq data 
match our definition of exclusive ERE binder).  

Our study of the in vivo DNA-binding ability of ZFs mirrors previous studies that have shown that, at least in 
vitro and when fused to ZF1-2 of the Egr1 protein, not all ZF domains are able to bind to DNA1. These studies 
suggest that there are intrinsic differences between DNA-binding and non-binding ZFs. Do these intrinsic 
differences explain the observation that only a fraction of human ZF domains engage with DNA in vivo? We 
have found that ZFs that bind to DNA in vivo have, on average, higher sequence specificity than ZFs that do not 
engage with DNA (Fig. S4c), as predicted by our recognition code. However, sequence specificity alone is a 
modest predictor of in vivo DNA binding. Furthermore, ZFs that do not engage with DNA in vivo have, on 
average, significantly higher sequence specificity than ZFs in pseudogenes (which are presumably non-
functional), suggesting that at least some of the non-engaging ZFs are intrinsically capable of binding to DNA 
(Fig. S4c). This notion is also supported by direct comparison of our in vivo binding map with in vitro bacterial 
one-hybrid data1, which shows that while there is a statistically significant overlap between ZFs that bind to DNA 
in vitro and in vivo (odds ratio=1.7, P < 0.003, Fisher’s exact test), at least 15% of ZFs that do not engage with 
DNA in vivo are still capable of binding to DNA in vitro (Fig. S4d). This raises the possibility that DNA-binding 
capability is, at least to some extent, determined by the context, which may include the ZF position in the array 
as well as the identity of adjacent ZFs. More strikingly, ~55% of ZFs that do not bind DNA in vitro interact with 
DNA in vivo, often with high specificity, enforcing the notion that in vitro binding assays at best only partially 
reflect the in vivo function of ZFs. 

Finally, we note the possibility that some ZFs may engage with DNA in alternative binding modes that we 
have not yet characterized. A few C2H2-ZFPs are known to employ alternative sets of ZFs to bind to DNA15-17. 
This observation suggests that some ZFs might be engaged only in a subset of in vivo binding sites – such ZFs 
would not be part of the core motifs that we have presented in this paper, which can potentially explain their 
higher-than-random sequence specificity. Therefore, the factors that determine the ability of ZFs to engage with 
DNA may depend not only on the C2H2-ZFP itself, but also on its binding sites. 
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Methods 
 
Obtaining the data set of C2H2-ZF preferences for training the recognition code 
We obtained the in vivo binding sites of 313 proteins from two previous studies18,19, representing 131 proteins 
with ChIP-seq and 221 proteins with ChIP-exo data in HEK293 cells. The binding sites of each protein were 
directly downloaded from GEO datasets associated with these publications (GEO accessions GSE76494 and 
GSE78099). For each datasets, we ran RCADE24 on the top 500 peaks that did not overlap any endogenous 
repeat elements (EREs), as described previously30 (ERE coordinates were obtained from the RepeatMaser track 
of the UCSC Genome Browser31). For successful runs, we included the top-ranking motif of each protein in our 
training dataset. For the proteins that had both ChIP-seq and ChIP-exo data and resulted in a significant motif in 
both cases, we used the ChIP-exo motif, given the higher resolution of ChIP-exo compared to ChIP-seq. We 
split each motif into its constituent triplets (total of 836 triplets), and also extracted the ZF associated with each 
triplet, as well as the two ZFs on the two ends of each direct ZF. For the triplet at the 5’ end of each motif, no ZF 
from the C-terminus of the associated ZF was used. Similarly, for the triplet at the 3’ end of each motif, no ZF 
from the N-terminus of the associated ZF was used (see Fig. S1 for a schematic representation). We set aside 
50 randomly selected ZFs from this training dataset, so that they could be used at the end for testing the 
obtained model. We augmented the training dataset with in vitro B1H-based motifs from 8138 ZFs1. Since in 
these B1H experiments only the binding preference of a single ZF was queried at a time, the associated ZF of 
each motif does not have any N-terminal or C-terminal adjacent ZFs. 
 
Biochemical encoding of amino acids 
For each amino acid, we extracted six different biochemical properties32 (Table S3a). Given the strong 
correlations among these properties, we used principal component analysis (PCA) and used the transformed 
coordinates of the amino acids on the first two components (Table S3b) for downstream analyses. 
 
Feature selection and training of the recognition code 
We considered four possible input configurations for predicting the preference of the ZF for a DNA triplet: (a) 
only the ZF that is directly in contact with the triplet, (b) the direct ZF plus its N-terminal neighbor, (c) the direct 
ZF plus its C-terminal neighbor, and (d) the direct ZF plus its two neighbors. 

For each of these configurations, we considered different set of input features (Figure S1b): (i) only the four 
canonical residues of the ZFs (i.e. residues –1, +2, +3, and +6), (ii) the seven residues that showed the highest 
correlations with the DNA preference according to Chi-square test of in vivo data (i.e. residues –4, –2, –1, +1, 
+2, +3, and +6), and (iii) all 12 residues between the second Cys and the first His in the ZF (i.e. the X12 in the 
Pfam pattern X2CX2,4CX12HX3,4,5H). For each configuration a-d, we tried each feature set i-iii for predicting each 
of the four bases at each position of the triplet, and chose the feature set that maximized the Pearson correlation 
of predicted vs. target values during 5-fold cross-validation. 

Finally, for each of the three possible ZF contexts, we compared the performances of the compatible 
configurations and selected the best-performing configuration by 5-fold cross-validation. The ZF contexts were: 
(1) ZFs that are at the N-terminus of the DNA-binding ZF array (compatible with configurations a and c), (2) ZFs 
that are at the C-terminus of the DNA-binding array (compatible with configurations a and b), and (3) ZFs that in 
the middle of the DNA-binding array (compatible with configurations a, b, c, and d). The configuration that was 
selected for each context and the corresponding feature set are shown in Fig. S1c. 

 
Evaluating the performance of the final mode 
After configuration- and feature-selection based on 5-fold cross-validation results, the final recognition code was 
tested on 50 randomly selected held-out ZFs that were not included at any stage of training. We used the 
Pearson correlation of predicted vs. observed base probabilities as the measure of performance. Also, we used 
MoSBAT-e23 to compare the predictions of the code with motifs obtained from protein binding microarray 
analysis of a set of non-animal C2H2-ZFPs10 or chimeric C2H2-ZFPs constructed from fusion of different ZFs22. 

 
Molecular dynamics simulations of Egr1 and CTCF 
CTCF-DNA complex was obtained by combining two crystal structures (PDB accessions 5T0U, 5UND)33, and 
EGR1-DNA complex was obtained from PDB accession 4X9J34.  The simulations were carried out using 
AMBER16 package35 with the ff14SB force field. The system was immersed in a rectangular box of TIP3P water 
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model36 with neutralizing concentration of ions. Additionally, Na+/Cl–ions matching the ionic strength of 0.1 M 
were included. Each system was energy-minimized using 2500 steps of steepest descent followed by 2500 
steps of conjugated gradient using a harmonic restriction on the solute with a value of 40 kcal/mol·Å. The heating 
process was carried from 0 to 300 K using Langevin dynamics	 and subsequently followed by equilibration for 
500 ps (NPT). Finally, we carried out unrestrained MD for 1 μs under NPT conditions. The particle mesh Ewald 
(PME) method37,38 was used to handle long-range electrostatic interactions and a cutoff of 12.0 Å was used for 
the simulations. SHAKE algorithm39 was used to contain hydrogen bonds and to allow a longer integration step. 
All simulations were carried out with a time step of 2 fs using the pmemd module in AMBER1640. The cpptraj 
module was used for trajectory analyses41. The criterion for hydrogen bonding was set at ≤3.0 Å distance 
between electron donor atom and hydrogen of electron acceptor atom with 120-degree angle cutoff. Heavy 
atoms involved in stacking interaction were identified as described in MolBridge42. A perpendicular distance 
cutoff of 3.2 Å between the planar atoms was used. The simulated structure and contacts were visualized using 
PyMOL43. 

 
Identification of the in vivo binding preferences and DNA-engaging domains of human C2H2-ZFPs 
We created a modified version of RCADE24, called RCADE2, which uses our new compound recognition code 
(C-RC) to predict the binding preferences of different ZF arrays, evaluate their enrichment in in vivo binding 
sequences (compared to dinucleotide-shuffled sequences), and then optimize the motifs to maximize AUROC. 
RCADE2 is available at https://github.com/csglab/RCADE2, and includes features such as HTML output and 
integrated positional analysis of the identified motifs. Using RCADE2, we analyzed ChIP-seq and ChIP-exo data 
from two previous publications18,19 as described above, including removal of peaks that overlapped EREs to 
ensure that our analyses are not confounded by sequence homology among repeat elements, and then using 
the summit position of the top 500 peaks with the largest scores (i.e. smallest p-values) for motif finding. For 
successful runs, we extracted the top-scoring optimized motif that had significant similarity with the seed motif 
(i.e. the motif predicted by C-RC) at P < 0.001, and marked the ZFs associated with that motif as the DNA-
engaging ZFs. For each DNA-engaging ZF, we also calculated the information content of the 3-nucleotide motif 
that it encodes as 𝐼𝐶 = ∑ 𝑝!,#𝑙𝑜𝑔$)4 × 𝑝!,#,!,# , where pi,j denotes the probability of observing base j at position i of 
the triplet motif (1£i£3). 
 
Analysis of cross-species conservation and population-level genetic variation at ZFs 
We obtained missense single-nucleotide variants (SNVs) and their frequencies from the Genome Aggregation 
Database (gnomAD44) for genomic build GRCh37.24. Only single nucleotide variants that passed the high-
quality filter in gnomAD (PASS filter) were included for further analysis. Multiple variants for the same genomic 
location were split using BCFTools. ZF domains were annotated based on the presence of Pfam pattern 
X2CX2,4CX12HX3,4,5H in the protein sequence, and the SNVs from the canonical transcript were mapped to their 
corresponding amino acid residue in the ZF. To obtain per-residue genetic variation, allele frequencies of the 
three codon positions were summed. We used a similar approach to analyze per-base conservation at the ZF 
coding sequences, using phyloP26 conservation scores that were obtained from the UCSC Genome Browser 
(phyloP46way track, hg19). 
 
Identification of ZFP-gene associations based on ChIP-seq data 
To identify genes that have a binding site for each ZFP near their TSS regions, we first identified the high-
confidence set of peaks for each ZFP by simultaneous optimization of the peak-calling score cutoff and the motif 
hit score cutoff, similar to a previous approach18. Briefly, for each C2H2-ZFP, we first identified the affinity-based 
motif-match score of each peak using AffiMx23. We then identified a motif score cutoff to dichotomize the peaks, 
in a way that maximizes the Mann-Whitney U z-statistic of the difference of peak scores between the two peak 
sets. Similarly, we identified a peak score threshold that maximizes the Mann-Whitney U z-statistic of the 
difference of motif scores between peaks that pass that threshold and peaks that do not. Any peak that passed 
the optimized peak-score threshold was deemed a significant binding site, and any significant binding site that 
also passed the optimized motif-score threshold was deemed to have a match to the motif. Then, we associated 
a gene to a significant binding site if that binding site was within 10kb of the TSS of the gene (Data File S4). 
 
Data for mutation/expression analysis across cancers 
Somatic mutations, copy number alterations (CNA), patient metadata (including age and sex), and gene 
expression data of TCGA Pan-Cancer Atlas28 were downloaded from cBioPortal45. Gene expression values were 
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normalized by division to the 75th percentile of the non-zero values of each sample. We retained only tumour 
samples that had all of the four data types mentioned above. We further filtered the samples to keep only those 
that had at least one missense mutation in at least one of the C2H2-ZFPs with ChIP-seq data that we studied 
here. We also removed datasets (tissues) for which there were fewer than 30 samples with at least one mutated 
C2H2-ZFP. These filters resulted in a total of 2538 tumour samples from 18 cancer types (Table S6). Missense 
mutations were then classified into those that overlap a DNA-binding ZF (i.e. ZFs that recognize, in vivo, a 3-
nucleotide motif with IC ³ 1; see previous sections), those that overlap a non-DNA-binding ZF, and those that do 
not overlap a ZF. A total of 96 C2H2-ZFPs had at least one mutation overlapping a DNA-binding ZF (Table S6), 
which were further analyzed for association of their mutations with genome-wide expression. 
 
Identification of genes whose expression is associated with ZFP mutations 
Gene expression data were first filtered to include only genes that had an expression value >0.01 in at least 25% 
of all samples. For each C2H2-ZFP z, we then selected the samples that did not have a CNA at the ZFP locus 
(i.e. CNA=0 based on the obtained data), and further normalized and log-transformed the expression values 
using voom46. Then, for each gene i, we fit a linear model to the normalized and log-transformed expression data 
across samples j in the form of Ei~T+T´S+T´A+Ni+Mz, where Ei is the vector of expression of gene i across 
samples, T is the vector of tissue of origin of the samples, S denotes the sex of the patients from which the 
samples were obtained, A represents the age of the patients, Ni denotes the CNA status of gene i across 
samples (with integer values ranging from –2 to +2), and Mz is the vector of mutation status of the C2H2-ZFP z 
across samples (non-mutated, mutation in a non-ZF region, mutation in a DNA-binding ZF, and mutation in a 
non-DNA-binding ZF).  The coefficients of the variable Mz for DNA-binding ZF mutations, along with the 
associated P-values, were then used to identify genes whose expression is associated with DNA-binding-
disrupting mutations. Overall, this approach is overall similar to a previous work on identification of cis-eQTLs 
based on somatic mutations47, with the difference that we looked at trans-acting coding mutations, we 
aggregated the mutations by the function of the affected protein domain, and we did not include any hidden 
factors in the regression model – inclusion of hidden factors are necessary to correct for the global structure and 
correlations in gene expression data in order to identify cis-acting effects; however, gene-gene correlations are 
likely driven by trans-acting factors, and therefore we decided not to remove them. 
 
Overlap of ChIP-seq-based regulatory links and expression-mutation associations 
To examine whether expression-mutation associations represent regulatory relationships between ZFPs and 
genes, we calculated enrichment of ChIP-seq-based ZFP-gene regulatory links, as determined by presence of a 
ChIP-seq binding site within 10kb of TSS (see above). For Fig. 6b-d, we examined the enrichment of these 
regulatory links in ZFP-gene pairs that fall within a specific bin (binned by the effect size of DNA-binding ZF 
somatic mutations in Fig. 6b and d, and by the joint distribution of the effect size of LOH and somatic mutations 
in Fig. 6c). For each bin, we then performed a logistic regression in order to model the log-odds of presence of a 
regulatory link as a function of the bin in the form of L~B, where L is the log-odds that a ZFP-gene pair 
corresponds to a ChIP-seq-based regulatory link, and B is a binary vector indicating whether that ZFP-gene pair 
belongs to the bin that is being examined. We note that some genes have overall higher probability of being 
associated with at least one ZFP in our ChIP-seq compendium, which may represent a bias towards genes that 
are expressed in HEK293 cells18. To correct for this bias, in the logistic regression, we considered the presence 
of a regulatory link between the ZFP and the gene as a “success”, and the number of ChIP-seq-based regulatory 
links that connect that gene to “other” ZFPs as the number of “failures”. Therefore, for example, if gene x has at 
least a peak for ZFP z, and also at least one peak for n other ZFPs, then the regression assumes n+1 Bernoulli 
observations for the x-z pairs, in which 1 was a success and n were failure. On the other hand, if gene x didn’t 
have a peak for ZFP z, then there would be 0 success and n failures. We used a similar logistic regression for 
Fig. 6e, with the difference that the predictor variable, instead of being a binary vector, was the ZFP mutation 
effect size. 
 
Identification of genes whose expression is associated with loss-of-heterozygosity (LOH) of ZFPs 
We performed another association analysis, similar to the regression approach mentioned above, to identify 
genes whose expression is affected by LOH of each C2H2-ZFP. Specifically, for each C2H2-ZFP z, we excluded 
all samples that had any mutations in the ZFP coding sequence as well as samples that had biallelic deletion or 
copy number gains at the ZFP locus, normalized and log-transformed the resulting expression matrix using 
voom46, and then fit a model of the form Ei~T+T´S+T´A+Ni+Nz, where Nz is the binary vector of CNAs for C2H2-
ZFP z across the samples (0 for no CNA, 1 for LOH). 
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Identification of significant associations between gene expression and somatic mutations 
We observed that LOH-associated gene expression changes are highly consistent with gene expression 
changes that are associated with mutations in DNA-binding ZFs. Therefore, we used LOH association to form a 
prior for P-value adjustment and detection of significant mutation associations. Specifically, we used 
independent hypothesis weighting (IHW29) to give a weight to each ZFP-gene pair based on the t-score of the 
coefficient of Nz in the LOH-expression association analysis, and then use these weights to maximize statistical 
power for detection of significant mutation-expression associations at FDR < 0.2. 
 
Concordance between gene signatures of each ZFP and ZFP-gene co-expression 
For each ZFP z and each cancer type, we modeled the expression of each gene i as a linear function of the 
expression of the ZFP across samples, taking into account the confounding effects of age and sex and the 
CNAs at the query gene locus: Ei~S+A+Ni+Ez, where Ez is the vector of expression of ZFP z across tumours. 
Then, for each ZFP, we calculated the Pearson correlation between the coefficients of Ez across the genes that 
are part of the ZFP regulon (based on association with ZFP mutation, see above) and the ZFP mutation effect 
size. Note that since the effect of somatic mutations in DNA-binding ZFs is expected to be negative for co-
expressed ZFP-gene pairs and positive for anti-correlated ZFP-gene pairs, the Pearson correlation sign is 
inverted. 
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