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Abstract
Architectural order across spatial and temporal scales is a
defining characteristic of living systems. Polarization of light
enables label-free imaging of sub-resolution order in diverse
biological systems without perturbing their assembly dynam-
ics or causing phototoxicity. However, identification of spe-
cific structures seen in these images has remained challeng-
ing. We report synergistic use of polarized light microscopy,
reconstruction of complementary optical properties, and deep
neural networks to identify ordered structures. We recover
birefringence, orientation, brightfield, and degree of polar-
ization contrasts simultaneously by using Stokes formalism
to model image formation. We report computationally effi-
cient U-Net architectures that exploit information in comple-
mentary contrasts and predict specific structures with high
accuracy. We illustrate the performance of our models by pre-
dicting ordered F-actin and condensed DNA in morphologi-
cal diverse components of a kidney tissue. Our open-source
python software for reconstruction of optical properties and
training the neural networks is available on GitHub.
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Introduction
The function of living systems emerges from dynamic inter-
action of components that give rise to ordered structures over
spatial scales of nanometers to meters and temporal scales
of milliseconds to years. Methods for imaging ordered ar-
rangement of molecules within the context of organelles, of
organelles within the context of cells, and of cells within the
context of tissues promise new insights in the function of bi-
ological systems that have been elusive from study of the in-
dividual components at a single scale.

Polarization of light provides sensitivity to architectural
order below the spatial resolution of a given microscope.
Transmitted-light polarization microscopy has enabled anal-
ysis of intrinsic order in live biological systems. It has led
to the discovery of the dynamic microtubule spindle (1). It
has been used in in vitro fertilization (IVF) clinics to assess
structural integrity of meiotic spindles of oocytes (2). It has
been used for label-free imaging of white matter in brain tis-
sue slices (3, 4), and recently for imaging activity dependent
structural changes in acute brain slices (5).

Key challenges in widespread adoption of label-free po-
larized light imaging are sensitive detection of biological
structures in the presence of background and identification of
specific structures that are detected. Fluorescence polariza-
tion microscopy lends itself to automated analysis of dynamic
order (6) with molecular specificity. But a fluorescent re-
porter often compromises an ordered assembly, such as actin
network (7), and limits the number of structures that can be
analyzed at the same time, especially in live cells. Synergistic
combination of label-free polarization-diverse imaging, ac-
curate reconstruction algorithms, and deep neural networks
can resolve these bottlenecks and reveal emergence of order
among interacting structures in diverse biological systems.

Related work. We have previously employed liquid-crystal
based transmitted polarized light microscopy (LC-PolScope)
for sensitive detection of the specimen’s birefringence and
slow axis (8, 9) as well as diattenuation and the axis of max-
imum transmission (10). The reconstruction and background
correction algorithms in earlier papers are based on Jones cal-
culus that assumes coherent and fully polarized illumination,
i.e. illumination with a plane wave (11, Ch.10). But LEDs
or lamps used for these experiments actually lead to partially
polarized illumination, which is not accounted for by Jones
calculus. Fluorescence polarization microscopy also gives
rise to partially polarized emission, since independent emis-
sion events imaged through the detection numerical aperture
are mutually incoherent. Stokes vector representation of light
and Mueller matrix representation of the optical components
elegantly capture the full state of polarization of light, in-
cluding partial polarization. We previously developed Stokes
representation of fluorescence polarization for simultaneous
recovery of concentration, alignment, and orientation of flu-
orophores imaged with instantaneous fluorescence polariza-
tion microscope (6), but partial polarization in transmitted
light microscopy is yet to be exploited to retrieve informa-
tion about the specimen.

Polarization-sensitive imaging has also been performed
in reflection mode, most commonly with polarization sensi-
tive optical coherence tomography (PS-OCT). PS-OCT has
been used to measure round-trip birefringence and diattenu-
aton of diverse tissues, e.g., of brain tissue (12). But deter-
mination of the material axes in the reflection mode is con-
founded by the fact that light passes through the specimen
in two directions. The reconstruction and background cor-
rection algorithms in PS-OCT primarily rely on Jones cal-
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culus, since OCT is a coherent interferometer and intensity
recorded in individual speckle is fully polarized (13). How-
ever, PS-OCT practitioners employ degree of polarization
uniformity (13) over several speckles to analyze depolariza-
tion due to multiple scattering.

Deep convolutional neural networks have recently en-
abled identification of structures that can be perceived in
diverse label-free images, opening new opportunities to ad-
vance the state-of-the-art of biological imaging. These op-
portunities include increasing the imaging throughput via
computationally multiplexed analysis of biological struc-
tures, comparative analysis of architecture of primary tissue
that are difficult to label with consistency, and analysis of bi-
ological processes in non-model organisms that are difficulty
to label genetically.

Recent papers report combination of brightfield or differ-
ential interference contrast (DIC) imaging with U-Net (14)
for label-free identification of multiple organelles in cells;
combination of phase-contrast, DIC and adaptation of
Google’s inception model for in silico labeling of nuclei, cell
types, and cell state (15); combination of quantitative phase
(16) and auto-fluorescence(17) with generative adverserial
networks for prediction of histopathology images; combina-
tion of diffraction tomography with U-Net for segmentation
of immunological synapse (18). In addition, identification of
carcinoma region in colon tissue from Raman scattering im-
ages using a random forest classifier (19) has been reported.

However, rapid analysis of ordered biological struc-
tures remains challenging, because the aforementioned label-
free imaging approaches (absorption, phase, and auto-
fluorescence) are not as sensitive as polarized light mi-
croscopy in detecting ordered structures, and any machine
learning algorithm can only learn the structural information
that is present in the input data.

Contributions. We develop more accurate model of image
formation in polarized light microscopy and corresponding
algorithm for reconstruction of complementary optical prop-
erties using Stokes formalism. Our approach recovers bright-
field, birefringence, orientation of dense axis, and degree of
polarization images simultaneously. Casting the image for-
mation and reconstruction in Stokes formalism also provides
an elegant representation of the microscope in terms of an
instrument matrix, which enables robust calibration and fa-
cilitates design of new polarization-resolved imaging algo-
rithms.

We report a computationally efficient network architec-
ture for 3D translation that combines information from the
depth of field of the microscope and complementary label-
free contrasts to predict fluorescent volumes with state-of-
the-art accuracy, in contrast to some of the previous work that
demonstrated 2D translation (15–17). Our 2.5D architecture
achieves the same or better accuracy as the 3D translation
architecture reported in (20) while taking significantly less
time to train and without having to sacrifice in plane resolu-
tion by downsampling. In comparison to Google’s 2D trans-
lation model (15), our 3D translation model uses significantly
fewer parameters and predicts much larger dynamic range of

gray levels, albeit for one translation task. We systematically
evaluated how the contrasts and dimensions of the input af-
fect the prediction accuracy and computational cost. We find
that higher prediction accuracy is archived by combining the
multiple label-free contrasts. We demonstrate prediction of
fluorescence images of tissue, while previous work has re-
ported prediction of fluorescence images of cultured cells
or brightfield images of histochemically-stained tissue (15–
17, 20). Image translation results reported in (15–17) were
limited to 2D structures, likely because they use even more
complex architectures than 3D U-Net model reported in (20).

In the results section, we first describe retrieval of
complementary optical contrasts from polarization-resolved
images and then discuss development of computationally-
efficient image translation models.

Results and Discussion
Reconstructing complementary contrasts from polar-
ization-diverse images. Architectural order leads to varia-
tions in concentration and alignment of bio-molecules, which
induce variations in optical path length, retardance1, and scat-
tering. We implemented automated polarized-light imaging
protocol using LC-PolScope (Fig. 1A, methods) and devel-
oped two-step algorithm (Fig. 1B, methods) for simultane-
ous recovery of brightfield, retardance, slow axis, and de-
gree of polarization contrasts. We also implemented back-
ground correction methods for sensitive imaging of small
variations in the contrast due to the specimen (methods).
Slight strain or misalignment in the optical components or
the sample chamber can lead to background that masks con-
trast due to the specimen. The background typically varies
slowly across the field of view and can introduce spurious
correlations in the measurement. With our improved re-
construction approach, we computed background-free bright-
field, retardance, slow axis, and degree of polarization im-
ages from polarization-resolved intensities. The python code
for reconstruction is available at https://github.com/
czbiohub/reconstructorder.

Fig. 1C shows background-corrected images of a kidney
tissue slice, U2OS cells (bone cancer cell line), and mouse
brain slice in above four contrasts. The brightfield (BF) im-
age reports dense structures that appear in positive contrast
on one side of the focus and in negative contrast on the other.
These intensity variations arise via transport of intensity re-
lationship (22). The transport of intensity effect is noticeable
in through focus brightfield images of kidney tissue (Supple-
mentary Movie 1) and in through focus brightfield images of
condensed chromosomes in cells (Supplementary Movie 2).
The retardance image is proportional to liquid crystalline or
orientational order among molecules. The orientation image
reports the dense axis of the retardance. In kidney tissue, the
retardance image highlights convolutions within glomelurus,
capillary that is cut transversely, and tubules, among other

1optical path length and retardance are refractive index and birefringence
integrated over a coherently illuminated volume within the specimen(21,
Fig. 3)
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Fig. 1. Retrieval of complementary contrasts from polarization-diverse images: (A) Tunable liquid crystal (LC) is used to acquire polarization-diverse images in
transmission. (B) We retrieve Stokes parameters of light at the image plane from polarization-resolved images and retrieve specimen properties from Stokes parameters
assuming that the specimen is transparent. (C) Representative images of tubules in kidney tissue, organelles in U2OS cells, and axon tracts in mouse brain slice. The
brightfield image visualizes structures with distinct optical path length, retardance and orientation images visualize structures with liquid crystalline order, and degree of
polarization image visualizes structures that multiply scatter the light. The orientation images are color coded according to the color-wheel in top-right - the color represents
the orientation and the brightness represents the retardance. The markers shown on kidney tissue images identify structures discussed in Fig. 2

components of the tissue. The nuclei appear in negative con-
trast in the retardance image because condensation of DNA
leads to isotropic structure. In dividing U2OS cell (Supple-
mentary Movie 2), the orientation image clearly shows dy-
namics of membrane boundaries, microtubule spindle, and
lipid droplets. Lipid droplets in the U2OS cells and tubules in
the kidney tissue significantly change the degree of polariza-
tion (DOP) as they multiply scatter the light. In brain tissue,
the retardance and orientation images distinctly report axon
tracts due to birefringence of myelinated axons (23). Supple-
mentary Image 1C shows tiled image of the whole brain slice,
in which not just the white matter tracts, but also changes
in the orientation of axons within different cortical layers is

visible. The DOP image of brain tissue primarily highlights
large axon tracts that can multiply scatter light (Fig. 1C and
Supplementary Image 1D).

It is worth clarifying the difference between retardance
and degree of polarization measurements. The retardance
variations arise from single scattering events within the sam-
ple that alter the polarization, but do not reduce the coher-
ence. The degree of polarization on the other hand reports
multiple scattering events that reduce the polarization of light
and diattenuation that polarizes the light further. In the future,
we are excited to develop models that account for diffraction
and scattering effects in polarized light microscopy and de-
velop methods that provide more quantitative estimates of the
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specimen properties.
Our approach enables visualization of large class of

structures from their density, order, and scattering with
diffraction-limited resolution and high sensitivity for the first
time to our knowledge. In the next sections, we discuss how
these complementary signatures of the specimen enable accu-
rate prediction of the shape and expression of different types
of structures.

Optimization of image translation model. Iterative opti-
mization of optical contrast, architecture of the deep neural
network, and the training process is key to successful analy-
sis of structures of interest. We reasoned that complementary
signatures acquired by our microscope should enable learn-
ing of structures of heterogeneous shapes in tissue. In order
to develop our deep neural network models, we trained mod-
els to predict F-actin and DNA distribution within kidney tis-
sue.

We adapted the widely successful residual U-Net
model (24, 25) to translate structures represented in label-free
images into fluorescence images. Prior work (20) on transla-
tion of brightfield images to fluorescence images has shown
that 2D translation models result in discontinuous predictions
along the z-axis as compared to 3D translation models. How-
ever, 3D U-Net model requires sufficiently large Z dimen-
sion as the input is isotropically downsampled in the encod-
ing path of the U-Net. However, typical microscopy images
acquired with Nyquist sampling have anisotropic dimensions
due to anisotropic resolution in the microscope. Therefore,
use of 3D translation models requires that either the data is
downsampled in XY or upsampled in Z. Downsampling in
XY leads to loss of resolution acquired by the microscope
and maintaining the XY resolution requires upsampling in
Z,which increases data size without adding information. The
increased data size makes training 3D translation model more
computationally expensive. In our experiments, training 3D
models using 100 training volumes required 3.5 days to con-
verge with a cutting edge.

We sought to reduce the computational cost, while main-
taining the optical resolution of the data and high accuracy
of prediction. Structures with different physical properties,
e.g., ordered vs condensed, give rise to different label-free
signatures. We therefore evaluated the prediction accuracy
as a function of the label-free contrast and dimensions of the
input for an ordered structure (F-actin) and for a condensed
structure (DNA) in kidney tissue.

We experimented with three types of U-Net models to
predict fluorescence volumes: slice→slice (2D in short) mod-
els predicted 2D fluorescence slices from corresponding 2D
label-free slices, stack→slice (2.5D in short) models pre-
dicted 2D fluorescence slices from a few (3,5, or 7) neigh-
boring label-free slices, and stack→stack (3D in short) mod-
els predicted fluorescent volume from label-free volume. See
methods for the description of the network architecture and
training process. To evaluate the performance of the mod-
els and the effect of training parameters, we computed Pear-
son correlation coefficient and structural similarity index (26)
between predicted fluorescent volumes and ground truth flu-

orescent volumes in the test set, which were never seen by
the model during training (methods). table 1 reports these
test metrics for models that predict F-actin volumes and ta-
ble 2 reports test metrics for models that predict DNA vol-
umes. The 2D models required 6-8 hrs to train on a GPU
with 12GB RAM, 2.5D models required 24 hrs to train on
GPU with 32GB RAM, and 3D models required 84 hrs to
train on GPU with 32GB RAM. In the next two sections, we
report main findings from our model optimization effort.

The python code for training our variants of image trans-
lation models is available at https://github.com/
czbiohub/microDL.

Predicting structures from multiple label-free con-
trasts improves accuracy. We took advantage of the com-
putational efficiency of 2D models to explore the effect of the
label-free inputs, used independently and jointly, on the pre-
diction accuracy of fluorescent structures (Fig. 2A). Ground-
truth (Fig. 2B) and predicted (Fig. 2C) distributions of F-
actin and DNA from a representative field of view containing
glomerulus and convoluted tubules illustrate model perfor-
mance. This field of view was chosen from the test set that
was not seen by the model during the training or validation.
Label-free inputs used for prediction are shown in Fig. 1C.

The 2D model accurately predicts small tubules bound
by F-actin (arrowheads in Fig. 2B and C) from the retardance
(γ) channel, but not from brightfield (BF) channel. On the
other hand, closely-spaced nuclei within a glomerulus (tri-
angleheads in Fig. 2B and C) are well-resolved in the pre-
diction from BF channel, but not in the prediction from γ
channel. When γ, φ, and BF images are jointly used as in-
puts, both structures are predicted with high fidelity. These
variations in the prediction performance arise from the sen-
sitivity of the retardance image to ordered F-actin and the
sensitivity of the brightfield image to dense DNA. Consistent
with models reported by Ounkomol et. al.(20), our bright-
field model predicts large-scale F-actin structures, but not the
small scale structure. Our models that use retardance and
orientation as input, however, are able to predict fine F-actin
structures - compare F-actin stress fibers in the last frame of
z-stacks shown in supplementary movie 3A and supplemen-
tary movie 4A.

These observations from a representative field of view
generalize to entire test set as illustrated by the distribution of
Pearson correlations between slices of ground-truth and pre-
dictions (rxy) in Fig. 2C. Correlation between ground truth
and prediction over the test data has the highest median and
the narrowest distribution when all three channels are used as
input. Comparing median values of the correlation and struc-
tural similarity index for several models in table 1 and table 2
(rxy and SSIMxy columns) further shows that the prediction
accuracy of 2D models robustly increased as the most infor-
mative channels were used jointly as input.

Using label-free images over the depth of field im-
proves prediction of 3D structure. To evaluate our mod-
els’ ability to learn complex three-dimensional structures, we
take a closer look at glomeruli in the kidney tissue. Glomeruli
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Fig. 2. Prediction accuracy as a function of label-free contrast: (A) We trained a slice→slice U-Net model to predict a fluorescent target from multiple label-free images.
(B) Fluorescence ground truth for a field of view from the test set. Phalloidin-labeled F-actin in shown green and DAPI labeled DNA is shown in magenta. (C) F-actin and DNA
distribution predicted with U-Net models trained on brightfield (BF), retardance (γ), and combination of BF, γ, and slow axis φ channels. (D) Violin plots show distribution of
Perason correlation between the predicted XY slices and ground truth XY slices (rxy ) over the entire test dataset. The horizontal dashed lines in the violin plots indicate 25th

quartile, median, and 75th quartile of the Pearson correlation. The triangle points to a collection of nuclei and the arrow points to F-actin structure seen in ground truth image,
but that are predicted or not as a function of input channel used.
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Translation model Input(s) Loss rxy rxz rxyz SSIMxy SSIMxz SSIMxyz

Slice->Slice (2D) BF L2 (Otsu) 0.80 0.77 0.81 0.65 0.57 0.66
γ L2 (Otsu) 0.83 0.80 0.83 0.69 0.61 0.69
φx L2 (Otsu) 0.82 0.79 0.83 0.68 0.60 0.69
φy L2 (Otsu) 0.82 0.80 0.83 0.69 0.61 0.70

DOP L2 (Otsu) 0.74 0.70 0.75 0.57 0.49 0.58
BF, γ L2 (Otsu) 0.86 0.83 0.85 0.73 0.66 0.74

γ, φx, φy L2 (Otsu) 0.86 0.83 0.85 0.74 0.67 0.74
BF, γ, φx, φy L2 (Otsu) 0.87 0.84 0.86 0.75 0.69 0.76

Stack-> Slice (2.5D, z = 3) γ L1 (Rosin) 0.86 0.83 0.86 0.74 0.68 0.75
Stack-> Slice (2.5D, z = 5) γ L1 (Rosin) 0.89 0.85 0.87 0.75 0.69 0.76

BF, γ L1 (Rosin) 0.90 0.88 0.90 0.79 0.73 0.80
γ, φx, φy L1 (Rosin) 0.89 0.87 0.89 0.79 0.73 0.79

BF, γ, φx, φy L1 (Rosin) 0.89 0.88 0.90 0.79 0.73 0.80
Stack-> Slice (2.5D, z = 7) γ L1 (Rosin) 0.87 0.85 0.87 0.76 0.70 0.76
Stack-> Stack (3D, z = 96) γ L1 (Rosin) 0.84 0.82 0.85 0.73 0.70 0.77

Table 1. Accuracy of prediction of F-actin in kidney tissue: Above table lists median values of the Pearson correlation (r) and structural similarity index (SSIM) between
prediction and ground truth volumes. We evaluated combinations of brightfield (BF), retardance (γ), orientation x (φx), orientation y (φy ), and degree of polarization (DOP)
as input. Slice→slice (2D) translation models were trained using L2 (MSE) loss and stack→slice (2.5D) and stack→stack (3D) models were trained using L1 (MAE) loss.
We segmented target images with Rosin and Otsu threshold to discard tiles that mostly contained background pixels. To dissect the differences in prediction accuracy along
and perpendicular to the focal plane, we computed test metrics separately over XY slices (rxy ,SSIMxy ) and XZ slices (rxz ,SSIMxz ) of the test volumes, as well as over
individual test volumes (rxyz , SSIMxyz ).

Translation model Input(s) Loss (mask) rxy rxz rxyz SSIMxy SSIMxz SSIMxyz

Slice->Slice (2D) BF L2 (Otsu) 0.80 0.79 0.78 0.59 0.50 0.60
γ L2 (Otsu) 0.79 0.76 0.76 0.59 0.46 0.57
φx L2 (Otsu) 0.78 0.76 0.76 0.60 0.46 0.56
φy L2 (Otsu) 0.80 0.78 0.78 0.61 0.48 0.58

DOP L2 (Otsu) 0.26 0.24 0.26 0.34 0.29 0.35
BF, γ L2 (Otsu) 0.84 0.82 0.82 0.62 0.54 0.64

γ, φx, φy L2 (Otsu) 0.83 0.81 0.81 0.62 0.52 0.62
BF, γ, φx, φy L2 (Otsu) 0.86 0.84 0.84 0.63 0.55 0.65

Stack-> Slice (2.5D, z = 5) γ L1 (Rosin) 0.85 0.85 0.84 0.61 0.54 0.63
BF, γ L1 (Rosin) 0.91 0.90 0.90 0.71 0.63 0.74

γ, φx, φy L1 (Rosin) 0.89 0.88 0.88 0.67 0.60 0.70
BF, γ, φx, φy L1 (Rosin) 0.89 0.89 0.89 0.66 0.59 0.69

Table 2. Accuracy of prediction of DNA in kidney tissue: Above table lists median values of the Pearson correlation (r) and structural similarity index (SSIM) between
prediction and ground truth volumes. See table 1 for description of other columns.

are key components of kidney tissue that perform filtration.
They are complex multi-cellular structures the size of a sin-
gle cultured cell (27). Fig. 3A and Fig. 3B show XY and
XZ slices through retardance volume and F-actin volume of
the same glomerulus shown in Fig. 2B from the test set, while
Fig. 3C shows XY and XZ slices through the F-actin volumes
predicted using 2D, 2.5D, and 3D models trained on retar-
dance as the input. The predictions with 2D models show
discontinuity artifacts in the structure along the depth. These
artifacts can also be observed from comparison of z-stacks
of F-actin (supplementary movie 3A) and z-stack of 2D pre-
diction (supplementary movie 4A). The 2.5D model predicts
smoother structures along depth dimension and improves the
fidelity of F-actin prediction in XY plane (Fig. 3B).

The 3D model further improves the continuity of predic-
tion along the depth (Fig. 3C and supplementary movie 4C),
however the gain in accuracy is not as significant as the tran-
sition from 2D to 2.5D model. As evaluated with distribution

of Pearson correlations along XY and XZ slice in Fig. 3D, the
2.5D model performs almost as well as 3D model, although
it is faster and more memory efficient. When evaluated with
the median values of Pearson correlation over whole test set
shown in table 1 2.5D models perform consistently better
than 3D model along XY, XZ, and XYZ dimensions. How-
ever, when evaluated with SSIM, the 3D model performs
slightly better along XZ and XYZ dimensions, whereas 2.5D
model performs better along XY dimensions. Notably, 3D
model took 3× longer to train than 2.5D model due to the
larger input Z dimension required by 3D model that signifi-
cantly increases its memory footprint.

We reasoned that using complementary label-free con-
trasts can boost the performance of 2.5D models to match
the performance of 3D single-channel models without signif-
icantly increasing the computation cost. The Pearson corre-
lation and SSIM reported in table 1 for prediction of F-actin
from 2.5D multi-channel models are consistently higher than
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B ground truth F-actinA input Retardance
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D Pearson correlation over test data
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predicted F-actin

Fig. 3. prediction accuracy as a function of U-Net architecture: XY (top) and XZ (bottom) slices through a volume in test data shows (A) retardance, (B) ground truth
fluorescence of F-actin and DNA, and (C) predictions made with different U-Net architectures. (D) shows violin plots of Pearson correlation distributions in the XY plane and
XZ plane across the test dataset.

3D single-channel models along XY, XZ, and XYZ dimen-
sions. The prediction accuracy for fine structures such as
F-actin stress fiber also improves when complementary con-
trasts are used as input, as seen from last frames of z-stacks
shown in supplementary movies 4A and 4B. We compare
ground-truth distribution of F-actin and DNA (Fig. 4A) with
predicted distributions (Fig. 4B) over the test field of view
containing glomerulus. 2.5D model trained on γ,φ, and BF
is able to predict lumen locations (arrow head in Fig. 4) better
than 2.5D model trained on γ alone. This can be explained
from the fact that lumen is an isotropic structure of lower
density that appears similar to the background in retardance
image.

We also reasoned that 2.5D multi-channel model can be
robustly trained to predict diverse set of structures. All mod-
els trained just on retardance do not predict some of the gaps
in the F-actin distribution, which may be nuclei or capillaries.
As seen from metrics in table 1 and table 2, the prediction
of both F-actin and DNA improves when 2.5D models are
trained with complementary inputs. Note that the 2.5D model
trained on γ alone can miss nuclei (triangle head), which
2.5D model trained on γ,φ, and BF is able to predict. Pear-
son correlation between ground truth and predictions also has
higher medians and narrower distributions for 2.5D multi-

channel models for both F-actin and DNA (Fig. 4C). Com-
parison z-stack of label-free inputs (supplementary movie
1), ground truth fluorescence (supplementary movie 3) and
prediction from 2.5D multi-channel model (supplementary
movies 4 and 5) further confirm our observations.

In conclusion, above results show that 2.5D multi-
channel U-Net allows us to learn ordered and condensed
structures with higher accuracy than reported before from
complementary label-free contrasts. Our optimal network ar-
chitecture can be applied to Nyquist sampled microscopy im-
ages with anisotropic or isotropic voxels.

Methods
Model of image formation. We describe dependence of the
polarization resolved images on the specimen properties us-
ing Stokes formalism (28, Ch.15). Based on this represen-
tation, we implement a two-step reconstruction of specimen
properties from polarization-resolved intensities. First, we
retrieve a background-corrected Stokes vector image of the
specimen from the recorded images and an instrument ma-
trix. Second, we convert the Stokes vector image into bright-
field, retardance, slow axis, and degree of polarization images
assuming that the specimen is transparent. The assumption of
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C

ground truth (F-actin/DNA)

pearson correlation over test data (F-actin/DNA)

predictions (F-actin/DNA)

γ γ, φ, BF

from γ,φ, BF

Fig. 4. accurate prediction with multicontrast 2.5D models: (A) Overlay of F-actin (green) and DNA (magenta) fluorescence for the volume shown in Fig. 3. (B) Predictions
of F-actin and DNA from retardance along and from retardance, orientation, and brightfield images. (C) Violin plots of Pearson correlation distributions between XY slices and
XZ slices of ground truth and predicted volumes across the test set. The triangle points to a nucleus seen in prediction from multiple channels, but not from single channel.
The arrow points to a gap in actin distribution seen in prediction from multiple channels, but not from single channel.

transparency is generally valid for the structures we are inter-
ested in, but does not necessarily hold when the specimen ex-
hibits significant absorption or diattenuation. To ensure that
the inverse computation is robust, we need to make judicious
decisions about the light path, calibration procedure, and
background estimation. A key advantage of Stokes instru-
ment matrix approach is that it easily generalizes to other po-
larization diverse imaging methods. A polarized light micro-
scope (4-frame, 5-frame, instant, sequential) is represented
directly by a calibrated instrument matrix.

For sensitive detection of birefringence, it is advanta-
geous to illuminate the specimen with ellipitically polar-
ized light and image with circular state of opposite hand-
edness (9). For experiments reported in this paper, we ac-
quired data by illuminating the specimen sequentially with
left-handed circular and elliptical states and analyzed the
light with right-handed circular state. However, for the sake
of brevity, the following derivation assumes that the specimen
is illuminated with right-handed circular state and analyzed
with detectors sensitive to left-handed circular and elliptical
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states. Both of these systems are analogous in theory, but the
later acquisition scheme with multiple detection states can be
implemented both sequentially and parallely (6).

Forward model: Specimen properties → Stokes vector. The
Stokes vector (28, Ch. 15) of right circularly polarized illu-
mination is given by,

SRCP =


1
0
0
1

 (1)

We assume that the specimen is transparent, and there-
fore, modeled by net retardance γ, orientation of the slow
axis φ, transmission t, and depolarization p. The Mueller
matrix of the specimen is then given by,

Mspecimen =


t 0 0 0
0 tp 0 0
0 0 tp 0
0 0 0 tp

Mr (2)

where, Mr is the Mueller matrix of a linear retarder that
can be found in (28, Ch.14).

The Stokes vector of light after it has interacted with the
specimen is given by MspecimenSRCP , which is

S =


s0
s1
s2
s3

=


t

tpsin2φsinγ
−tpcos2φsinγ

tpcosγ

 (3)

The aim of the measurement now is to accurately measure
the Stokes vector of light at each point in the image plane of
the microscope by analyzing it with mutually independent
polarization states. Once the Stokes vector map has been ac-
quired with high accuracy, the specimen properties can be
retrieved from above set of equations.

Forward model: Stokes vector → intensities. Any
polarization-resolved measurement scheme (in imaging
format or otherwise) can be characterized by an ‘instrument
matrix’ A that transforms Stokes vector of light S to the
measured intensities I. Thus, we express 5 polarization
images detected with left-handed circular and elliptical states
(ILCP , I0, I45, I90, I135) in terms of the specimen Stokes
parameters S and instrument matrix A.

I = AS, (4)

where,

I =


ILCP
I0
I45
I90
I135

 ,
Each row of the instrument matrix is the Stokes vector of

the polarization-state transmitted by detection optics. In other

words, intensities recorded by the detector is the projection of
the Stokes vector of light on the Stokes vector of the analyzed
state. With some derivation, the instrument matrix for our 5-
frame measurements turns out to be,

A=


1 0 0 −1
1 sin2πχ 0 −cos2πχ
1 0 sin2πχ −cos2πχ
1 −sin2πχ 0 −cos2πχ
1 0 −sin2πχ −cos2πχ

 (5)

where, χ is the compensatory retardance that creates el-
liptical state instead of circular state of illumination (9).

Computation of Stokes vector at image plane. Once the
instrument matrix has been experimentally calibrated, the
Stokes vector can be obtained from recorded intensities us-
ing its inverse (compare Eq. 4),

S = A−1I, (6)

Computation of background corrected specimen properties.
We retrieved the Stokes vector of specimen S by solving
Eq. 6. We corrected the specimen Stokes vector for non-
uniform background birefringence that were not accounted
for by the calibration process. To correct the non-uniform
background birefringence, we acquired background polariza-
tion images at the empty region of the specimen. We then
transformed specimen and background Stokes vectors as fol-
lows,

s1,2 = s1,2/s3 (7)

DOP =

√
s2

1 +s2
2 +s2

3

s0
(8)

We then reconstructed the background corrected proper-
ties of the specimen: brightfield (BF ), retardance (γ), slow
axis (φ), and degree of polarization (DOP ) from the trans-
formed specimen and background Stokes vectors Ssm and
Sbg using the following equations:

s1 = s1
sm−s1

bg (9)

s2 = s2
sm−s2

bg (10)

BF = ssm0 /sbg0 (11)

γ = arctan2
(√

s1
2 +s2

2
)

(12)

φ= 1
2 arctan2

(
s1
−s2

)
(13)

DOP =DOP sm/DOP bg (14)

In the case where the background cannot be completely re-
moved using the above background correction strategy us-
ing a single background measurement, (i.e. the specimen
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has spatially varying background birefringence), we esti-
mated the residual transformed background Stokes parame-
ters by smoothing the transformed specimen Stokes parame-
ters using a 401×401 Gaussian filter with standard deviation
σ = 60.5 and performed another background correction with
the estimated residual background.

Image acquisition and registration. We implemented
LC-PolScope on a Leica DMi8 inverted microscope with
Andor Dragonfly confocal for multiplexed acquisition of
polarization-resolved images and fluorescence images. We
automated the acquisition using Micro-Manager v1.4.22 and
OpenPolScope plugin for Micro-Manager that controls liquid
crystal universal polarizer (custom device from Meadowlark
Optics, specifications available upon request).

We multiplexed the acquisition of label-free and fluores-
cence volumes. The volumes were registered using trans-
formation matrices computed from similarly acquired multi-
plexed volumes of 3D matrix of rings from the Argolight test
target.

Mouse kidney tissue slice (Thermo-Fisher Scientific) and
mouse brain slice were mounted using coverglass and cov-
erslip. U2OS cells were seeded and cultured in a chamber
made of two strain-free coverslips that allowed for gas ex-
change. In the mouse kidney tissue slice, F-actin was labeled
with Alexa Fluor 568 phalloidin and DNA was labeled with
DAPI.

In transmitted light microscope, the resolution increases
and image contrast decreases with increased numerical aper-
ture of illumination. We used 63X 1.47 NA oil immersion
objective (Leica) and 0.9 NA condenser to achieve a good
balance between image contrast and resolution. The mouse
kidney tissue slice was imaged using 100 ms exposure for
5 polarization channels, 200 ms exposure for 405 nm chan-
nel (DNA) at 1.6 mW, 100 ms exposure for 561 nm channel
(F-actin) at 2.8 mW. The mouse brain slice were imaged us-
ing 100 ms exposure for 4 polarization channels. U2OS cells
were imaged using 50 ms exposure for 5 polarization chan-
nels. For training the neural network, we acquired 160 non-
overlapping 2048 x 2048 x 45 z-stacks of the mouse kidney
tissue slice with Nyquist sampled voxel size 103 nm x 103
nm x 250 nm.

Preprocessing. The images were flat-field corrected and
the volumes to 3D models were upsampled along Z to match
the pixel size in XY using linear interpolation. The images
were tiled into 256 x 256 patches with a 50% overlap be-
tween patches for 2D and 2.5D models. The volumes were
tiled into 128 x 128 x 96 patches for 3D models with a 25%
overlap along XY. Tiles that had sufficient fluorescence fore-
ground (2D: 20%, 2.5D: 25%, 3D: 50%) were used for train-
ing. Foreground was quantified as the volume fraction of
a mask obtained from Otsu thresholding in case of 2D and
Rosin thresholding (29) for 2.5D and 3D models.

We evaluated the effect of Z-scoring the data at the tile
scale, at the image scale, and at the stack scale on prediction
accuracy. We found that Z-scoring the data at the image (for

2D models) or stack (for 2.5D and 3D models) scale recapit-
ulated intensity variations in the fluorescent structures better
than Z-scoring tiles. This effect can be attributed to preser-
vation of the histogram of input and target distributions when
the whole volume is Z-scored.

Network architecture. Here we experimented with 2D,
2.5D and 3D versions of U-Net models Fig. 5. Across the
three U-Net variants, each convolution block in the encoding
path consists of two repeats of three layers: a convolution
layer, ReLU non-linearity activation, and a batch normaliza-
tion layer. We added a residual connection from the input of
the block to the output of the block to facilitate faster conver-
gence of the model (25, 30). 2 × 2 downsampling is applied
with 2x2 convolution with stride 2 at the end the each en-
coding block. On the decoding path, the feature maps were
passed through similar convolution blocks followed by up-
sampling using bilinear interpolation and concatenation of
feature maps from the same level of the encoding path. The
final output block had a convolution layer only.

The encoding path of our 2D and 2.5D U-Net consists of
five layers with 16, 32, 64, 128 and 256 filters respectively.
The 3D U-Net consists of four layers with 16, 32, 64 and
128 filters each. The 2D and 3D versions use convolution
filters of size of 3×3 and 3×3×3 with a stride of 1 for feature
extraction and with a stride of 2 for downsampling between
convolution blocks.

The 2.5D U-Net has the same architecture as the 2D U-
Net except the convolution filters are N×3×3 in the encod-
ing path with N=3,5,7 corresponding to an input stack with
3, 5, and 7 slices for feature extraction. The feature maps are
downsampled across blocks using N×2×2 average pooling.
The skip connections consists of a N×1×1 valid convolution,
converting the 3D feature maps to 2D. On the decoding path,
the feature maps were upsampled using bilinear interpolation
by a factor of 1×2×2 and the convolution filters in the de-
coding path are of shape 1×3×3.

Model training and inference. We randomly split the tiles
in groups of 70%,15%, and 15% for training, validation and
test. The 2D network with single channel input consisted of
2.0 M parameters. The network was trained on mini-batches
of size 24 using Adam optimizer, Mean Squared Error (MSE)
loss function, and a cyclic learning rate scheduler with a min
and max learning rate of 5×10−5 and 6×10−3 respectively.
Similarly the 2.5D network contained 4.8M parameters. It
was trained using a mini-batch size of 20 using a masked
Mean Absolute Error (MAE) as loss function, Nadam opti-
mizer and a cyclic learning rate scheduler with a min and
max learning rate of 10−4 and 6× 10−3 respectively. The
masks used in the loss function were generated using Rosin
thresholding. The 3D network consisted of 1.5M parameters
and was trained using a similar set up as the 2.5D network but
with a batch size of 4 to accommodate the increased memory
requirements of the 3D model.

All the models were trained for up to 200 epochs or until
the validation loss converged. The model with minimum loss
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Fig. 5. Schematic illustrating U-Net architectures: Schematic of 2D U-Net model used for translating slice→slice and 2.5D U-Net model used for translating stack→slice.
The 3D U-Net model used for translating stack->stack is similar to the 2D U-Net, but uses 3D convolutions instead of 2D and is 4 layers deep instead of 5 layers deep.

in the validation set was saved. The single channel 2D mod-
els converged in 16-23 hours on a workstation with NVIDIA
Pascal Titan X GPU with 12GB RAM. The 2.5D models con-
verged in 24 hours and the 3D model converged in 72 hours
on NVIDIA Tesla V100 GPU with 32GB RAM.

As the models are fully convolutional, model predictions
were obtained using full XY images as input for the 2D
and 2.5D versions. Due to memory requirements of the 3D
model, the test volumes were tiled along x and y while re-
taining the entire z extent (patch size: 96× 512× 512) with
an overlap of 32 pixels along x and y. The predictions were
stitched together by weighted averaging the model predic-
tions in the overlapping regions.

Model evaluation. Pearson correlation and structural simi-
larity index (SSIM) along the XY, XZ and XYZ dimensions
of the test volumes were used for evaluating model perfor-
mance.

The Pearson correlation between a target image T and a
prediction image P is defined as

r(T,P ) = σTP
σTσP

(15)

where σTP is the covariance of T and P , and σT and σP
are the standard deviations of T and P respectively.

SSIM compares two images using a sliding window ap-
proach, with window size N ×N (N ×N ×N for XYZ).
Assuming a target window t and a prediction window p,

SSIM(t,p) = (2µtµp+ c1)(2σtp+ c2)(
µ2
t +µ2

p+ c1
)(
σ2
t +σ2

p + c2
) (16)

where c1 = (0.01L)2 and c2 = (0.03L)2, and L is the
dynamic range of pixel values. Mean and variance are rep-
resented by µ and σ2 respectively, and the covariance be-
tween t and p is denoted σtp. We use N = 7. The total
SSIM score is the mean score calculated across all windows,
SSIM(T,P ) = 1

M

∑
SSIM(t,p) for a total of M windows.

For XY and XZ dimensions, we compute one test metric per
plane and for XYZ dimension, we compute one test metric
per volume.

Conclusion
In summary, we report synergistic combination of image ac-
quisition, model-driven reconstruction of optical properties,
and data-driven prediction to reveal ordered structures from
polarized light images. Our Stokes-model based reconstruc-
tion algorithms (https://github.com/czbiohub/
reconstructorder) and computationally efficient vari-
ant of U-Net architecture (https://github.com/
czbiohub/microdl) allows facile analysis of comple-
mentary label-free signatures of specimen. We report simul-
taneous recovery of background-corrected brightfield, bire-
fringence, orientation, and degree of polarization contrasts
with diffraction-limited spatial resolution. These contrasts
report variations in density, order, and scattering by the spec-
imen. We report rich imaging data that visualize diverse
structures: glomeruli and tubules in kidney tissue, multiple
organelles in cells, and axon tracts in white and gray matter
of brain slice. We report memory and compute-efficient 2.5D
U-Net models to reveal the structures using information in
complementary contrasts. We demonstrate that our 2.5D U-
Net performs as well as 3D U-Net when multiple label-free
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images are used as inputs. We demonstrate accurate predic-
tion of ordered F-actin and condensed DNA in heterogeneous
structures within a tissue. We anticipate that our approach
will enable scalable analysis of architectural order that un-
derpins healthy and disease states of cells and tissues.
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Supplementary movies and images
Movie 1 Z-stacks showing (A) brightfield (BF), (B) retardance (γ),(C) color-coded orientation (φ), and (D) degree of polar-

ization (DOP) images of kidney tissue corresponding to Fig. 1C.

Movie 2 4D movie of brightfield and color-coded orientation images of U2OS cell undergoing mitosis. The movie shows
following sequence: z-stack at prometaphase, timelapse from prometaphase to metaphase at speicific depth, z-stack at
metaphase, timelapse from metaphase to cytokinesis at specific z, and z-stack at cytokinesis. Related to Fig. 1C.

Movie 3 Z-stack of (A) F-actin and (B) DNA in a test field of view. Related to Fig. 2, Fig. 3, and Fig. 4.

Movie 4 Z-stacks of predicted F-actin for the test field of view using (A) 2D model trained on BF,γ, φ, (B) 2.5D model trained
on BF,γ, φ, and (C) 3D model trained on γ. Related to Fig. 2, Fig. 3, and Fig. 4.

Movie 5 Through focus stacks of predicted DNA for the test field of view using (A) 2D model trained on BF,γ, φ and (B) 2.5D
model trained on BF,γ, φ. Related to Fig. 2 and Fig. 4.

Image 1 Stitched fields of view of (A) brightfield, (B) retardance, (C) orientation, and (D) degree of polarization images of
mouse brain slice. Each stitch is downsampled by 4.5x to reduce file size. The retardance and orientation images were
gamma corrected (0.5) to visualize less ordered gray matter in the presence of highly ordered white matter.

Guo, Krishnan, Folkesson et al. | Learning architectural order bioRχiv | 13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/631101doi: bioRxiv preprint 

https://doi.org/10.1101/631101
http://creativecommons.org/licenses/by/4.0/

