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Abstract: 

The regulation of growth is fundamental to cell size control. Lack of sufficient accuracy in the 

measurement of the growth rate of adherent cells through the cell cycle has thwarted the 

understanding of how such cell populations maintain a stable size distribution. The accuracy of 

Quantitative Phase Microscopy (QPM) is just shy of the accuracy needed to resolve the 

principle features of mammalian cell growth and perhaps to reveal new ones. Based on our 

analysis of the source of errors in QPM we both improved image processing algorithms and 

automated cell tracking software, making it suitable for longitudinal and large scale applications. 

Using these tools we revealed a remarkable a series of episodes of the convergence of cell 

growth rate, which may play a large role in the control of cell size variability.  

Main text 

Introduction 

Growth rate control in cells has long been postulated to be caused by size-dependent control of 

the cell cycle particularly control of the G1/S transition(1–3).  Recently, there has been evidence 

supporting the notion that the size-dependent regulation of growth rate could play an important 

role in maintaining size homeostasis in proliferating cells(4–8). Because the growth rate of 

individual cells is much more difficult to measure than the timing of events in the cell cycle, such 

as cell division or DNA replication, there is as currently not much quantitative evidence as to 

how much growth rate adjustments contribute to size homeostasis and where in the cell cycle 

these corrections might occur.   

It is extremely hard to measure the growth rate in single cells accurately. As the growth rate is 

the change of cell size or mass per unit of time, it requires extremely accurate measurement not 

at a single point in time but at repeated times in live cells. Reducing the errors in estimating cell 

size is difficult enough, but taking the derivative of a series or measurements greatly amplifies 

the errors in measurement. Several approaches have attempted to circumvent this problem by 

finding ways to extract the average growth rate indirectly in populations from single time point 

measurements(4, 6, 8).  However, these population averages make questionable assumptions 

and most importantly fail to reflect the role of individual variation in cell growth.  Therefore, it has 

become more and more clear that it is critical to find ways to directly measure the growth of 

single cells over time. In any analysis cell size can be reported either as cell volume or as cell 

mass. Cell volume and cell mass are generally tightly correlated, but changes in volume can be 

transient and are also known to occur during different stages of differentiation or the cell 

cycle(9–12).  By contrast, cell mass or cell protein mass, which is the sum of slower anabolic 

and degradative processes, is generally more closely related to the regulation of growth rate. 
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Thus, for most considerations of cell size control in proliferating cells, we focus on the 

measurements of cell mass.  

There are relatively few methods that accurately measure cell mass over time in living cells. The 

Suspension Microchannel Resonator (SMR) is almost certainly the most accurate. It can 

measure the buoyant mass to a precision of 50 femtograms or better(7, 13, 14), which for a 

typical cell could be to an error of less than 0.1%.  But its great limitation is that it only can be 

applied to cells in suspension.  It cannot at present be used for cell size measurements of 

adherent cells over a long time course. Furthermore, in its present form, the SMR only allows for 

the tracking of a few cells through an entire cell cycle(7) or many cells for a short period(15), but 

not for the tracking of many cells for a long time. These limitations are restrictive when we 

attempt to resolve the dependence of growth on size throughout the cell cycle. There are other 

simpler measurements based on correlations, such as the use of the nuclear area(5) or 

assaying a  constitutively expressed fluorescent protein(16), as proxies for cell mass. However, 

these proxies are probably not quantitative enough to make useful growth rate measurements, 

since the correlations between the proxies and cell mass are noisy, rendering growth rate 

measurements very challenging. Furthermore, their strict proportionality with mass may not hold 

in all cell types, at different cell cycle stages, or across the full range of the cell mass 

distribution. Quantitative Phase Microscopy (QPM) has emerged as the method of choice for 

reasonably accurate mass measurements of attached cells down to a dry mass of one picogram 

(note it is still at least 20 to 50  times less sensitive than the SMR) (13, 17, 18). Furthermore 

QPM is more readily available, as subtypes of the QPM technique like the Quadriwave Lateral 

Shearing Interferometry (QWLSI)(19), the Ptychography(20) and the Digital Holographic 

Microscopy (DHM)(21) have been commercialized. Especially attractive is the QWLSI, which 

builds the wavefront sensor around an ordinary Charge-Coupled Device (CCD) and can be 

easily installed onto a conventional microscope. It can be used with the white-light halogen 

lamp(19), is compatible with fluorescence detection(22) and has the potential for the high 

throughput and longitudinal applications.  

Despite the attractiveness of QPM, in our experience, it is not accurate enough measurements 

for large scale single cell growth rate trajectories to resolve some of the most pressing issues in 

cell size control(18). Though there is still debate about whether the form of mammalian cell 

growth is exponential or linear(23), the best reading of the current data is that single cell 

trajectories obey neither of these simplified models(7, 24, 25). The individual trajectories are 

complex, noisy and full of fluctuations. To move beyond this restrictive set of models, we need 

to evaluate all the sources of error carefully to distinguish spurious fluctuations from those that 

inform us about regulatory processes. Furthermore, with better measurements, we still need to 

find justifiable ways to synchronize the individual trajectories and to find the right formulation for 

expressing the growth rate.  

We report here the development of normalization and data analysis methods based on the 

QWLSI camera for measuring single cell dry mass and growth rates in adherent cells. 

Specifically, we developed a method to generate a reference phase image to remove the phase 

retardation unrelated to the sample, improved the algorithm of background leveling, and 

developed the software for automated image processing, cell segmentation, and cell tracking, 

all of which facilitate large-scale and longitudinal applications. Using these new methods, we 

have carefully quantified the precision of the dry mass and growth rate measurements and 

successfully monitored the growth rate in tens of thousands of cells. The results reveal size-
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dependent growth modulations throughout the cell cycle which may be generally very important 

contributors to size homeostasis.  

 

Results 

Generating a reference phase image 

Quantitative phase microscopy measures the wavefront retardation induced by the sample 

which is measured as an Optical Path Difference (OPD) relative to the reference wavefront(26). 

However, the OPD of the optical system is often larger than that induced by the sample and has 

to be subtracted from the quantitative phase images. This is often done by measuring the OPD 

in a sample-free region or from a reference sample. But this approach is tedious and can be 

inaccurate in time-lapse imaging because of temporal shift of the system OPD.  Here we show 

how we can reconstruct the reference phase image in a more robust manner, leading to a 

decrease of noise in the measurement.  Specifically, when the light crosses the cell area, its 

phase shifts due to the refractive index difference between the cell and the medium (Fig. 1A). 

Most biomolecules in solution maintain a linear relationship between the refractive index and the 

concentration. The slope of the relationship is the specific refractive index increment. For most 

of the cell dry mass constituents including proteins, lipids, sugars, and nucleic acids, their 

specific refractive index increments fall within a very narrow range, with the average α as 0.18 

𝜇𝑚3/𝑝𝑔(27). The OPD equals to ∫ 𝛼 ∙ 𝑐(ℎ) ∙ 𝑑ℎ
𝐿

0
, where 𝑐 is the local cell mass density and 𝐿 is 

the cell thickness. Thus, the total cell dry mas can be measured as 

𝑚 = 1/𝛼∬𝑂𝑃𝐷(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑆

 

where S is the cell area. 

We used a SID4BIO camera (Phasics S.A., France) to measure the OPD. The camera is based 

on QWLSI and optimized for biological applications. It uses a Modified Hartmann Mask (MHM) 

to generate four tilted replicas of the wavefront, which form the interferogram on the CCD 

sensor. A pair of the first-order harmonics in the Fourier space carries the information for the 

spatial gradient of OPD in x and y directions. Thus the OPD is calculated as the 2D integration 

of the gradients through The Fourier Shift Theorem(19, 28, 29). The resultant OPD contains the 

phase-shift induced by the cell and an additional phase-shift due to the non-optimal aberration 

of the optical system. A reference wavefront is required to remove the phase-shift from the 

optical system. Knowing the grating period 𝑝 and the distance 𝑧 between the MHM and the CCD 

sensor, we have 

(

 

𝜕𝑂𝑃𝐷𝑐𝑒𝑙𝑙
𝜕𝑥

𝜕𝑂𝑃𝐷𝑐𝑒𝑙𝑙
𝜕𝑦 )

 = 
𝑝

2𝜋𝑧
 (
𝐻𝑥 −𝐻𝑅𝑥
𝐻𝑦 −𝐻𝑅𝑦

) 

where 𝐻𝑥 and 𝐻𝑦 are the Fourier harmonics of the derivatives along x and y of the sample 

phase image, while 𝐻𝑅𝑥 and 𝐻𝑅𝑦 are the Fourier harmonics of the reference phase image (Fig. 

1A). 
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A blank Field of View (FOV) near the sample FOV or a FOV of the same light path on a blank 

sample is generally used as the reference. However, making a designated blank area in the 

sample may not always be feasible, and it is a hassle to do this manually in large scale 

screening. We have instead contrived a way to synthesize the reference wavefront. When the 

confluence of the cells is less than 50%, most of the area of the FOV is blank. Thus we use the 

median (and not the mean!) of the sample FOVs as the reference wavefront. As 𝐻𝑥 and 𝐻𝑦 are 

in complex number form, we calculate their median by calculating the median of the real part 

and the median of the imaginary part separately.  

𝐻𝑅𝑥,𝑦 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑟𝑒𝑎𝑙(𝐻𝑥,𝑦
𝑗,𝑗=1,…,𝑁

)) + 𝑖 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑖𝑚𝑎𝑔(𝐻𝑥,𝑦
𝑗,𝑗=1,…,𝑁

)) 

When cell confluence is low, this method averages out the noise in the OPD measurement and 

thus performs better than a single reference image of a blank FOV or a blank sample (Fig. 1B). 

The method works better when all the FOVs share the similar light path (e.g., FOVs on a slide 

or near the center of a 35 mm well). Due to the surface tension, the light path changes rapidly 

close to the edge of the well and in small wells this is more extreme. Both the cell confluence 

and the similarity in the light path affect the performance of the synthetic reference (Fig. 1C, D, 

and E). For the best performance of the method, we usually seed cells at lower than 30% 

confluency, scan within the central 10% area of a 6-well plate or the central 5% area of a 12-

well plate. When scanning a larger area, in small wells, or on cells with a higher confluence, we 

used the FOV at the identical position of a medium-filled blank well on the same plate as the 

reference.  

We developed a Graphical User Interface (GUI) to generate the position matrix of the desired 

pattern for multiple well plates in the format of Metamorph (Universal Imaging, PA) or NIS-

Elements (Nikon Co., Japan) stage files.  A second GUI was developed to match the positions 

of the reference on the blank well to the sample wells, make the synthetic reference from FOVs 

within a certain distance to the center of the scanning area, and evaluate the performance of 

different reference strategies before processing the whole data set. All of these make the high 

throughput QPM measurement practical, convenient and stable.   
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Figure 1. (A) The principle of QWLSI, showing how a reference wavefront is applied to generate 

the final OPD of the cells. (B) The OPD noise (the standard deviation of the OPD in the blank 

area) of a FOV on a blank sample when applying a reference from the synthetic method (blue), 

its neighbor FOV (red), or a FOV of the same light path on another blank sample (yellow). (C) 

The OPD noise changes with the reference made by cell FOVs of different confluence. Each 

data point is from a single well; the error bars indicate the standard deviations of all the FOVs 

measured in that well. (D) The OPD noise at the center FOV of a blank well changes with the 

reference made by FOVs within a certain distance to the well center. (E) The OPD noise of the 

FOVs in a blank well changes with their distance to the well center when applying the reference 

made by the central 1% area of the well. Error bars indicate the standard deviations of the FOVs 

at a certain distance.  

Background leveling corrections 

As shown in Fig. 2A, there is still residual background after compensating (above) for optical 

system aberration. The residual shape of this background could be due to cover glass thickness 

variation, slight mirror deviations, alignment error, vibration, etc.  Background leveling is crucial 

for accurate dry mass quantification. The conventional methods of polynomial fitting(18) or 

Zernike polynomial fitting(30) capture the low-frequency background but miss the regional 

fluctuations (Fig. 2B). We developed a new method to subtract both the low and high-frequency 

background thus significantly improving the precision of the dry mass measurement. 

We first isolate the objects from the background by “top-hat filtering”. A disk-size smaller than 

most of the cells is chosen as the structuring element to clean up the fluctuations whose scale 

are comparable to or larger than the cells. The resultant image cannot be directly used for 

quantification because it subtracts excessive background from the cells and the mean of the 

background level is not stable. We only use it to isolate the objects. Then we segment the 

image to cells and the cell-free area by combining the filtered OPD image and its gradient 

magnitude to define the boundary of the cells. Thresholding OPD or OPD gradient alone leaves 

out part of the very thinnest edge of the cell (Fig. 2D and E), but the combination of the two 

accurately detects the cell boundaries (Fig. 2F). Note that we intentionally do not fill the holes in 
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the masks as other QPM segmentation methods recommended(18, 30), because this process 

may also fill the blank area within a cell cluster, which is critical for the precise fitting. Lastly, we 

create the background image by fitting the cell-free area of the original image by the thin plate 

spline method(31). A mesh grid binning is used for fast calculation. The thin plate fitting is 

parameter free and can capture both large and small curvatures. Fig. 2C shows that our method 

generates a cleaner background than conventional methods.   

 

Figure 2. Background subtraction. (A) The OPD image before background subtraction. (B) The 

OPD image after subtracting the background fitted by a 2D polynomial (n = 8). (C) The OPD 

image after subtracting the background fitted by the thin plate spline. (D, E) Cell boundaries 

determined by a threshold on the OPD images (D)or the gradient magnitude of the OPD image 

(E). (F) The combination of the boundaries on (D) and (E). (A-C) are from a FOV under 10X 

objective lens. (D-F) are from a FOV under 40X objective lens. Scale bars indicate 100 µm.  

 

The precision of dry mass measurements 

The dry mass measurement error contains all the variation in the OPD measurement, the 

background subtraction, and the cell segmentation. Among those factors, the background 

subtraction has the largest effect, as the unevenness in the background affects the cell 

boundaries. We quantified the precision of the dry mass measurement using fixed cells. The 

result is summarized in Table 1. Our background subtraction algorithm significantly reduces the 

dry mass measurement error. The precision is improved at all magnifications when compared to 

a previous study(18). The algorithm works especially well at low magnifications: the error at 10X 

is reduced by more than two-fold. Although the OPD noise decreases with magnification, the dry 

mass measurement error does not change as much. The error at 10X is only 1.16-fold higher 

than at 20X, while the FOV is four-fold larger. With these improvements of precision at low 

magnification, we optimized the data collection to maximize throughput at 10X.  
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Table 1. Dry mass measurement precision at different magnifications. 

Magnification OPD noise 
(nm) 

FOV area 
(um*um) 

Temporal 
error (%) 

Spatial error 
(%) 

Temporal 
and spatial 
combined 
error (%) 

10X 1.68(0.21) 1184*888 1.29(0.51) 1.54(0.57) 1.97(0.86) 

20X 1.29(0.04) 592*444 1.05(0.37) 1.21(0.48) 1.71(0.75) 

40X 0.88(0.16) 296*222 0.57(0.23) 1.15(0.46) 1.30(0.70) 

The measurement errors of each cell were quantified as the Coefficient of Variation (CV, %) of 

its dry mass measurements. The table lists the mean of the errors quantified in more than 50 

cells with the standard deviation of the population in the brackets (see Materials and Methods 

for detail). 

 

Cell segmentation and cell tracking 

For cell segmentation, the watershed algorithm works the best when a nuclear marker is used 

as the foreground marker(32). When no nuclear marker is available, we use the local maximum 

of the cell after top-hat filtering. Because two cells may closely contact each other and form only 

one local maximum or one cell may have two local maxima, segmentation without any nuclear 

marker possesses about 5% error depending on cell types. We combine the OPD image and its 

gradient magnitude to define the boundary of the cells as discussed in Background leveling 

corrections. 

To track cell trajectories in time automatically, we first identify all the mitotic cells in the time 

series based on their rounded morphology, by their mass density gradient and area (Fig. 3A). 

We then trace cells backward. Each track starts from the end of the time series or a mitotic 

event. No new track is added during the tracing process. We use cell mass, area, and centroid 

position as the metrics for tracing. We compare a cell 𝑘 on frame 𝑖 with each cell on frame 𝑖 − 1 

by the weight function: 

𝑊 = 𝑑 ∗ 𝑤𝐷 + |𝑟𝑚| ∗ 𝑤𝑀 + |𝑟𝑎| ∗ 𝑤𝐴 + (𝑗 − 𝑖 + 1) ∗ 𝑤𝐺 

where 𝑑 is the distance between the centroids, 𝑟𝑚 is the relative mass difference, 𝑟𝑎 is the 

relative area difference, 𝑗 indicates when the metrics of cell 𝑘 are lastly updated, and 𝑤𝐷, 𝑤𝑀, 

𝑤𝐴, and 𝑤𝐺 are the weights of the respective terms. The dry mass measurement is so precise 

that we can put high confidence in the mass term. The weight parameters for HeLa are 

summarized in Table 2, as an example. The value of 𝑊 is used to determine the goodness of 

the match. A good match shall have the smallest 𝑊 on the frame and 𝑊<1. When cell 𝑘 has a 

good match, its metrics are updated with the newly traced cell. Otherwise, the old metrics are 

carried on to be compared with the next frame. This method may leave gaps in tracks that can 

be filled later by the smoothing algorithm, but tolerate most of the segmentation error. The track 

doesn’t terminate or deviate by the wrong segmentation of a single frame. A track essentially 

terminates when it cannot find a good match for more than ten frames (𝑗 − 𝑖 + 1) ∗ 𝑤𝐺 > 1. In 

the last step, we trace the lineages of the cells. We compare the metrics at the end of each 

track with all the mitotic cells. If a track ends just before a mitotic event (the time axis is 

inverted), the centroid position is near the position of the mitotic cell and the mass is close to 

half of the mitotic mass, the track is identified as the daughter cell of the mitotic cell. Because 
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newborn cells tend to closely contact their sisters, this will result in an problematic 

segmentation.  For that reason, many cells cannot be traced back to the very beginning of birth. 

For consistency, we use the division time (the last frame of mitotic rounding) of the mother cell 

as the birth time of the daughter cells.  

Fig. 3B shows an example of a cell traced to its grand-daughter cells. For each cell, the G1/S 

transition is determined by the steepest slope of log(Geminin-GFP) accumulation curve  (Fig. 

3C). Using the methods described above we were able to successfully trace the cells in a 

completely automated fashion without manual supervision or correction. We routinely identified 

and measured more than 10,000 single cell tracks from 432 FOVs of 1.2 mm X 0.9 mm in a 48-

hour experiment. The mistraced cells are less than 2%.  The limit of the measurement 

throughput is the speed we can move the stage without perturbing the optical stability of the 

culture medium surface.  

 

Figure 3. Cell tracking. (A) The gradient magnitude of an OPD image measured at 10X. Scale 

bar indicates 20 µm. The arrow indicates a mitotic cell. (B) One cell is traced to its 

granddaughter cells. Each color represents a cell. Solid dots are the raw data of dry mass 

measurement. Solid lines are the spline line smoothing. Vertical dashed lines indicate the timing 

of cell divisions. Dash-short dash lines indicate the timing of G1/S transitions. (C) The intensity 

of Geminin-GFP measured in one cell (blue) and its logarithm (red). Dash-short dash line 

indicates the steepest slope of the log(Geminin-GFP) accumulation curve, which is defined as 

the timing of G1/S transition.  

 

Table 2. The weight parameters to track HeLa cells. 

𝑤𝐷 𝑤𝑀 𝑤𝐴 𝑤𝐺 

0.03 2 0.05 0.1 
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Detection of growth rate convergences  

We examined the mass versus time data of about 30,000 cells from three replicate experiments. 

To each of the single-cell dry mass trajectories, we applied the cubic smoothing spline to fill any 

gaps and filter the noise (Fig. 4A). We then fitted the growth by a linear model with a 3-hour 

sliding window along the trajectory. The center time point of the sliding window is recorded as 

the time when the growth rate was measured. The spline smoothing reduces the random noise 

in the growth rate trajectory but retains major fluctuations (Fig. 4B). The measurement error of 

the growth rate is 0.38% mass per hour, as estimated by applying the same measurements and 

data processing to fixed cells (Fig. 4C). When cells double their mass every 25 hours in an 

exponential manner, the dry mass increase by 2.77% mass per hour on average. Thus 0.38% 

mass per hour growth rate accuracy translates to 13.7% accuracy of growth rates.  However, 

this estimate does not include the error caused by erroneous segmentation.  When cells are in 

contact or overlap, it is impossible to draw a true 2D boundary between the cells. Moreover, with 

our experimental settings, the measurement error in the rounded cells is higher than that in the 

spread cells, due to the change of focus and the error in phase unwrapping. Thus, to get the 

most accurate growth rate measurement, we took advantage of the high throughput and 

discarded any data points where cells were in contact or rounded. In the end, we collected 

several hundred growth rate trajectories covering the full cell cycle from three independent 

experiments. The trajectories do not contain the first 1.5 hour after birth and the last 0.5 hour 

before division due to the removal of attached cells and rounded cells, respectively.  

Fig. 4D shows examples of several growth rate trajectories. As the individual trajectories are 

complex, we focused on the mean behavior of the population. We found that growth rate 

increases with cell mass progressing through the cell cycle except for a rapid decrease just 

before division (Fig. 4E). We also found that the specific growth rate (growth rate divided by 

mass) peaks at G1/S, while the growth rate CV is then at its lowest level (Fig. 4F). This is 

consistent with a previous study done in suspension cells by SMR method(7). The average 

growth rate CV we measured in HeLa cells is about 40%, which is systematically higher than 

the about 15% CV observed in suspension cells(7). As our measurement error is much smaller 

than the average CV, it should not be the dominant factor of the observed variation. The growth 

rate CV we measured reflects the true cell-to-cell variability.   

To understand why the growth rate CV is lowest at G1/S, we further investigated how the 

growth rate CV changes with time. No effect of environmental fluctuation should induce any 

synchronized behavior since the averaging was done on an asynchronous population by in 

silico registration of the individual growth rate trajectories to a particular time in the cell cycle 

(also known as in silico synchronization). But if the regulation of growth rate were coupled to 

specific cell cycle stages and the cell trajectories were plotted by in silico synchronization, then 

we might expect to detect growth kinetics linked to the cell cycle position.  We indeed found, as 

described by Son et al. in suspension cells, that the growth rate CV is highest at birth followed 

by a rapid drop (Fig. 4G). In addition, the growth rate CV drops several times throughout the cell 

cycle, particularly at G1/S. There are four recognizable dips when cells are synchronized to 

G1/S: approximately one in early G1, one at G1/S, one in S phase, and one in G2 phase. The 

average interval is about 5.8 hours (Fig. 4H). Furthermore, we found that the large cells slow 

down and the small cells speed up at the dips (Fig. 4I), resulting in growth rate convergences, 

which could serve as a key mechanism of size control.  
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We next investigated whether the growth rate convergences are coupled to specific cell cycle 

stages and whether they take place at a specific frequency. When we grew the cells at 33⁰C, 

the average cell cycle elongated from 25.5 hours to 31 hours. Curiously, we found six 

recognizable dips in total within an average cell cycle under this condition (Fig. 4J). The average 

interval is 4.7 hours. Thus, the convergences of growth rate seem not to be associated with 

specific cell cycle stages. The occurrence may therefore be periodic. One possible explanation 

of the periodic convergence is that the fluctuation in growth rate is periodic, with the phases in 

large and small cells, shifted. Since the large and small cells spend different times in each cell 

cycle state, their phase difference may change if we synchronize the trajectories to different cell 

cycle events. Indeed, the phases of the growth rate fluctuation become better aligned when 

synchronized to birth or division and this reveals more clearly that the periodicity shows up in 

the mean growth rate (Fig. 4 K and L). The periodicity is even more apparent in the specific 

growth rate or the first time derivative of growth rate, as both diminish the effects of the 

proportionality between growth rate and cell mass (Fig. S1C-F). Since spurious oscillations are 

found in many closely observed mechanical processes we want to reinforce the fact that the cell 

trajectories were from cells that were born at different times and subsequently computationally 

aligned. Thus it is hard to see how this periodicity could have arisen from environmental 

fluctuation or some collective signal among cells. Indeed, the periodicity is not found in the 

mean specific growth rate at birth (Fig. S1G) or the growth rate in fixed cells (Fig. S1H). It is 

found in all the three replicate experiments (Fig. S1I) and it is not induced by the smoothing 

method (Fig. S1J). Thus we conclude that the periodic fluctuation is intrinsic to the growth rate 

and may hold a key for understanding size homeostasis.   
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Figure 4. (A) An example of the single-cell dry mass trajectories. (B) The growth rate trajectories 

of (A) fitted by a linear model with a 3-hour sliding window. (C) The distribution of the growth 

rate measurement error relative to the dry mass of the cell, estimated from fixed cells. (D) 

Examples of single-cell growth trajectories synchronized to birth. Each color represents a cell. 

(E) The average of dry mass and growth rate in the population at specific times of the cell cycle. 

(F) The average of the specific growth rate and growth rate CV in the population at specific 

times of the cell cycle. Error bars indicate the standard deviation of three replicative experiments 

(E, F). (G, H) The growth rate CV changes with time when the trajectories are synchronized to 

birth (G) or G1/S (H). (I) The mean growth rate of all the cells (black), the top one-third (red) 

large cells, and the bottom one-third small cells (blue) when the trajectories are synchronized to 

G1/S. The cells are sorted based on their dry mass at G1/S. (J) The growth rate CV at 33⁰C 

when the trajectories are synchronized to G1/S. Dash lines indicate the convergences of growth 

rate (H-J). (K, L)The mean of dry mass and growth rate when the trajectories are synchronized 

to birth (K) or division (L). The colored shaded regions indicate the 95% confidence intervals (G, 
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H, J, K, and L). The gray shaded regions indicate the average G1 phase (G, K, and L) or G1 

phase (H and J).  

 

Figure. S1 (A) The growth rates fitted from a fixed cell dry mass trajectory. (B) The growth rate 

measurement error is positively correlated with the dry mass, R = 0.58. (C, D) The specific 

growth rate of the population when the trajectories are synchronized to birth (C) or division (D). 

(E, F) The first derivative of the growth rate when the trajectories are synchronized to birth (E) or 

division (F). (G) The first derivative of growth rate in fixed cells. The blue shaded regions 

indicate the 95% confidence intervals of the mean (C-G); the gray shaded regions indicate the 

average G1 phase (C-F). (H) How the mean specific growth rate at birth changes with the actual 

time of the course of the experiment. The blue line is the mean; black lines frame the 95% 

confidence interval of the mean. (I) The first derivative of the mean growth rate when the 

trajectories are synchronized to birth in three replicate experiments. (J) The first derivative of the 

mean growth rate with different methods to reduce the noise. Blue: growth rate is calculated 

every 30 min from the raw data. The result is smoothed for viewing. Red: growth rate is 

calculated every 30 min from the spline smoothed data. Yellow, purple, and green: the growth 

rate of the raw data fitted by a linear model within a 2-hour (yellow), 3-hour (purple), or 4-hour 

(green) sliding window, respectively.  

 

Discussion 

It has been long suggested that QPM should be applicable to a high throughout, longitudinal 

study of cell mass and growth rate(13). A number of previous studies have demonstrated the 

possibility of measuring cell growth in several hundred cells for several hours to days(17, 24, 33, 

34). However, there is a substantial gap between the demonstration and practical applications. 

Some of the studies manually segmented and tracked the cells(24, 34), and none of them 
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considered the effect of segmentation error on the growth rate measurement. Here, we 

developed the QPM system based on a commercial QWLSI camera, which is compatible with a 

low coherent light source and fluorescence detections. We systematically designed the methods 

to generate the reference phase image for a variety of sample configurations, especially for 

multiple-well plates usually used in large-scale screenings. We improved the algorithm for 

background subtraction and made the measurement precision at low magnification nearly as 

good as at high magnifications, thus facilitating high throughput data acquisition. Finally, we 

developed the software for completely automated cell segmentation and cell tracking, making 

the image processing of large data sets possible. In summary, we made the high throughput, 

longitudinal measurement of cell mass and growth rate, more precise, practical and convenient. 

The system can be adopted into broad applications from the fundamental study of cell size and 

growth rate regulation to large-scale screening for clinical proposes. 

It has only been recent that reasonably accurate measurements of growth rate have been 

possible(7, 14, 17, 24, 25). When observed at high sensitivity, single cell growth rate trajectories 

are complex. The fluctuations in individual growth rate trajectories embody rich information 

about the stochastic processes in the cell and potential anabolic and degradative regulation 

related to progression through the cell cycle. The increased definition of the growth rate plots 

extracted from single cell trajectories produces new features that are not expected from simple 

cell cycle models. Fitting these growth trajectories with a simple linear or exponential model 

averages out the meaningful fluctuations. Furthermore, the simplified models are not good fits, 

i.e. well below the precision of the measurements. The failure of the simplified models posed the 

question to us of how to extract the potentially rich information from single cell trajectories. Many 

previous studies investigated the correlations between growth rate and cell mass(7, 24, 25), 

which makes sense in terms of the long debate between the linear and exponential growth 

models. However, this type of analysis ignores “cell cycle time” in the regulation. For the 

investigation of the cell-cycle controlled regulation, given the inherent variation in cell cycle 

length, the question emerges as how to synchronize the cells (whether experimentally or by in 

silico analysis from single-cell data).  A few studies, emphasizing the importance of the G1/S 

transition in cell cycle commitment, synchronized the trajectories to G1/S, assuming that the 

cell-cycle dependent growth rate regulation is also regulated at the G1/S transition(7). But 

different forms of synchrony will, in general, produce different behaviors.  We recommend 

synchronizing the trajectories to several cell cycle events, since feedback could occur in any 

stage of the cell cycle.  Furthermore, the numerical analysis of the growth can reveal different  

features,  so it is worthwhile to use various functional forms, from the linear growth rate (the 

mass change per unit of time), the specific growth rate (growth rate divided by mass), as well as  

the first derivative of growth rate (the acceleration or deceleration of growth rate), since different 

forms have power to reveal different regulative mechanisms. 

In 2013, Kafri et al. first discovered size-dependent growth rate modulation in adherent 

mammalian cells(4). They measured the cell mass of millions of fixed cells from an 

asychronized population and interpreted dynamics from the measurements by using and 

analytical approach, which they called Ergodic Rate Analysis. They found that the correlation 

between cell size and growth rate becomes negative in late G1 and S phase. The mean growth 

rate of the population also slows down at the two corresponding times. The study cannot rule 

out that the growth rate regulation in early G1 or G2 phase is due to the cell cycle markers, 

which lacked sufficient time resolution in those phases. In their analysis a decrease in growth 

rate could be due to a slowdown in protein accumulation or equally an acceleration of passage 
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through the cell cycle. Later, Ginzberg et al. discovered three dips in HeLa cells in the apparent 

growth rate CV, 𝐺𝑐𝑣, by combining live cell and fixed cell measurements(5). The dips were at 

approximately 4, 10 and 16 hours after birth, i.e. at 6-hour intervals. Both studies seemed to 

extract accurate information from the mean behavior of a large population, and suggest that the 

growth rate modulation plays an important role in maintaining size homeostasis. However, 

artificial synchronization could produce artifacts and up to now there has been no evidence 

obtained from direct measurements of individual cell growth rate over long time periods.  The 

QPM methods and forms of analysis reported here measured single cell growth rates in 

adherent mammalian cells to the accuracy of 13.7%. We convincingly found four dips in the 

growth rate CV throughout the cell cycle caused by or possibly causing the growth rate 

convergence in large and small cells. The timing and interval of the dips are surprisingly 

consistent with the ones discovered by Kafri et al. and Ginzberg et al. by completely different 

methods. Furthermore, we found the dips are not coupled to specific cell cycle stages, and 

instead may take place at a certain frequency.  

Before speculating further, we wish to emphasize that we are well aware that periodic variation 

could be spurious. In any experimental setting, these could be induced by fluctuations in the 

environment particularly if they coincided with natural variation, as temperature, light, line 

voltage, O2, CO2, etc.  But we point out that although later synchronized in silico, these cells 

were asynchronously growing so that the experimental time bears no relationship to real time 

and the individual members of the population can be expected to be scrambled with respect to 

time in each experiment.  We therefore believe that the periodicity is intrinsic to growth rate 

regulation. And, the CV reduction may be caused by the phase shift between the large and 

small cells. Usually, an oscillation is caused by negative feedback with a substantial time 

delay(35). These oscillations most sensitively seen in growth rate acceleration suggest novel 

underlying mechanism of growth rate modulation and may pave the road to the mechanistic 

studies. It suggests an interest in searching for corresponding oscillatory circuits in protein 

synthesis/degradation, activity or inactivity of signaling pathways either tied to or independent of 

anabolism and catabolism, and perhaps tied to other cellular funcitions.  Such mechanisms may 

function to maintain homeostasis by differentially affecting cells of different size. It would be 

interesting to look at the size variability of cells arrested in the cell cycle.  Since the growth rate 

corrections are not associated with specific cell cycle stages and rather occur at a given 

frequency, we might expect size variability to be restrained by repeated episodes of growth rate 

correction, even as the arrested cells continue to grow.  

 

 

Materials and Methods 

Cell culture 

HeLa Geminin-GFP cells were generated and single clones were isolated and grown in our 

laboratory. Cells grown in Dulbecco’s Modification of Eagles Medium (DMEM, ThermoFisher 

Scientific, 11965), supplemented with 10% Fetal Bovine Serum (FBS, ThermoFisher Scientific, 

16000044), 5% penicillin/streptomycin (10000 U/mL, ThermoFisher Scientific, 15140122), 10 

mM sodium pyruvate(100 mM, ThermoFisher Scientific, 11360070), and 25mM HEPES (1 M, 

ThermoFisher Scientific, 15630080),  were incubated at 37⁰C with 5% CO2. 
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Microscope setup 

The SID4BIO camera (Phasics, France) was integrated into a Nikon Eclipse Ti microscope 

through a C-mount. For QPM imaging, we used a halogen lamp as the transmitted light source. 

A Nikon LWD N.A. 0.52 condenser was used with the aperture diaphragm closed. A C-HGFI 

mercury lamp was used for fluorescence illumination. A Nikon TI-S-ER motorized stage was 

used to position the sample with the moving speed of 2.5 mm/s in XY direction (accuracy 0.1 

µm). A Nikon Perfect Focus System (PFS) was used for maintaining the focus. An Endow 

GFP/EGFP filter sets (Chroma 41017) was used to take the Geminin-GFP image. We used 

three objective lenses as indicated in this study, one Nikon Plan Flour 10X N.A. 0.3 PFS dry, 

one Nikon Plan Apo 20X N.A. 0.75 PFS dry, and one Nikon Plan Apo 40X N.A. 0.95 PFS dry. 

NIS-Elements AR ver. 4.13.0.1 software with the WellPlate plugin was used to acquire images. 

A homemade incubation chamber was used to maintain the constant environment of 36⁰C or 

33⁰C and 5% CO2.    

Quantification of measurement errors 

To quantify the OPD noise of the blank sample, we performed all the measurements as 

described on the blank 6-well glass-bottom plates filled by Phosphate-Buffered Saline (PBS, 

Corning, 21-040-CV) and mineral oil (Sigma-Aldrich, M8410) at 10X magnification. 

Fixed cells were used to quantify the dry mass and growth rate measurement error. For sample 

preparation, cells were seeded in 6-well glass-bottom plates (Cellvis, P06-1.5H-N ) at 3500 

cells/cm2 overnight, then fixed in 0.2% glutaraldehyde (50 wt. % in water, Sigma-Aldrich, 

340855) for 10 min at room temperature. Then the fixed cells were immersed in PBS and 

topped with mineral oil. 

In the experiments to quantify the dry mass measurement error, cells were imaged every 5 min 

for 2 hours. At 10X magnification, an area of 8X8 FOVs in the well center was scanned, with the 

X-Y step distance as one-fifth of the FOV. At 20X, an area of 15X15 FOVs was scanned, with 

one-fifth of the FOV as the step distance. At 40X, 60 cells were chosen manually; each was 

imaged in four FOVs with the cell at a different corner. The temporal error was quantified as the 

standard deviation of the time series of each cell divided by the mean mass of the cell. To 

quantify the net spatial error, we averaged the dry mass measurements through the time series 

first to eliminate the error caused by the temporal variation, then took the standard deviation 

divided by the mean of each cell at different positions as the spatial error. The temporal and 

spatial combined error was the standard deviation divided by the mean of each cell at different 

positions without averaging by time series.   

In the experiments to quantify the growth rate measurement error, the fixed cells were imaged 

and analyzed as in the long-term live cell experiments. The standard deviation of the growth 

rate of each cell was taken as the growth rate measurement error and normalized by the mean 

mass of each cell. The mean of the resultant distribution was taken and divided by the 

percentage of the mass increase per hour. The result is the relative measurement error of the 

growth rate.    

Long-term live cell imaging 

The 6-well glass-bottom plates were treated by Plasma Etcher 500-II (Technics West Inc.) at 75 

mTorr, 110 W, for 1 min, then coated by 50 µg/mL fibronectin (Sigma-Aldrich, F1141) overnight. 
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Cells were seeded on the pre-coated plates at 2000 cells/cm2 3 hours prior to the experiments 

in the medium of DMEM without phenol red (ThermoFisher Scientific, 21063) supplemented 

with 10% FBS, 5% penicillin/streptomycin, and 10 mM sodium pyruvate, and topped with 

mineral oil. All the experiments were done at 10X magnification. The Phase images were 

acquired every 30 min, and the fluorescent images were acquired every 1 hour, at 36⁰C for 48 

hours or at 33⁰C for 72 hours by the SID4BIO camera. The position of the FOVs was generated 

by a custom developed GUI in Matlab (MathWorks), which assured that  the FOVs were within 

the center 10% area of the well and were evenly spaced. 72 FOVs were imaged in each well.   

Image analysis and data analysis 

When needed the performance of the reference and parameters for segmentation were 

evaluated by a custom-developed GUI. All the image processing pipeline (generating the 

reference wavefront, applying the reference, background subtraction, cell segmentation, and 

cell tracking) was conducted on a high performance compute cluster by custom-written codes in 

Matlab. The last 2 hours of the growth rate trajectories were truncated when they are 

synchronized to birth or G1/S to avoid the effect of the sudden growth rate slowdown before 

division. The 95% confidence intervals of the mean were calculated as [�̅� + 𝑡0.025,𝑛−1𝑆𝐸𝑀, �̅� +

𝑡0.975,𝑛−1𝑆𝐸𝑀] where n is the data number, SEM is the Standard Error of the Mean 𝜎�̅� =
𝜎

√𝑛
. The 

95% confidence intervals of CV were calculated as [
𝐶𝑉

√𝜒0.975,𝑛−1
2 /(𝑛−1)

,
𝐶𝑉

√𝜒0.025,𝑛−1
2 /(𝑛−1)

].  
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