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Abstract 

The fine balance of growth and division is a fundamental property of the physiology of cells and 
one of the least understood.  Its study has been thwarted by difficulties in the accurate 
measurement of cell size and the even greater challenges of measuring growth of a single-cell 
over time. We address these limitations by demonstrating a new computationally enhanced 
methodology for Quantitative Phase Microscopy (ceQPM) for adherent cells, using improved 
image processing algorithms and automated cell tracking software. Accuracy has been improved 
more than two-fold and this improvement is sufficient to establish the dynamics of cell growth and 
adherence to simple growth laws.  It is also sufficient to reveal unknown features of cell growth 
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previously unmeasurable.  With these methodological and analytical improvements, we document 
a remarkable oscillation in growth rate in several different cell lines, occurring throughout the cell 
cycle, coupled to cell division or birth, and yet independent of cell cycle progression.  We expect 
that further exploration with this improved tool will provide a better understanding of growth rate 
regulation in mammalian cells. 

 

Significance Statement 

It has been a long-standing question in cell growth studies that whether the mass of individual cell 
grows linearly or exponentially. The two models imply fundamentally distinct mechanisms, and 
the discrimination of the two requires great measurement accuracy. Here, we develop a new 
method of computationally enhanced Quantitative Phase Microscopy (ceQPM), which greatly 
improves the accuracy and throughput of single-cell growth measurement in adherent 
mammalian cells. The measurements of several cell lines indicate that the growth dynamics of 
individual cells cannot be explained by either of the simple models but rather present an 
unanticipated and remarkable oscillatory behavior, suggesting more complex regulation and 
feedbacks.  

 
 
Main Text 
 
Introduction 

Cell growth is a fundamental physiological property of cells. When cells grow and divide, each 
component of the cell must double.  Although this is well understood for DNA, the strict regulation 
and coordination of the doubling of all other components is largely a mystery. In non-dividing cells 
the DNA typically does not double.  Yet under these conditions there is still close control of level 
of all other components. Generally, we can say that cell growth, whether balanced or not, is 
regulated. In proliferating cell populations, it is strictly tied to cell division, resulting in the control 
of cell size (1, 2). Deregulation of cell growth is associated with several diseases(3–6). Because 
for a long time we lacked accurate measurement tools for size of individual cells, cell growth was 
measured at the population level, as the incremental change in the  mean bulk mass or bulk 
volume in a synchronous culture(7, 8). However, there have long been doubts about the effects of 
drug induced synchronization of the nuclear mitotic cycle on the rate of  cell mass accumulation 
(8, 9). Some pharmacological  treatments used to induce synchrony drive cells from their 
physiological state, some generate oversized cells which is known to be a distortion of  
growth(10). Unsurprisingly, bulk studies led to conflicting conclusions, generating controversy. 
Several approaches have attempted to circumvent the problem of synchronization of a population 
of cells by finding ways to extract the average growth rate indirectly in an asynchronous 
population from measurements at a single time point(11–13). Nonetheless, these approaches 
invariably make questionable assumptions even while calculating population averages. As bulk 
measures themselves, they may fail to address the role of individual variation in cell growth. 
Therefore, despite the experimental challenges, it has become more and more clear that it is 
critical to find ways to measure accurately the growth of single cells over time and then convert 
this information to population averages if that is desired.  

Despite the obvious advantages of single-cell measurements, there are significant experimental 
challenges. The individual cell growth rate is the change of a single cell mass per unit of time not 
at a single point in time but at repeated times in the growth phase between divisions.  This 
measurement must be made in an unperturbed way in live cells. It requires extremely accurate 
size or mass measurement, as the taking of a time derivative greatly amplifies errors. It raises 
challenges not only in the accuracy but also in the stability, repeatability, and throughput of the 
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size measurement. Cell growth is a collective description of cell mass or cell volume increase. 
Although cell mass and volume are generally tightly correlated, it is known that volume change 
can be transient and decoupled from cell mass at different stages of differentiation or of the cell 
cycle(10, 14–16). We have therefore focused our analysis on the growth of single-cell mass. 

There are relatively few methods that accurately measure single-cell mass over time in living 
cells. The Suspension Microchannel Resonator (SMR) is almost certainly the most accurate. It 
can measure the buoyant mass to a precision of 50 femtograms or better(17–19), which for a 
typical cell could be to an error of less than 0.1%.  But its application is limited to cells in 
suspension.  It cannot, at present, be used for cell size measurements of adherent cells over a 
long-time course. Furthermore, in its present form, the SMR only allows for the tracking of a few 
cells through an entire cell cycle(19, 20) or many cells for a short period of time (21), but not for 
the most informative tracking of many cells for long periods of time. There are other simpler 
measurements based on correlations, such as the use of the nuclear area(22) or assaying a 
constitutively expressed fluorescent protein(23), as proxies for cell mass. However, these proxies 
are not fully verified and almost certainly are not quantitative enough to make the kinds of critical 
growth rate measurements that are needed if we wish to reveal small temporal variation in 
individual cells. In general, correlations between the proxies and cell mass are noisy, reducing 
our confidence in growth rate measurements. Furthermore, for these methods strict 
proportionality with mass may not hold for all cell types, at different cell cycle stages, or across 
the full range of the cell mass distribution. For the reasons above, Quantitative Phase Microscopy 
(QPM) has emerged as the method of choice for accurate dry mass measurements of attached 
cells down to a precision of less than ten picograms (note it is still more than 100 times less 
sensitive than the SMR) (17, 24–26). Furthermore, QPM is more readily available, as subtypes of 
the QPM technique like the Quadriwave Lateral Shearing Interferometry (QWLSI)(27), Spatial 
light interference microscopy (SLIM)(28), Ptychography(29), and the Digital Holographic 
Microscopy (DHM)(30) have been commercialized. An especially attractive form of QPM is the 
QWLSI, which builds the wavefront sensor around an ordinary Charge-Coupled Device (CCD) 
and can be easily installed onto a conventional microscope. It can be used with the white-light 
halogen lamp(27), is compatible with fluorescence detection(31), and has the potential for the 
high throughput and longitudinal applications. However, in our experience, despite the 
attractiveness of QPM, the best accuracy can only be achieved with the most optimized yet very 
restrictive sample configuration and experimental setup. We found that the existing solutions did 
not provide the stability and robustness required for long–term large-scale growth rate studies to 
resolve some of the most pressing issues in the field, such as the debate about the linear or 
exponential growth in single cells(25). Moreover, single-cell growth trajectories usually are 
complex, noisy, and have large fluctuations(19, 32–34). One needs to evaluate all the sources of 
error carefully to distinguish spurious fluctuations from meaningful regulation. Finally, both an 
automated image processing and cell tracking pipeline are required to facilitate the high 
throughput needed to establish the reproducibility of the measurements.  

We report here the development of computationally enhanced reference subtraction and image 
processing methods for QPM (ceQPM), which improve the accuracy of single-cell dry mass and 
growth measurements. Specifically, we developed a method to generate a reference phase 
image to remove the phase retardation unrelated to the sample, improved the algorithm of 
background leveling, and developed the software for automated image processing, cell 
segmentation, and cell tracking, all of which enable large-scale longitudinal applications. Using 
ceQPM, we have carefully quantified the precision of the dry mass and growth rate 
measurements and successfully monitored the growth rate in thousands of cells in each 
experiment. The results are sensitive enough to reveal a new feature of cell growth, an 
unexpected autonomous growth rate oscillation coupled to the cell division cycle.  
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Results 

Generating a reference phase image 

Quantitative phase microscopy measures the wavefront retardation induced by a sample.  It is 
quantified as the Optical Path Difference (OPD) relative to a reference wavefront(35). However, 
the OPD of the optical system is often larger than that induced by the sample. Thus subtracting 
the reference OPD is the most critical step of quantitative phase image processing. The reference 
OPD is generally measured in a cell-free region or from a blank sample. However, this approach 
is tedious and can be inaccurate in time-lapse imaging because of temporal variation in the 
system OPD.  Here we show the reconstruction of the reference phase image in a more robust 
manner, which also decreases the noise in the measurement.  

When the light crosses the cell area, its phase shifts due to the refractive index difference 
between the cell and the medium (Fig. 1). Materials in solution maintain a very strict linear 
relationship between refractive index and concentration. The slope of that relationship is the 
specific refractive index increment. For proteins, lipids, carbohydrates, and nucleic acids, the 
specific refractive index increment, α,  falls within a very narrow range, with an average of 0.18 

𝜇𝑚3/𝑝𝑔(36). The OPD for an entire cell is equal to ∫ 𝛼 ∙ 𝑐(ℎ) ∙ 𝑑ℎ
𝐿

0
, where 𝑐 is the local cell mass 

density and 𝐿 is the cell thickness. Thus, the total cell dry mas can be measured as 

𝑚 = 1/𝛼∬𝑂𝑃𝐷(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑆

 

where S is the cell area. 

We used a SID4BIO camera (Phasics S.A., France) to measure the OPD. The camera is based 
on QWLSI and optimized for biological applications. It uses a Modified Hartmann Mask (MHM) to 
generate four tilted replicas of the wavefront, which form the interferogram on the CCD sensor. A 

pair of the first-order harmonics 𝐻�̃� and 𝐻�̃� in the Fourier space carries the information for the 

spatial gradient of OPD in x and y directions (Fig. 1). Thus the OPD is calculated as the 2D 
integration of the gradients through the Fourier Shift Theorem(27, 37, 38). The resultant OPD 
contains the phase-shift induced by the cell and an additional phase-shift due to the aberration of 
the optical system. A reference wavefront is required to remove the phase-shift from the optical 
system. Knowing the grating period 𝑝 and the distance 𝑧 between the MHM and the CCD sensor, 
we have 

(

 

𝜕𝑂𝑃𝐷𝑐𝑒𝑙𝑙
𝜕𝑥

𝜕𝑂𝑃𝐷𝑐𝑒𝑙𝑙
𝜕𝑦 )

 =  
𝑝

2𝜋𝑧
 (
𝐴𝑟𝑔(𝐻𝑥) − 𝐴𝑟𝑔(𝐻𝑅𝑥)
𝐴𝑟𝑔(𝐻𝑦) − 𝐴𝑟𝑔(𝐻𝑅𝑦)

) 

where 𝐻𝑥 and 𝐻𝑦 are the inverse Fourier transformed images of the Fourier harmonics of the 

derivatives along x and y of the sample phase image, while 𝐻𝑅𝑥 and 𝐻𝑅𝑥 are the corresponding 
images of the reference (Fig. 1). 

A blank Field of View (FOV) near the sample FOV or an FOV of the same light path on a blank 
sample is generally used as the reference. However, making a designated blank area in the 
sample may not always be feasible, and it is tedious and slow to do this manually in large scale 
screening. We have instead contrived a way to synthesize the reference wavefront. When the 
confluence of the cells is less than 50%, most of the area of the FOV is blank. Thus we use the 
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median (and not the mean!) of the sample FOVs as the reference wavefront. As 𝐻𝑥 and 𝐻𝑦 are in 

complex number form, we calculate their median by calculating the median of the real part and 
the median of the imaginary part separately.  

𝐻𝑅𝑥,𝑦 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑟𝑒𝑎𝑙(𝐻𝑥,𝑦
𝑗,𝑗=1,…,𝑁

)) + 𝑖 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑖𝑚𝑎𝑔(𝐻𝑥,𝑦
𝑗,𝑗=1,…,𝑁

)) 

where 𝑁 is the number of sample FOVs. We usually use  𝑁 larger than 16. When the cell 
confluence is low and all the FOVs share the similar light path (e.g., FOVs on a slide or near the 
center of a 35 mm or larger dish (Fig. S1C-D)), this method averages out the noise in the OPD 
measurement and thus performs better than a single reference image of a blank FOV or a blank 
sample (Fig. S1A). Both the cell confluence and the similarity in the light path affect the goodness 
of the synthetic reference (Fig. S1B, C, and D). For the best performance of the method, we 
usually seed cells at lower than 30% confluency and scan within the central 10% area of a 
circular dish or well. It is worth mentioning that the rationale for generating the synthetic reference 
is not limited to QWLSI. The reference light path at any time during a time course can be 
retrieved through a similar method for other types of QPM. This is especially helpful for the QPM 
systems more subject to reference path distortion due to the use of coherent light sources or long 
reference arms.   

We developed Graphical User Interfaces (GUI) as well as scripts to generate position matrix of 
desired pattern, make synthetic reference, and evaluate the performance of the reference image 
before applying it to the whole data set. All of these make the high throughput QPM measurement 
much more convenient and improve the reproducibility and the accuracy of the measurement.   

Background leveling corrections 

As shown in Fig. 2A, there is still residual background after compensating for optical system 
aberration by subtracting the reference image. The residual shape of this background could be 
due to cover glass thickness variation, vibration, etc.  Background leveling is crucial for accurate 
dry mass quantification. The conventional methods of polynomial fitting(25) or Zernike polynomial 
fitting(39) capture the low-frequency background but miss the regional fluctuations (Fig. 2B). We 
developed a new method for subtracting both the low and high-frequency background, thus 
significantly improving the precision of the dry mass measurement. 

We first isolate the objects from the background by “top-hat filtering”. A disk-size smaller than 
most of the cells is chosen as the structuring element to clean up the fluctuations whose scale is 
comparable to or larger than the cell. The resultant image cannot be directly used for 
quantification because it subtracts excessive background from the cells, and the mean of the 
background level varies with each image. We use it only to generate the background mask: we 
separate the image into the cell and the cell-free areas by combining the filtered OPD image and 
its gradient magnitude to define the boundary of the cells. Thresholding OPD or OPD gradient 
alone may leave out part of the cell (Fig. 2D and E), but the combination of the two detects the 
cell boundaries much more accurately (Fig. 2F). Note that we intentionally do not fill the holes in 
either thresholding mask, as other QPM segmentation methods recommended(25, 39), because 
this process may also fill the blank area within a cell cluster, which is critical for the precise fitting 
of the cell-dense area. Lastly, we create the background image by fitting the cell-free area of the 
original image with a thin plate spline method(40). A mesh grid binning is used for fast 
computation. The thin plate fitting is parameter-free and can capture both large and small 
curvatures. Fig. 2C shows that our method generates a cleaner background than conventional 
methods.   

The precision of dry mass measurements 
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The dry mass measurement error contains all the variation in the OPD measurement, the 
background subtraction, and the cell segmentation. Among those factors, the background 
subtraction has the largest effect, as the unevenness in the background affects the cell 
boundaries. We quantified the precision of the dry mass measurement by measuring same fixed 
cells multiple times at different positions. The result is summarized in Table 1. Our background 
subtraction algorithm significantly improved the precision of the dry mass measurement. The 
combined temporal and spatial error is reduced at both high (40X) and low (10X) magnifications 
when compared to a previous study using a similar setup but different data processing algorithms 
(Table 4 in ref. 25). Remarkably, the error at 10X is reduced by more than two-fold from 4.37% in 
Aknoun et al.(25) to 1.97% in our study. As the magnification decreases from 20X to 10X, the 
FOV is four-time larger, while the measurement error increases only 1.15 folds. We, therefore, 
gained acquisition throughput without sacrificing much precision of measurement. For this 
reason, we optimized our data collection to maximize throughput at 10X.  

Cell segmentation and cell tracking 

For cell segmentation, the watershed algorithm works the best when a nuclear marker is used as 
the foreground marker(41). When no nuclear marker is available, we use the local maximum of 
the cell after top-hat filtering. Because two cells may closely contact each other and form only one 
local maximum or one cell may have two local maxima, segmentation without any nuclear marker 
possesses about 5% error depending on cell types. We now find it most useful to combine the 
OPD image and its gradient magnitude to define the boundary of the cells as discussed in 
Background leveling corrections. 

To track cell mass in time automatically, we first identify all the mitotic cells in the time series 
based on their rounded morphology, by their mass density gradient and area (Fig. 3A). We then 
trace cells backward. Each track starts from the end of the time series or a mitotic event. No new 
track is added during the tracing process. We use cell mass, area, and centroid position as the 
metrics for tracing. We compare a cell 𝑘 on frame 𝑖 with each cell on frame 𝑖 − 1 by the weight 
function: 

𝑊 = 𝑑 ∗ 𝑤𝐷 + |𝑟𝑚| ∗ 𝑤𝑀 + |𝑟𝑎| ∗ 𝑤𝐴 + (𝑗 − 𝑖 + 1) ∗ 𝑤𝐺 

where 𝑑 is the distance between the centroids, 𝑟𝑚 is the relative mass difference, 𝑟𝑎 is the relative 

area difference, 𝑗 indicates when the metrics of cell 𝑘 were last updated, and 𝑤𝐷, 𝑤𝑀, 𝑤𝐴, and 𝑤𝐺  
are the weights of the respective terms. The dry mass measurement is so precise that we can put 
high confidence in the mass term. The weight parameters for HeLa are summarized in Table S1, 
as an example. The value of 𝑊 is used to determine the goodness of the match. A good match 

should have the smallest 𝑊 on the frame and 𝑊<1. When cell 𝑘 has a good match, its metrics 
are updated with the newly traced cell. Otherwise, the old metrics are carried on for comparison 
with the next frame. This method may leave gaps in tracks that can be filled later by a smoothing 
algorithm but tolerate most of the segmentation error. The track does not terminate or deviate by 
wrong segmentation of a single frame. A track essentially terminates when it cannot find a good 
match for more than ten frames (𝑗 − 𝑖 + 1) ∗ 𝑤𝐺 > 1. In the last step, we trace the lineages of the 
cells. We compare the metrics at the end of each track with all the mitotic cells. If a track ends 
just before a mitotic event (the time axis is inverted), the centroid position is near the position of 
the mitotic cell, and the mass is close to half of the mitotic mass, the track is identified as the 
daughter cell of the mitotic cell. Because newborn cells tend to contact their sisters closely, this 
will result in problematic segmentation.  For that reason, many cells cannot be traced back to the 
very beginning of birth. For consistency, we designate the division time (the last frame of mitotic 
rounding) of the mother cell as the birth time of the daughter cells.  

Fig. 3B shows an example of a cell traced to its grand-daughter cells. For each cell, the G1/S 
transition is determined by the steepest slope of log(Geminin-GFP) accumulation curve  (Fig. 3C). 
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Using the methods described above, we were able to successfully trace the cells in a completely 
automated fashion without manual supervision or correction. The fraction of mistraced cells 
identified by manual counterchecking is less than 2%. Movie S1 shows an imaging area of 9.47 
mm X 7.99 mm on one well of the 6-well plate monitored for 48 hours under 10X objective. A total 
number of 2983 cells were traced in the area. Six imaging areas of such can be measured within 
30 minutes. The limit of the measurement throughput is the speed at which we can move the 
stage without perturbing the optical stability of the culture medium surface (see Materials and 
Methods for specification) and the rotation speed of the filter turret.  

Evidence for growth rate oscillations during cell growth  

It has been a long standing question whether the growth of individual proliferating cell can be 
described as  linear or exponential (7). It is surprisingly difficult to distinguish the two models, 
because cell size just doubles in one proliferation cycle rendering the maximum difference 
between the two models only 5.63%(42, 43). Since our measurement error is lower than 2%, it 
allows us to address this question in adherent mammalian cells, when monitored throughout the 
cell cycle. To assure the highest measurement accuracy, we cleaned up the individual cell growth 
trajectories by eliminating any data points where the cell was in contact with another cell, as the 
cell-to-cell contact usually causes erroneous segmentation of more than 2% dry mass.  
Furthermore, we eliminated rounded cells, as their dry mass error is also larger due to the 
dramatic change of height and the problem of phase unwrapping. In most trajectories, the first 1.5 
hours after birth and the last 0.5 hours before division were removed during this cleaning process. 
As a result, the cleaning process discarded most of the cell trajectories, and less than 10% were 
used in the following analysis. We collected 340 full-cell-cycle trajectories of HeLa cells from 
three replicative experiments and pooled all of the trajectories together to investigate which model 
explains the growth dynamics better. We compared the goodness of fit by the small sample 
Akaike Information Criterion (AICc); the better fit possessed the smaller AICc(44) (Supplementary 
Information). The exponential model fitted much better than the linear model in the mean 
trajectory of the whole population (Fig. 4A, ΔAICc = 102.97), which was consistent with the 
positive correlation between growth rate and cell size found previously(33).  Yet, neither model 
fits every cell. The exponential model fits better in 68.6% of the population, whereas the linear 
model fits better for the rest (Fig. 4B). The ratio was similar in another adherent cell line, RPE1 
cells, where 61.5% cells got fit better by the exponential model (Fig. S2A).  

Growth dynamics were more complex than any of these simplified models. We found the residual 
of the fit in some single-cell trajectories seemed to be oscillatory, which was particularly intriguing 
(Fig. S2B). The oscillatory behavior is the most apparent in the mean of the growth rate 
trajectories aligned to cell division time (Fig. 4C). In our initial analysis, we smoothed the mass 
trajectories and took their time derivative by fitting the linear slope in a short sliding time window. 
These manipulations of the data should not change the overall shape, exponential or linear, but 
the smoothing and derivative taking could produce artifactual periodicity (Supplementary 
Information).  

To investigate the unexpected growth rate oscillation, we therefore went back to the original 
unsmoothed raw dry mass data. Proof for periodicity in noisy observations has been thoroughly 
considered in astronomy as well as in biology(45, 46). It’s important to formulate the problem of 
the existence of periodicity as a statistical question and test it against a null hypothesis model of 
random fluctuation, which is what we have done in this study. Specifically, we used the robust 
detection method developed by Ahdesmäki et al. (47). It derives the “robust” periodogram from 
the correlogram spectral estimator and tests the significance of the maximum peak against the 
null hypothesis of randomly permutated data. This method has special advantages as it is 
insensitive to outliers, applies to short time series, and does not require assumptions on the form 
of noise. Similar to Fisher’s g-test (48), this method defines the g-statistic as 
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𝑔 =
𝑚𝑎𝑥1≤𝑙≤2𝑁−1𝑆(𝑓𝑙)

∑ 𝑆(𝑓𝑙)
2𝑁−1
𝑙=1

, 

where 𝑆(𝑓𝑙) is the spectral estimation at the frequency 𝑓𝑙, with 𝑓𝑙 =
𝑙∙𝑓𝑠

2𝑁
, 𝑙 = 0,1, … , (2𝑁 − 1)/2, 𝑁 is 

the length of the trajectory, and 𝑓𝑠 is the data acquisition frequency. 𝑓𝑐 denotes the frequency at 
the maximum of 𝑆(𝑓𝑙). If the trajectory is determined to be oscillatory, 𝑓𝑐 equals the oscillation 
frequency. The p-Value of the observed g-statistic was estimated by 5000 randomly permutated 
trajectories. It allowed us not only to investigate the dominant 5-hour period oscillation which we 
found in the average growth rate trajectory, but also to discover oscillations of any frequency and 
amplitude if they were more significant than noise. We first detrended individual dry mass 
trajectories by the second-order polynomial, which fits better than either of the exponential or 
linear model in 63.9% cells (Fig. S2D). Then we aligned those trajectories to cell division and 
averaged them (Fig. S2E). The periodogram of the mean trajectory presented two distinct peaks 
(Fig. 4D). The peak at 0.053/hour (19.0-hour period) could be due to the imperfect detrending or 
actual growth rate slowdown in the middle of cell cycle. As the period of this peak is close to the 
average length of the cell cycle (26.2 hours for HeLa cells), we designated it the “cell cycle” peak. 
The other peak at 0.193/hour (5.2-hour period) corresponds to the periodic bumps in the mean 
growth rate trajectory in Fig. 4C, which we designated as the “sub-cell cycle” peak. The “sub-cell 
cycle” peak is more dominant, its p-Value is 0.0014, meaning that the about 5-hour periodicity is 
highly significant.   

However, the “cell cycle” peak affects the significance of the “sub-cell cycle” peak. Especially 
when the “cell cycle” peak becomes the maximum peak in the periodogram, the robust detection 
method tests its significance rather than the “sub-cell cycle” peak. Since the “cell cycle” peak 
could be due to the imperfect detrending and we were more interested in the “sub-cell cycle” 
peak, we revised the question from whether there is a significant peak in the periodogram to 
whether there is a significant peak beyond the frequency 𝑓𝑚𝑖𝑛, where the choice of 𝑓𝑚𝑖𝑛 is chosen 
ad hoc to be higher than the “cell cycle” peak but lower than the “sub-cell cycle” peak. The period 
of the “cell cycle” peak can be longer or shorter than the cell cycle length, but is always longer 
than 10 hours, we used 𝑓𝑚𝑖𝑛 = 0.1/ℎ𝑜𝑢𝑟 in most cases unless specified otherwise. As the robust 

detection method is insensitive to the choice of the 𝑙 series, we can answer the new question 
within the same framework by modifying the g-statistic to  

𝑔′(𝑓𝑙 > 𝑓𝑚𝑖𝑛) =
𝑚𝑎𝑥𝑖≤𝑙≤2𝑁−1𝑆(𝑓𝑙)

∑ 𝑆(𝑓𝑙)
2𝑁−1
𝑙=𝑖

, 

where 𝑖 is the smallest 𝑙 of 𝑓𝑙 > 𝑓𝑚𝑖𝑛. We validated the g’-statistic by investigating the False 
Discovery Rate (FDR) in random trajectories with Gaussian noise as well as mean trajectories of 
permutated single-cell trajectories. The FDR in both datasets was close to 5% when the p-Value 
was set to 0.05 (Supplementary Information). According to the g’-statistic, the p-Value of the “sub-
cell cycle” peak is less than 0.0002 (i.e. none of the 5000 permutated trajectories has a larger g’), 
showing the extraordinary goodness of the periodicity. In the following analysis, we alternatively 
used the g- or g’-statistic depending on the existence of the “cell cycle” peak, whose p-Value 
were defined as p1 and p2, respectively.  

Periodic variation could be induced by fluctuations in instruments, particularly if they coincided 

with built-in variation in hardware, like temperature, light, line voltage, etc.  We used the fixed-cell 
data monitored for a long time to investigate the instrumental fluctuation. Unlike the live-cell data, 
the fixed-cell data is not oscillatory (p1=0.4334) (Fig. S2E, F). As proposed by Ahdesmäki et al. 
(47), we could use 

𝑔(𝑓𝑙 = 𝑓𝑥) =
𝑆(𝑓𝑥)

∑ 𝑆(𝑓𝑙)
2𝑁−1
𝑙=1

, 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑙, 
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to test the significance at a specific frequency, 𝑓𝑥. The p-Value of 𝑔(𝑓𝑙 = 𝑓𝑥) was defined as p3. 

According to this test, there is no significant peak near 𝑓 = 0.2/ℎ𝑜𝑢𝑟 (p3=0.9999) in the 
periodogram of fixed cells. Hence, we concluded the ~5-hour period in HeLa cells was not due to 
the instrumental fluctuation.   

We next tried to identify oscillation in individual cells. The g-statistic found 40 oscillatory cells out 
of 564 with p1 smaller than 0.05 in the fixed-cell data, which occupied 7.1% of the population, 
whereas it found 106 oscillatory cells out of 340 in the live-cell data, which occupied 31.2% of the 
population (Fig. S3A, B). Since the oscillations of frequency smaller than 0.1/hour could be due to 
imperfect detrending, we focused on the 62 oscillatory cells out of 340 of frequency larger than 
0.1/hour, whose percentage (18.2%) is still significantly larger than the 7.1% in fixed cells (p-
Value = 7×10-7 by Fisher’s exact test). Their average oscillation frequency was 0.195/hour, which 
was very close to the 0.193/hour oscillation frequency of the mean trajectory of the whole 
population. The higher noise level of single cell trajectory may have concealed the oscillation in 
the 68.8% of cells that did not meet p<0.05 criteria. To probe whether these cells had oscillation, 
we removed the 106 oscillatory cells from the dataset and took the mean trajectory of the 
remaining cells. g’-statistic test of this mean trajectory showed oscillatory (p2=0.0018) (Fig. S3C), 
suggesting that the growth rate oscillation in Fig. 4D was not caused by a subpopulation of cells 
but rather existed in the whole population. It is worthy noting that, the oscillation amplitude of the 
mean trajectory is less than 0.5% of the average cell mass (3 pg vs 600 pg), which is much 
smaller than the 2% measurement error of ceQPM in single cell trajectories. When the 
measurement error was larger than the oscillation amplitude in single cells, the characteristic 
peak of the oscillation in the periodogram might be masked by random noises. However, if all 
cells were oscillating in similar frequency and properly aligned by their oscillation phase, the 
random noise in the mean trajectory would be averaged out, leaving the oscillation peak distinct 
in the periodogram. This may explain why we didn’t detect oscillation at the single-cell level (but 
did in their mean trajectory) of the 68.8% cells. If it were the case, one would expect reducing the 
number of the constituent trajectories or aligning them to a different time could perturb the 
oscillatory behavior in the mean trajectory. Indeed, we examined the mean trajectory of a single 
experiment which happened to provide half of the data (170 cells). When the trajectories were 
aligned to their division time, in its periodogram, the maximum peak of fl>0.1/hour was at 
0.196/hour, consistent with the average of three experiments. Due to the smaller size of data, 
there were more random peaks and p2 increased to 0.0840 (Fig. S3D). When we aligned those 
trajectories to their chronological time rather than cell division, the ~0.2/hour peak disappeared 
(Fig. S3E). Instead, a distinct peak showed up at 0.983/hour (p1<0.0002). During the experiment, 
we acquired the phase images every 30 minutes and the fluorescent images every 1 hour. The 
microscope spent longer time to scan all the positions with both channels than just one channel, 
thus the time interval in the trajectories was not even. However, we assumed it to be even in the 
data analysis, leading to the 1-hour artificial oscillation. Our method was sensitive enough to pick 
up this subtle oscillation but indicated no significant peak around the 0.2/hour frequency 
(p3=0.9999). This result further confirmed that the ~5-hour-period oscillation in live cells was not 
introduced by environmental cues but was intrinsic to growth rate regulation, and its phase was 
tightly coupled to cell division.  

We next examined the oscillation phase relative to cell cycle events other than cell division. When 
we aligned all the 340 trajectories of the three experiments to cell birth, the ~0.2/hour peak in the 
periodogram was preserved (fc=0.185/hour) but became less significant (p2=0.0410), whereas 
when we aligned them to G1/S transition, the mean trajectory was not oscillatory any more 
(p2=0.2849) (Fig. 4D). We found similar results in RPE1 cells (Fig. S3F). When the detrended cell 
mass trajectories were aligned to cell division time, the mean trajectory was almost oscillatory 
(p2=0.0794) with two distinct peaks of fl>0.1/hour. The slightly higher peak was at fc=0.324/hour, 
while the other peak was at 0.216/hour, which was close to the ~0.2/hour peak in HeLa cells. 
When the trajectories were aligned to cell birth or G1/S, the mean trajectory was not oscillatory 
with p2 of 0.7856 or 0.3647, respectively. Note that the cell number in the RPE1 dataset is 
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smaller than in the HeLa dataset, and the two distinct peaks of similar height compromised the 
significance of periodicity in the test used currently, which was designed to detect single 
oscillation frequency. Nonetheless, the main conclusion was the same as HeLa cells that the 
oscillation in the mean trajectory was much more pronounced when the cells were aligned to 
division than to birth or G1/S, suggesting a coupling between the growth rate oscillation and the 
cell division cycle. We further investigated Hela cells under thymidine treatment. We aligned all 
the trajectories to the first peak after G1/S and found that the oscillation proceeded after the cells 
entered into S phase and arrested (p2<0.0002) (Fig. 4E). It implies that the growth rate oscillation 
is autonomous and independent of cell cycle progression. Here, we point out that cell growth 
continued when cell cycle was arrested at S-phase (Fig. S3G). As growth rate is the net 
difference of protein synthesis and degradation, drugs inhibiting protein synthesis rate may also 
perturb the oscillation. Indeed, under treatment with rapamycin, the mean trajectory was less 
oscillatory compared to the normal growth condition of the same cell number (p2=0.2487 vs 
p2=0.0016) with the fc shifted from 0.1961/hour to 0.2286/hour (Fig. 4F).   

All of these experiments above were done with adherent cells measured by ceQPM. We then 
decided to investigate if we could see any oscillations in growth rate of suspension cells 
measured by the much more accurate SMR. We are grateful for the sharing of a large set of data 
of a mouse lymphoblastoid line, L1210, measured by Mu et. al.(49). Similar to the QPM data, we 
first detrended the individual buoyant mass trajectories by the third-order polynomial, which fitted 
better than either of the linear or exponential growth models in all the cells (Supplementary 
Information). Since the SMR data were measured at such high accuracy and fine time resolution, 
we were able to reveal the periodicity in single cells. The robust detection method found all of the 
63 cells we analyzed were oscillatory with p1 less than 0.0002. Each cell only had one or two 
outstanding peaks in its periodogram (data not shown). Then we fitted individual trajectories with 
the generic cosine function,  

𝑦𝑓𝑖 = 𝐴𝑐𝑜𝑠(
2𝜋𝑡𝑖,𝑖=1,…,𝑁

𝑇
+ 𝜑), 

where 𝑡𝑖,𝑖=1,…,𝑁 is the time series, 𝑁 is trajectory length, 𝐴 is oscillation amplitude, 𝑇 is oscillation 

period, and 𝜑 is the phase at 𝑡𝑖 = 0 (Fig. 5A-F). We evaluated the goodness of fit by the adjusted 
Residual Sum of Square (adj_RSS), 

𝑎𝑑𝑗_𝑅𝑆𝑆 =
𝑅𝑆𝑆

𝐴
, 𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦𝑓𝑖)

2𝑁
𝑖=1  , 

where 𝑦𝑖 is the observation, 𝑦𝑓𝑖 is the fitted result. Fig. 5G shows the distribution of 𝑎𝑑𝑗_𝑅𝑆𝑆 of the 

63 cells. We arbitrarily chose a cutoff threshold at 𝑎𝑑𝑗_𝑅𝑆𝑆=50 and only investigated the fitted 

results of the 56 out of 63 cells below the threshold. Note that the cells with 𝑎𝑑𝑗_𝑅𝑆𝑆 above 50 
were also oscillatory but with bigger variation (Fig. 5F).  We found the average period was 3.6 
hours (Fig. 5H) and the average amplitude was 0.11 pg (~0.2% of the averaged cell mass) (Fig. 
5I). Unlike the adherent cells, in L1210, the oscillation phase was tightly coupled to cell birth but 
not so related to G1/S transition or cell division (Fig. 5J). As the SMR data traced the cell lineage 
for several generations, we also investigated the mother-daughter correlation of the oscillation 
properties (Fig. 5K-N). We found positive correlations in oscillation amplitude and period among 
the mother and daughter cells (Fig. L, M). However, the daughter cell does not inherit the phase 
from its mother, meaning the oscillation phase was reset at cell birth per each generation  (Fig. K, 
N). We further calculated the Pearson’s correlation between all the measured variables. Fig. 5O 
summarized all the correlations of p-Value smaller than 0.05. We found that period was strongly 
correlated with cell cycle length, and hence negatively correlated with cell size. Amplitude had a 
positive correlation with cell cycle length and period. The phase at birth was positively correlated 
with division mass. 
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In summary, we identified the growth rate oscillations in two adherent cell lines, HeLa and RPE1, 
and one suspension cell line, L1210, which were of comparable period (3.1-5.2 hour) and 
amplitude (0.2-0.5% of the averaged cell size). The oscillations were measured by the two most 
accurate but totally distinct methods at different time resolutions, confirming the periodicity is very 
real and virtually impossible to be caused by experimental or analytical artifacts. 

 
Discussion  

How cell growth and cell division are coordinated has turned out to be a very difficult problem. 
The difficulty arises primarily from the challenge of making accurate measurements of cell mass 
over time in single cells. The most commonly used and thoroughly studied mammalian cells are 
the cells attached to plastic or glass. They have many experimental advantages for some 
technologies but fail to others. QPM has become the optimal method to measure cell mass in 
adherent cells(17, 24, 32, 50, 51). Yet its sensitivity was not sufficient for deciding growth models, 
such as whether for proliferating cells it is linear or exponential. We have devised computational 
innovations in ceQPM that can significantly improve the measurement accuracy by more than 
two-fold. ceQPM also improved the stability and repeatability of the measurement. It allowed us to 
use lower magnified lenses covering larger field and producing more measurements per unit time. 
The advanced data acquisition throughput provided high statistical power. The automated cell 
segmentation and tracking algorithms facilitated the processing of large datasets. Both the 
experimental and analytical systems can be incorporated into wide applications of cell size and 
cell growth studies. We used this improved method to explore the growth of two adherent cell 
lines, HeLa and RPE1 cells. Both cell lines are more closely fit to an exponential model. Yet, 
neither the exponential nor the linear model fits all the cells. Rather the exponential model fits 
better in about two thirds of the population. 

When we looked carefully at the growth curves, we found clear hints of some oscillatory behavior.  
On deeper analysis there was a 3.1 to 5.2-hour oscillation in growth rate in HeLa and RPE1 cells, 
which is coupled to cell division time but unrelated to the G1/S transition of the cell cycle. Note 
that although later pooled and synchronized in silico, these cells were measured from 
asynchronous population in different experiments so that the experimental time bears no 
relationship to real-time and the individual members of the population can be expected to be 
scrambled with respect to time in each experiment. It rules out the possibility that the periodicities 
arose from environmental fluctuation (such as temperature or line voltage) or some collective 
signal among the cells in the well. We also observed a growth rate oscillation of comparable 
period and amplitude in a suspension cell line, L1210 lymphoblast, measured by SMR. The SMR, 
having at least 100-times better accuracy and 25-times higher time resolution than the ceQPM 
measurements, detected the periodicity in almost all the individual cells.  At this point, we do not 
know what drives the oscillations or whether they are of the same underlying mechanisms. The 
limited pharmacological perturbations provide some hints. The blockage of the nuclear division 
cycle with thymidine did not arrest the oscillation, suggesting that the oscillation is independent of 
cell cycle progression. The partial inhibition of growth with rapamycin weakened the periodicity 
and shortened the period from 5.1 hours to 4.4 hours, suggesting a plausible linkage to protein 
synthesis, degradation, or metabolic activity through the mTOR signaling pathway. Further study 
of correlation between the oscillation parameters (amplitude, period, and phase) and cell 
properties (cell mass, cell cycle length, etc.) could provide a means to a better understanding.  

Although the growth rate oscillation is autonomous, its phase is coupled to cell division in HeLa 
and RPE1 and to birth in L1210 cells, which suggests possible mutual entrainment between the 
growth rate oscillation and the cell cycle. The growth rate oscillation may serve as a gate to 
mitosis by controlling the availability of metabolites and cellular energy level. On the other hand, 
mitosis, as the most dramatic event in the cell cycle, might reset the growth rate oscillation at birth 
by pausing RNA and protein synthesis or even depleting cellular ATP(20, 52). Investigating the 
coupling between cell growth and cell cycle oscillations could provide novel understandings of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2019. ; https://doi.org/10.1101/631119doi: bioRxiv preprint 

https://doi.org/10.1101/631119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

 

both(53–57). The coordination between the two is critical for cell size regulation and may shed 
light on the cause of heterogeneous drug response among isogenic cells in cancer therapy.  

Usually, an oscillation is caused by negative feedback with a substantial time delay(58). Due to 
the complexity of biological networks, oscillations may broadly exist. Among them, the periodic 
protein synthesis has been reported several times in drug-induced synchronous cultures(59–62), 
and the periodic cell size changes or protein production rate caused by metabolic oscillation was 
also discovered in individual budding yeast cells(53, 63). However, the idea of endogenous 
growth rate oscillation has never been widely considered due to the lack of convincing 
experimental evidence. In this study, we discovered the oscillations in unperturbed cells of two 
adherent cell lines measured by ceQPM and one suspension cell line measured by SMR, 
suggesting that periodicity may be a general property of growth dynamics and exist in non-
dividing cells. Although subtle, growth rate oscillations may hint at a system for maintaining cell 
size and growth homeostasis.  

 
Materials and Methods 

Cell culture 

HeLa Geminin-GFP and RPE1 Geminin-GFP cells were generated and single clones were 
isolated and grown in our laboratory(12). Cells were kept in Dulbecco’s Modification of Eagles 
Medium (DMEM, ThermoFisher Scientific, 11965), supplemented with 10% Fetal Bovine Serum 
(FBS, ThermoFisher Scientific, 16000044), 1% penicillin/streptomycin (10000 U/mL, 
ThermoFisher Scientific, 15140122), 10 mM sodium pyruvate(100 mM, ThermoFisher Scientific, 
11360070), and 25mM HEPES (1 M, ThermoFisher Scientific, 15630080),  and incubated at 37⁰C 
with 5% CO2. Rapamycin used to inhibit mTOR activity was purchased from LC Laboratories (R-
5000). Thymidine to arrest cell cycle was purchased from Sigma-Aldrich (T1895). 

Microscope setup 

The SID4BIO camera (Phasics, France) was integrated into a Nikon Eclipse Ti microscope 
through a C-mount. For QPM imaging, we used a halogen lamp as the transmitted light source. A 
Nikon LWD N.A. 0.52 condenser was used with the aperture diaphragm minimized. A C-HGFI 
mercury lamp was used for fluorescence illumination. A Nikon TI-S-ER motorized stage was used 
to position the sample with the moving speed of 2.5 mm/s in XY direction (accuracy 0.1 µm). A 
Nikon Perfect Focus System (PFS) was used for maintaining the focus. An Endow GFP/EGFP 
filter sets (Chroma 41017) was used to take the Geminin-GFP image. We used three objective 
lenses as indicated in this study, one Nikon Plan Flour 10X N.A. 0.3 PFS dry, one Nikon Plan Apo 
20X N.A. 0.75 PFS dry, and one Nikon Plan Apo 40X N.A. 0.95 PFS dry. NIS-Elements AR ver. 
4.13.0.1 software with the WellPlate plugin was used to acquire images. A homemade incubation 
chamber was used to maintain the constant environment of 36⁰C and 5% CO2.    

Quantification of QPM measurement errors 

To quantify the OPD noise of the blank sample, we performed all the measurements as described 
on the blank 6-well glass-bottom plates filled by Phosphate-Buffered Saline (PBS, Corning, 21-
040-CV) and covered with mineral oil (Sigma-Aldrich, M8410) at 10X magnification. 

Fixed cells were used to quantify the dry mass and growth rate measurement error. For sample 
preparation, HeLa cells were seeded in 6-well glass-bottom plates (Cellvis, P06-1.5H-N ) at 3500 
cells/cm2 overnight, then fixed in 0.2% glutaraldehyde (50 wt. % in water, Sigma-Aldrich, 340855) 
for 10 min at room temperature. Then the fixed cells were immersed in PBS and topped with 
mineral oil. 
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In the experiments to quantify the dry mass measurement error, cells were imaged every 5 min 
for 2 hours. At 10X magnification, an area of 8X8 FOVs in the well center was scanned, with the 
X-Y step distance as one-fifth of the FOV. At 20X, an area of 15X15 FOVs was scanned, with 
one-fifth of the FOV as the step distance. At 40X, 60 cells were chosen manually; each was 
imaged in four FOVs with the cell at a different corner. The temporal error was quantified as the 
standard deviation of the time series of each cell divided by the mean mass of the cell. To 
quantify the net spatial error, we averaged the dry mass measurements through the time series 
first to eliminate the error caused by the temporal variation, then took the standard deviation 
divided by the mean of each cell at different positions as the spatial error. The temporal and 
spatial combined error was the standard deviation divided by the mean of each cell at different 
positions without averaging by time series.   

Long-term live-cell imaging under QPM  

The 6-well glass-bottom plates were treated by Plasma Etcher 500-II (Technics West Inc.) at 75 
mTorr, 110 W, for 1 min, then coated by 50 µg/mL fibronectin (Sigma-Aldrich, F1141) overnight. 
Cells were seeded on the pre-coated plates at 2000 cells/cm2 3 hours prior to the experiments in 
the medium of DMEM without phenol red (ThermoFisher Scientific, 21063) supplemented with 
10% FBS, 1% penicillin/streptomycin, and 10 mM sodium pyruvate, and topped with mineral oil. 
All the experiments were done at 10X magnification. The Phase images were acquired every 30 
min, and the fluorescent images were acquired every 1 hour, at 36⁰C by the SID4BIO camera. 
The HeLa cells in normal growth condition or with thymidine were monitored for 40-48 hours. The 
RPE cells were monitored for 36-45 hours. The HeLa cells with Rapamycin were monitored for 
70-72 hours. The drugs were added just before the time-lapse movie. The position of the FOVs 
was generated by a custom-developed GUI in Matlab (MathWorks), which assured that the FOVs 
were within the center 10% area of the well and were evenly spaced. 72 FOVs were imaged in 
each well. The fixed cells used to analyze instrumental fluctuation were imaged every 30 min for 
27 hours. 

QPM Image analysis and data processing 

We developed a custom GUI to evaluate the performance of the synthetic reference and 
parameters for segmentation. All the image processing pipeline (generating the reference 
wavefront, applying the reference, background subtraction, cell segmentation, and cell tracking) 
was conducted on a high performance compute cluster by custom-written codes in Matlab.  To 
get the most accurate growth rate measurement, we cleaned up all the data points of contact or 
rounded cells. This data cleaning process created gaps in the cell tracking trajectories. We 
discarded all the trajectories with any single gap longer than 3 hours or total gap longer than 6 
hours. The cleaning process also removed the data immediately after birth and before mitosis. 
Thus we considered any trajectory that begins less than 3 hours after birth and ends less than 1 
hour before mitosis as a trajectory of the full cell cycle. The gaps in the trajectories were filled by 
linear interpolation. For HeLa cells arrested by thymidine, any trajectory longer than 12 hours and 
with an identified G1/S transition was adopted. For each condition, the trajectories were collected 
from more than three independent experiments except for the thymidine treatment, which was 
done only once. 

To get the single-cell growth rate trajectory, we applied cubic spline smoothing (the csaps 
function in Matlab) on the dry mass trajectories at the smoothing parameter p = 0.00002 and then 
fitted the linear growth rate in a 3-hour sliding window to further reduce noise. The same 
processing was applied to fixed-cell data after levelling to demonstrate their effect on the power 
spectrum.   

The dry mass trajectories were fitted by the linear, exponential, or second-order polynomial 
functions using linear (for the linear function) or nonlinear least squares (for the exponential and 
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second-order polynomial functions) fit with bisquare weighting to eliminate the impact of outliers. 
The goodness of fit was estimated by the small sample Akaike Information Criterion AICc(44). 

𝐴𝐼𝐶𝑐 = 𝑁𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑁
) + 2𝑀 +

2𝑀(𝑀 − 1)

𝑁 −𝑀 − 1
 

where RSS is the Residual Sum of Squares of the fit, N is the number of data points, and M is the 
number of parameters in the function.  

The dry mass, growth rate, or detrended dry mass trajectories were aligned and averaged as 
indicated. When the trajectories were aligned to birth, G1/S, or chronological time, the last 2 
hours before division was trimmed to avoid the impact of the abrupt mitotic dip. In the thymidine 
treated data, since the detrended dry mass trajectory was too noisy, the first peak after G1/S was 
identified by the smoothed growth rate trajectory. Since the trajectory length varied a lot among 
cells, the mean trajectory only included data points of the average of more than 50 trajectories 
except for the dataset of thymidine treatment, where the threshold was reduced to 25 due to the 
low cell number. The 95% confidence intervals of the mean trajectory were calculated as 

[�̅� + 𝑡0.025,𝑛−1𝑆𝐸𝑀, �̅� + 𝑡0.975,𝑛−1𝑆𝐸𝑀] where n is the trajectory number; SEM is the Standard Error 

of the Mean, 𝜎�̅� =
𝜎

√𝑛
;  𝑡0.025,𝑛−1 and 𝑡0.975,𝑛−1 are the t-scores at 2.5% and 97.5% tails with degree 

of freedom equal to 𝑛 − 1. 

SMR data analysis 

The L1210 data were adopted from the L1210 FUCCI control dataset measured by the small-
channel SMR in Mu et. al.(49). A total number of 63 cells measured in 9 independent experiments 
were analyzed. As the time interval of the SMR data was irregular with a mean at 1.1 minutes, we 
first linear interpolated the data at a fixed time interval of 1.2 minutes. The buoyant mass 
trajectories were fitted by the linear, exponential, and polynomial functions. The goodness of fit of 

different functions was compared by the Akaike Information Criterion(64), 𝐴𝐼𝐶 = 𝑁𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑁
) + 2𝑀 

. All the trajectories were detrended by the third-order polynomial in further analysis. The robust 
periodogram of the detrended trajectories was estimated and the periodicity was tested by the 
robust detection method. The detrended trajectories were fitted by the generic cosine function, 

𝐴𝑐𝑜𝑠(
2𝜋𝑡𝑖,𝑖=1,…,𝑁

𝑇
+ 𝜑), using the nonlinear least-square fit. The last 2 hours before division was 

trimmed before fitting to remove the mitotic dip. The frequency of the maximum peak in the 
periodogram was adopted to calculate the initial value of T for the fitting.  

Periodogram and robust periodicity detection 

The robust periodogram was estimated by the correlogram as described in Ahdesmäki et al. (47). 
In the cases of QPM trajectories aligned to cell division, the last 1 hour before division was 
trimmed off from the mean trajectory to avoid the dramatic impact of the mitotic dip on the 
periodogram. The last 2 hours of the SMR trajectory aligned to mitotic dip were trimmed off for 
the same reason. For the thymidine treated cells aligned to the first peak after G1/S, the mean 
trajectory after the first dip after G1/S was used to estimate the periodogram of the arrested S 
phase. All the significances were assigned by the permutation method. The implementation was 
realized by the Matlab source code provided in Ahdesmäki et al. (47) with slight modification. All 
the results of the statistical tests were summarized in Table S2.   
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Figures and Tables 
 

 
 
Figure 1. The principle of QWLSI, showing how a reference wavefront is applied to generate the 
final OPD of the cells. 
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Figure 2. Background leveling. (A) The OPD image before background leveling. (B) The OPD 
image after subtracting the background fitted by a 2D polynomial (n = 8). (C) The OPD image 
after subtracting the background fitted by the thin plate spline. (D, E) Cell boundaries determined 
by a threshold on the OPD images (D) or the gradient magnitude of the OPD image (E). (F) The 
combination of the boundaries on (D) and (E). (A-C) are from an FOV under a 10X objective lens. 
(D-F) are from an FOV under 40X objective lens. Scale bars indicate 100 µm.  
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Figure 3. Cell tracking. (A) The gradient magnitude of an OPD image measured at 10X. Scale 
bar indicates 20 µm. The arrow indicates a mitotic cell. (B) One cell is traced to its granddaughter 
cells. Each color represents a cell. Solid dots are the raw data of dry mass measurement. Solid 
lines are the spline line smoothing. Vertical dashed lines indicate the timing of cell divisions. 
Dash-short dashed lines indicate the timing of G1/S transitions. (C) The intensity of Geminin-GFP 
measured in one cell (blue) and its logarithm (red). Dash-short dashed line indicates the steepest 
slope of the log(Geminin-GFP) accumulation curve, which is defined as the time of the G1/S 
transition. 
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Figure 4. Detection of the growth rate oscillations in adherent cells. (A) The mean trajectory 
(black) of the smoothed dry mass trajectories of HeLa cells aligned to cell division time, fitted by 
the linear (blue) or exponential (red) growth model. Data were collected from three independent 
replicative experiments, n = 340. The gray shaded regions indicate the 95% confidence intervals 
of the mean. (B) The histogram of the difference between the AICc of the linear (AICc_li) and 
exponential (AICc_exp) fit in HeLa cells. Better fits have the smaller AICc. The black vertical line 
indicate the difference equal to zero. (C) The mean trajectory of the smoothed growth rate 
trajectories of HeLa cells aligned to cell division time. The red shaded regions indicate the 95% 
confidence intervals of the mean. n = 340. (D) The periodogram of the mean trajectories of the 
detrended dry mass trajectories of HeLa cells aligned to cell division (blue), birth (red), and G1/S 
(yellow), respectively. n = 340. (E) The periodogram of the mean trajectories of the detrended dry 
mass trajectories of HeLa cells under thymidine treatment aligned to their chronological time 
(blue) or the first peak after G1/S transition (red). n = 51. (F) The periodogram of the mean 
trajectories of the detrended dry mass trajectories of HeLa cells under control condition (blue) or 
rapamycin treatment (red) aligned to cell division time. n = 188. The periodograms in (D-F) were 
estimated by the robust detection method as described in Ahdesmäki et al. (47). The black 
dashed lines indicate fmin=0.1/hour used in the g’-statistic test.  
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Figure 5. Detection of growth rate oscillations in individual L1210 lymphoblast cells. (A-F) 
Examples of randomly selected detrended buoyant mass trajectories (blue dots). The solid red 
lines are the fitted cosine functions. adj_RSS indicates the goodness of fit. (G-J) The distributions 
of adj_RSS (G), period (H), amplitude (I), and phase at different cell cycle events (J) of the fitted 
cosine functions. The red dashed line in (G) indicates the arbitrary cutoff threshold; the 
distributions in (H-J) only include the 56 cells below that threshold. The blue, red and yellow lines 
in (J) represent the oscillation phase at birth, G1/S, and division, respectively. Note that only 38 
cells were measured with the fluorescent FUCCI marker and had identified G1/S timing. (K) The 
detrended buoyant mass trajectory of an example L1210 cell continued with the trajectory of one 
of its daughters (blue dot). The red and yellow lines are the fitted cosine functions of the mother 
and daughter cell, respectively. (L-N) The mother-daughter correlation of the oscillation amplitude 
(L), period (M), and phase (N). The correlation coefficients were calculated as Kendall’s Tau 
coefficient to avoid the effect of outliers. (O) The summary table of Pearson’s correlations of p-
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Value smaller than 0.05. Cc denotes cell cycle length; bmass denotes birth mass; dmass denotes 
division mass; Amp denotes amplitude; Phibir denotes the phase at birth.     
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Table 1. Dry mass measurement precision at different magnifications. 

 

Magnification OPD noise 
(nm) 

FOV area 
(um*um) 

Temporal 
error (%) 

Spatial error 
(%) 

Combined 
temporal and 
spatial error 
(%) 

10X 1.68(0.21) 1184*888 1.29(0.51) 1.54(0.57) 1.97(0.86) 

20X 1.29(0.04) 592*444 1.05(0.37) 1.21(0.48) 1.71(0.75) 

40X 0.88(0.16) 296*222 0.57(0.23) 1.15(0.46) 1.30(0.70) 

The measurement errors of each cell were quantified as the Coefficient of Variation (CV, %) of its 
dry mass measurements. The table lists the mean of the errors quantified in more than 50 cells 
with the standard deviation of the population in the brackets (see Materials and Methods for 
detail). Note that the spatial displacement used in this study corresponds to the big displacement 
(BD) in Aknoun et al.(25). 
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