
PDEparams: Parameter fitting toolbox for partial differential
equations in Python

César Parra-Rojas and Esteban A. Hernandez-Vargas ∗

Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany

Abstract

Motivation: Partial differential equations (PDEs) is a well-established and powerful tool to simu-
late multi-cellular biological systems. However, available free tools for validation against data are not
established. The PDEparams module provides flexible functionality in Python for parameter estimation
in PDE models.
Results: The PDEparams module provides a flexible interface and readily accommodates different pa-
rameter analysis tools in PDE models such as computation of likelihood profiles, and parametric boot-
strapping, along with direct visualisation of the results. To our knowledge, it is the first open, freely
available tool for parameter fitting of PDE models.
Availability and implementation: The PDEparams module is distributed under the MIT license. The
source code, usage instructions and step-by-step examples are freely available on GitHub at
github.com/systemsmedicine/PDE params.
Contact: vargas@fias.uni-frankfurt.de

1 Introduction

PDE models appear in a wide variety of biological contexts (Anderson et al. (2000); Jaeger et al. (2004);
Reis et al. (2016); Hross and Hasenauer (2016)) and, while most available computational tools focus on
the numerical integration of PDE models to varying degrees of efficiency and complexity—see, e.g., Guyer
et al. (2009) or Alnæs et al. (2015)—we have not come across general-use implementations incorporating
functionality for parameter optimisation with respect to data, and the analysis of parameter identifiability
and variability. Moreover, a wide range of models in biology consist of simple equations, in simple spatial
domains, and the data available for validation tends to be sparse. To the best of our knowledge, there
is no publicly available, open and free-to-use tools for kinetic parameter estimation of PDE models, but
only codes for specific examples mainly for ordinary differential equations (ODEs)—e.g., Nguyen and
Hernandez-Vargas (2018). Here we present PDEparams, a free Python module for parameter fitting in
PDE models, and the analysis of parameter estimates in a straightforward, intuitive manner.

2 Materials and methods

The PDEparams module is not only meant to work when all variables in the system are observed, but
also in the more realistic case when data are available for only one or a few of them; additionally, we
accommodate the case when the observed quantity corresponds to a function of the variables, rather
than their raw values.

2.1 The PDEmodel object

The main component of the module is the PDEmodel object. As the input, the user provides the data
(as a pandas (McKinney et al. (2010)) DataFrame), along with the PDE model (as a function of the
state vector), the initial condition (as a function of the coordinate vector), and the lower and upper
bounds for the unknown parameters—the estimation is carried out using the Differential Evolution (DE)
algorithm (Storn and Price (1997)), which performs constrained optimisation. Other arguments include
the parameter names (used for tables and plots, defaults to ‘parameter 1’, ‘parameter 2’, . . . ); the number
of variables in the system (defaults to 1); the number of spatial dimensions—for completeness, the module
can also handle ODEs, for which this value should be set to zero (defaults to 1); the number of replicates,
defined as the number of different measurements per space-time coordinate (defaults to 1); the observed

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/631226doi: bioRxiv preprint 

https://github.com/systemsmedicine/PDE_params/
vargas@fias.uni-frankfurt.de
https://doi.org/10.1101/631226
http://creativecommons.org/licenses/by-nc-nd/4.0/


variable if not all are observed (all assumed observed by default); and the function to apply to the raw
variables (defaults to None, and raw outputs are used).

The constructed object contains a time array and spatial grid—to which the initialising functions
have been applied—for integration of the model. These and all other vector operations are carried out
using NumPy (Van Der Walt et al. (2011)).

2.2 Best fit parameters

After construction of the PDEmodel object, parameters that provide the best fit between model and data—
within their specified bounds—can be obtained by simply running the fit() method. If no argument is
provided, the function to be minimised will be the mean squared error (MSE). Other options include: i)
the root mean squared error; ii-iii) the mean (and root mean) squared logarithmic error; iv) the mean
absolute error; and v) the median absolute error. The errors are computed using scikit-learn’s (Pedregosa
et al. (2011)) built-in functions; the integration of the model itself is handled with SciPy (Jones et al.
(01 )), as is the DE optimisation.

When fit() is run, the best parameters and the lowest error are added as attributes to the PDEmodel

object. The former are also printed to the screen.

2.3 Likelihood profiles

Likelihood profiles (Raue et al. (2009)) are computed for each parameter by fixing its values on a pre-
defined grid and re-estimating all the rest. This is done running the likelihood profiles() method.
When no argument is given, grid of size 100 is used as the default; for different grid sizes, the argument
npoints may be used. If the best fit parameters have already been obtained, the error to be used for the
likelihood profiles will match the one originally used with the fit() method. If not, the default mean
squared error will be used. During estimation, a progress bar (da Costa-Luis et al. (2019)) is displayed
on the screen.

As a result, a DataFrame with the parameter values and their corresponding error for each of the
parameters is added as an attribute to the PDEmodel object. These results can then be used internally
or be exported as, e.g., a .csv file.

2.4 Bootstrapping

Parametric bootstrapping is carried out by randomly choosing one replicate per space-time coordinate
and re-estimating all parameters in multiple rounds. This is done with the method bootstrap(); the
number of rounds is controlled by the argument nruns which, if not given, is assumed to be 100—note
that, if only one measurement per space-time coordinate exists in the data, bootstrapping amounts to
simply running the fit() method multiple times, and therefore has no effect. If the best fit parameters
have already been obtained, the error to be used for bootstrapping will match the one originally used with
the fit() method. If not, the default mean squared error will be used. During estimation, a progress
bar (da Costa-Luis et al. (2019)) is displayed on the screen.

As a result of the procedure, two DataFrame objects are added as attributes to the PDEmodel object:
i) a statistical summary of the parameter values—printed to the screen; and ii) the raw results. These
can then be used internally or be exported as, e.g., a .csv file.

2.5 Visualisations

Within the module, the likelihood profiles and the bootstrapping results can be directly visualised,
respectively, using the methods plot profiles() and plot bootstrap(). These use Matplotlib (Hunter
(2007)) and Seaborn (Waskom et al. (2017)). If the best fit parameters have already been obtained, they
will be highlighted in the plots, as shown in Fig. 1.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/631226doi: bioRxiv preprint 

https://doi.org/10.1101/631226
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.06 0.08 0.10 0.12 0.14

α

0.000000

0.000005

0.000010

0.000015

0.000020
er

ro
r

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

γ

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.08

0.10

0.12

α

0.0985 0.0990 0.0995

α

−0.02

0.00

0.02

γ

0.00560 0.00565 0.00570

γ

Figure 1: Likelihood profiles (top) and bootstrapping results (bottom) for the estimation of α and γ from
Eq. (1) using only the data for m. Visualisations obtained, respectively, with the plot profiles() and
plot bootstrap() functions of PDEparams. Best fit parameters are shown in orange. Nominal values:
α = 0.1, γ = 0.005

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/631226doi: bioRxiv preprint 

https://doi.org/10.1101/631226
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 Example: tumour growth

As an example use case, we take the two-dimensional, three-variable PDE model from Anderson et al.
(2000), describing the dynamics of the invasion of host tissue by tumour cells:

∂n

∂t
= dn∇2n− γ∇ · (n∇f)

∂f

∂t
= −ηmf

∂m

∂t
= dm∇2m+ αn− βm

(1)

Here, n corresponds to the tumour cells, f to the host tissue, and m to matrix-degradative enzymes
associated with the tumour cells.

We start by integrating the model using the same parameters as in the paper—dn = 0.001, dm = 0.001,
η = 10, α = 0.1, γ = 0.005, and β = 0—and the same initial condition for n and m; the initial
condition for the host tissue is heterogeneous and arbitrarily chosen—cf. Fig. 8 from the paper. After
this, we generate artificial data by sampling the resulting dynamics on a 25 × 25 spatial grid at times
t = 1, 2, . . . , 15. We then use PDEparams to estimate the values of α and γ. The results are summarised
in Fig. 1, for the case when only the data for m are used for the estimation—i.e., n and f are assumed
unobserved. The full step-by-step example is provided in the Supplementary Material, and is available
in the module repository as a Jupyter notebook.

4 Conclusions

PDEparams is the first free module for the validation of PDE models against data and the analysis of their
parameter estimates.

Funding

This work was supported by the Alfons und Gertrud Kassel-Stiftung and by the Deutsche Forschungs-
gemeinschaft (HE7707/5-1).

References

Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and

Wells, G. N. (2015). The fenics project version 1.5. Archive of Numerical Software, 3(100).

Anderson, A. R., Chaplain, M. A., Newman, E. L., Steele, R. J., and Thompson, A. M. (2000). Mathematical modelling

of tumour invasion and metastasis. Computational and mathematical methods in medicine, 2(2), 129–154.

da Costa-Luis, C., L., S., Mary, H., Altendorf, K., noamraph, Korobov, M., Ivanov, I., Bargull, M., CHEN, G.,

mjstevens777, Pagel, M. D., James, Newey, C., Todd, Malmgren, S., Socialery, Nordlund, M., Zugnoni, M., Mc-

Cracken, J., Hugo, Dill, F., Panteleit, D., Alexander, Rothberg, A., Fu, D., Bau, D., Persaud, A., Portnoy, A., Kottke,

A., and Umer, A. (2019). tqdm/tqdm: tqdm v4.31.1 stable.

Guyer, J. E., Wheeler, D., and Warren, J. A. (2009). Fipy: Partial differential equations with python. Computing in

Science & Engineering, 11(3), 6–15.

Hross, S. and Hasenauer, J. (2016). Analysis of cfse time-series data using division-, age-and label-structured population

models. Bioinformatics, 32(15), 2321–2329.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science Engineering, 9(3), 90–95.

Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K. N., Myasnikova, E., Vanario-Alonso, C. E.,

Samsonova, M., Sharp, D. H., et al. (2004). Dynamic control of positional information in the early drosophila embryo.

Nature, 430(6997), 368.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/631226doi: bioRxiv preprint 

https://doi.org/10.1101/631226
http://creativecommons.org/licenses/by-nc-nd/4.0/


Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open source scientific tools for Python.

McKinney, W. et al. (2010). Data structures for statistical computing in Python. In Proceedings of the 9th Python in

Science Conference, volume 445, pages 51–56. Austin, TX.

Nguyen, V. K. and Hernandez-Vargas, E. A. (2018). Parameter estimation in mathematical models of viral infections

using R. In Influenza Virus, pages 531–549. Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,

R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research,

12(Oct), 2825–2830.

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U., and Timmer, J. (2009). Structural and

practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinfor-

matics, 25(15), 1923–1929.

Reis, R. F., dos Santos, R. W., and Lobosco, M. (2016). A plasma flow model in the interstitial tissue due to bacterial

infection. In International Conference on Bioinformatics and Biomedical Engineering, pages 335–345. Springer.

Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over con-

tinuous spaces. Journal of global optimization, 11(4), 341–359.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array: a structure for efficient numerical

computation. Computing in Science & Engineering, 13(2), 22.

Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Lukauskas, S., Gemperline, D. C., Augspurger, T., Halchenko, Y.,

Cole, J. B., Warmenhoven, J., de Ruiter, J., Pye, C., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, G., Quintero,

E., Bachant, P., Martin, M., Meyer, K., Miles, A., Ram, Y., Yarkoni, T., Williams, M. L., Evans, C., Fitzgerald, C.,

Brian, Fonnesbeck, C., Lee, A., and Qalieh, A. (2017). mwaskom/seaborn: v0.8.1 (September 2017).

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/631226doi: bioRxiv preprint 

https://doi.org/10.1101/631226
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and methods
	The PDEmodel object
	Best fit parameters
	Likelihood profiles
	Bootstrapping
	Visualisations

	Example: tumour growth
	Conclusions

