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3Halicioğlu Data Science Institute, University of California, San Diego

4Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University
of Oxford, Oxford, UK

5Department of Statistics, University of Warwick, Coventry, UK

Abstract

The mass-univariate approach for functional magnetic resonance imagery (fMRI) analysis remains

a widely used and fundamental statistical tool within neuroimaging. However, this method suffers

from at least two fundamental limitations: First, with sample sizes growing to 4, 5 or even 6 digits,

the entire approach is undermined by the null hypothesis fallacy, i.e. with sufficient sample size,

there is high enough statistical power to reject the null hypothesis everywhere, making it difficult

if not impossible to localize effects of interest. Second, with any sample size, when cluster-size

inference is used a significant p-value only indicates that a cluster is larger than chance, and no

notion of spatial uncertainty is provided. Therefore, no perception of confidence is available to

express the size or location of a cluster that could be expected with repeated sampling from the

population.

In this work, we address these issues by extending on a method proposed by Sommerfeld, Sain,

and Schwartzman (2018) to develop spatial Confidence Sets (CSs) on clusters found in thresholded

raw effect size maps. While hypothesis testing indicates where the null, i.e. a raw effect size of

zero, can be rejected, the CSs give statements on the locations where raw effect sizes exceed, and

fall short of, a non-zero threshold, providing both an upper and lower CS.

While the method can be applied to any parameter in a mass-univariate General Linear Model,

we motivate the method in the context of BOLD fMRI contrast maps for inference on percentage
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BOLD change raw effects. We propose several theoretical and practical implementation advance-

ments to the original method in order to deliver an improved performance in small-sample settings.

We validate the method with 3D Monte Carlo simulations that resemble fMRI data. Finally, we

compute CSs for the Human Connectome Project working memory task contrast images, illustrat-

ing the brain regions that show a reliable %BOLD change for a given %BOLD threshold.

1. Introduction

Over the last three decades, the Statistical Parametric Mapping procedure (Friston et al., 1994a)

for inference of task-fMRI data has prevailed as the international standard within the field of neu-

roimaging. Incorporating a mass-univariate statistical approach, functional data at each voxel

is described in terms of experimental conditions and residual variability included as parameters5

in a general linear model. From this model, a group-level Statistical Parametric Map (SPM)

of t-statistic’s contrasting a specified experimental condition relative to a baseline condition is

formed. Using a corrected significance level based on the theory of random fields to account for

the multiple-comparison problem (Friston et al., 1994b), hypotheses are tested at each voxel inde-

pendently and the SPM is finally thresholded to localize brain function. While simple by nature,10

this technique has proven immensely powerful and provided us with the tools to gain deep insight

into cognitive function.

There is, however, information that is not captured using the current fMRI approach to infer-

ence. Specifically, for clusterwise inference, the cluster-level p-value only conveys information

about a cluster’s spatial extent under the null-hypothesis. Since no information is provided re-15

garding the statistical significance of each voxel comprising a significant cluster, the most we can

say is that significant activation has occurred somewhere inside the cluster (Woo et al., 2014). An

implication of this is that when a large, sprawling cluster covers many anatomical regions, the pre-

cise spatial specificity of the activation is in fact poor. While a recent effort has attempted to solve

this problem by ‘drilling down’ to find the exact source of activation (Rosenblatt et al., 2018), this20

can come at the cost of lower statistical power. A related problem of cluster inference is that no

information is provided about the spatial variation of significant clusters. For example, if a given

fMRI study were to be repeated many times with new sets of subjects, there would of course be
Preprint submitted to Journal Name August 5, 2019
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variation in the size and shape of clusters found, yet the current statistical results have no way to

characterize this variability.25

A more pressing issue, perhaps, stems from an age-old paradox caused by the ‘fallacy of the

null hypothesis’ (Rozeboom, 1960). The paradox is that while statistical models conventionally

assume mean-zero noise, in reality all sources of noise will never cancel, and therefore improve-

ments in experimental design will eventually lead to statistically significant results. Thus, the null-

hypothesis will, eventually, always be rejected (Meehl, 1967). The recent availability of ambitious,30

large-sample studies (e.g Human Connectome Project (HCP), N=1,200; UK Biobank, N=30,000

and counting) have exemplified this problem. Analysis of high-quality fMRI data acquired under

optimal noise conditions has been shown to display almost universal activation across the entire

brain after hypothesis testing, even with stringent correction (Gonzalez-Castillo et al., 2012).

For the reasons discussed above, alongside further concerns about misconceptions and the35

misuse of p-values in statistical testing (Nuzzo, 2014, Wasserstein et al., 2016), there has been

a growing consensus among sections of the neuroimaging community that the statistical results

commonly reported in the literature should be supplemented by effect estimates (Chen et al.,

2017, Nichols et al., 2017). The main argument put forward supporting raw effect sizes is that

they increase interpretability of the statistical results, highlighting the magnitude of statistically40

significant differences and providing another layer of evidence to support the overall scientific

conclusions inferred from an fMRI study. This may also help tackle reproducibility concerns that

have become prominent within the field due to failed attempts in replicating published neuroimag-

ing results based off of statistical testing methods (Poldrack et al., 2017).

In this work, we seek to address all of these issues by applying and extending a spatial inference45

method initially proposed by Sommerfeld, Sain, and Schwartzman (2018) (SSS) to obtain precise

confidence statements about where activation occurs in the brain. Unlike hypothesis testing, our

spatial Confidence Sets (CSs) allow for inference on non-zero raw effect sizes. While the method

can be applied to any parameter in a mass-univariate General Linear Model, here we will focus

inference on the mean percentage BOLD change raw effect. For a cluster-forming threshold c, and50

a predetermined confidence level 1 − α, the CSs comprise of two sets: the upper CS (denoted Â+
c ,

red voxels in Fig. 1), giving all voxels we can assert have a percentage BOLD raw effect size truly
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greater than c; and the lower CS (Â–
c , blue voxels overlapped by yellow and red in Fig. 1), for

which all voxels outside this set we can assert have a percentage BOLD raw effect size truly less

than c. The upper CS is smaller and nested inside the lower CS, and the assertion is made with55

(1 − α)100% confidence holding simultaneously for both regions. Fig. 1 provides an illustration

of the schematic we will use to display the CSs, also showing the point estimate set (Âc, yellow

voxels overlapped by red) obtained by thresholding the data at c.

Interpreting the Confidence Sets for a c = 2.0% BOLD threshold 

All	YELLOW	voxels	(overlapped	by	red)	lie	in	the	set	Âc.		
This	region	is	obtained	by	thresholding	the	data	at	2.0%,	it	is	
the	point	es>mate	(or	“best	guess”)	from	the	data	of	all	voxels	
that	have	a	percentage	BOLD	change	of	greater	than	2.0%.			

All	RED	voxels	lie	in	the	upper	Confidence	Set	Âc
+.	We	have	

95%	confidence	over	the	whole	brain	that	all	voxels	inside	the	
red	have	a	true	percentage	BOLD	change	of	greater	than	2.0%.	

All	BLUE	voxels	(overlapped	by	yellow	and	red)	lie	in	the	lower	
Confidence	Set	Âc

-.	We	have	95%	confidence	over	the	whole	
brain	that	all	voxels	outside	the	blue	(i.e.	background	voxels)	
have	a	true	percentage	BOLD	change	of	less	than	2.0%.	

Figure 1: Schematic of the colour-coded regions used to visually represent the Confidence Sets

(CSs) and point estimate set. CSs displayed in the glass brain were obtained by applying the

method to 80 participants contrast data from the Human Connectome Project working memory

task, using a a c = 2.0% BOLD change threshold at a confidence level of 1 − α = 95%.

With this interpretation, the CSs can be linked to traditional statistical voxelwise thresholding

with control of the familywise error rate (FWE): In a one-sided t-test, for the set of level α FWE-60

significant voxels we have (1−α)100% confidence that the signal is greater than zero. Put another

way, we have (1−α)100% confidence that the voxelwise level α FWE results are all true positives.

The CSs can be viewed as a generalisation of these methods, except that the confidence statement

is no longer relative to a signal of zero, but to a non-zero signal magnitude c. Users may choose

the threshold c based on prior knowledge of raw effect sizes reported in previous similar studies65

to their own; since computation of the CSs is quick, users may also report results for a variety of

cluster-forming thresholds as we do in this work.
4
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The motivating data in SSS were longitudinal temperature data in North America, and the goal

was to infer on areas at risk of climate change. In this work, we are motivated by subject-level

fMRI contrast of a parameter estimate maps, and we seek to infer brain areas where a substantial70

raw effect is present in units of percentage BOLD change. In SSS, the CSs were referred to as

‘Coverage Probability Excursion sets’ – shortened to ‘CoPE sets.’

The main contributions of this work are modifications to the SSS method for computing CSs

that improve the method’s finite-sample performance in the context of neuroimaging. In particular,

we propose a combination of the Wild t-Bootstrap method and the use of Rademacher variables75

(instead of Gaussian variables) for multiplication of the bootstrapped residuals, which we find

substantially improves performance of the method in moderate sample sizes (e.g. N = 60). We

also develop a linear interpolation method for computing the boundary over which the bootstrap is

applied, and a novel approach for assessing the empirical coverage of the CSs that reduces upward

bias in how the simulation results are measured. Another contribution here is that we assess the80

finite-sample accuracy of the method on synthetic 3D signals that are representative of fMRI acti-

vation clusters, whereas SSS only considered 2D images. Altogether, we carry out a range of 3D

simulations alongside smaller 2D simulations to evaluate our proposed methodological modifica-

tions and compare our results to the simulations conducted in SSS. Finally, we apply the method

to the Human Connectome Project working memory task dataset, operating on the subject-level85

percentage BOLD change raw effect maps, where we obtain CSs for a variety of cluster-forming

thresholds. Here, the method localizes brain activation in cognitive regions commonly associated

to working memory, determining with 95% confidence a raw effect of at least 2% BOLD change.

The remainder of this paper is organized as follows. First of all, we summarize the key theory

of CSs before detailing our proposed modifications. We then describe the settings used for our90

simulations, and provide background information about the HCP dataset analyzed in this work.

Finally, we report the results of our simulations before presenting the CSs computed for the HCP

data.
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2. Theory

2.1. Overview95

A comprehensive treatment of the original method, including proofs, can be found in SSS.

Here we develop the method specifically for the general linear model (GLM) and describe our

own enhancements to the method. While the method can be performed for subject-level inference,

we will motivate the method in the context of a group-level analysis, describing how the method

can be applied to subject-level %BOLD estimate maps in order to obtain group-level CSs making100

confidence statements about %BOLD effect sizes relating to the entire population from which the

participants were drawn.

For a compact domain S ⊂ RD, e.g. D = 3, consider the GLM at location s ∈ S ,

Y(s) = Xβ(s) + ε(s) (1)

where Y(s) is an N × 1 vector of observations at s, X is an N × p design matrix, β(s) is an

p × 1 vector of unknown coefficients, and ε(s) an N × 1 vector of mean-zero errors, independent105

over observations, and with each εi having common variance σ2(s) and some unspecified spatial

correlation. (Throughout we use boldface to indicate a vector- or matrix-valued variable.) In the

context of a task-fMRI analysis, Y(s) is a vector of subject-level %BOLD response estimate maps

obtained by applying a first-level GLM to each of the N participants functional data.

For a p × 1 contrast vector w, we seek to infer regions of the brain where a contrast of interest110

wTβ has exceeded a fixed threshold c. Particularly, we are interested in the noise-free, population

cluster defined as:

Ac = {s ∈ S : wTβ(s) ≥ c}. (2)

Since we are unable to determine this excursion set in practice, our solution is to find spatial

CSs: an upper set Â+
c and lower set Â–

c that surround Ac for a desired confidence level of, for

example, 95%. We emphasize that these clusters regard the raw units of the signal. Going forward,115

we assume that the design matrix X and contrast w have been carefully chosen so that wT β̂ has

the interpretation of mean %BOLD change across the group. For example, in a one-sample group

fMRI model where data Y have %BOLD units, choosing X as a column of 1’s and w = (1) would
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ensure that wT β̂ has units of %BOLD change1. In this setting, we wish to obtain an upper CS, Â+
c ,

such that we have 95% confidence all voxels contained in this set have a population raw effect size120

greater than, for example, c = 2.0% BOLD change, and a lower CS, Â–
c , such that we have 95%

confidence all voxels outside of this set have a population raw effect size less than 2.0% BOLD

change. Moreover, we desire that the 95% confidence statement holds simultaneously across both

CSs at once. SSS show that a construction of such CSs is possible within the general linear model

framework using the following key result.125

Result 1. Consider the general linear model setup described in (1). Let β̂ denote the ordinary

least squares estimator of β, β̂(s) = (XT X)−1XT Y(s), and define v2
w = wT (XT X)−1w to be the

normalised variance of the contrast estimate.

Then for a constant k, and for upper and lower CSs defined as

Â+
c :=

{
s : wT β̂(s) ≥ c + k σ̂(s)vw

}
, Â–

c :=
{

s : wT β̂(s) ≥ c − k σ̂(s)vw

}
,

the limiting coverage of the CSs is

lim
n→∞

P
[
Â+

c ⊂ Ac ⊂ Â
–
c

]
= P

[
sup

s∈∂Ac

|G(s)| ≤ k
]
,

where ∂Ac denotes the boundary of Ac, and G is a smooth Gaussian field on S with mean zero,

unit variance, and with the same spatial correlation as each εi.130

Result 1 is subject to continuity of the relevant fields and some basic conditions on the increments

and moments of the error field ε. A list of these assumptions, as well as a proof of Result 1, are

itemized in SSS.

For a pre-determined confidence level 1 − α (e.g. 1 − α = 95%), by choosing k such that

P
[

sup
s∈∂Ac

|G(s)| ≤ k
]
≥ 1 − α, (3)

Result 1 ensures with asymptotic probability of 1 − α that Â–
c contains the true Ac, and Â+

c is135

contained within Ac. In practice, k is determined as the (1 − α)100 percentile of the maximum

1For examples of how to set up more complex designs and contrasts, see Figure A.2. in the Appendix A section

of (Poldrack et al., 2011).
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distribution of the asymptotic absolute error process |G(s)| over the true boundary set ∂Ac = {s :

wTβ(s) = c}. The upper CS taken away from the lower CS
(
Â–

c ∩
(
Â+

c
)c
)

can be interpreted

analogously to a standard confidence interval: with a confidence of 1 − α, we can assert the true

boundary ∂Ac lies within this region. Here, we allude to the classical frequentist interpretation of140

confidence, where stated precisely, there is a probability of 1 − α that the region
(
Â–

c ∩
(
Â+

c
)c
)

computed from a future experiment fully encompasses the true set boundary ∂Ac.

A 1D Intuition of the Confidence Sets

 ^ wTβ(s)  

Location s

 c + kσ(s)vw
 c

Observed 
Group

 %BOLD
Signal 

 ^ wTβ(s)  

 ^

 c - kσ(s)vw
 ^

Figure 2: A demonstration of how the CSs are computed for a realization of the GLM Y(s) =

Xβ(s)+ε(s) in 1 dimension, for each location s. The yellow voxels Âc are obtained by thresholding

the observed group contrast map at threshold c; this is the best guess ofAc, the set of voxels whose

true, noise-free raw effect surpasses c. The red upper CS Â+
c and blue lower CS Â–

c are computed

by thresholding the signal at c + k σ̂(s)vw and c − k σ̂(s)vw, respectively. We have (1 − α)100%

confidence that Â+
c ⊂ Ac ⊂ Â

–
c , i.e. that Â+

c (red) is completely within the true Ac, and Ac is

completely within Â+
c (blue). We find the critical value k from the (1 − α)100 percentile of the

maximum distribution of the absolute error process over the estimated boundary ∂Âc (green  ’s)

using the Wild t-Bootstrap; σ̂ is the estimated standard deviation and vw is the normalised contrast

variance.

Application of Result 1 presents us with two challenges: that the boundary set ∂Ac and the
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critical value k are both unknown. To solve the first problem, SSS propose using ∂Âc as a plug-in

estimate of ∂Ac. There remain, however, technicalities at to how the boundary is determined in145

any non-abstract setting, and in particular in a 3D image. In Section 2.3 we propose our own novel

method for boundary estimation. Before that, we address the second problem, finding the critical

value k via a Wild Bootstrap resampling scheme.

2.2. The Wild t-Bootstrap Method for Computation of k

To apply Result 1, we require knowledge of the tail distribution of the limiting Gaussian field G150

along the boundary ∂Ac. However, the distribution of this field is unknown, because it is dependent

on the unknown spatial correlation of the errors εi. We can approximate the maximum distribution

of G using the Gaussian Wild Bootstrap (Chernozhukov et al., 2013), also known as the Gaussian

Multiplier Bootstrap, which multiplies residuals by random values to create surrogate instances of

the random errors.155

SSS construct G as follows: The standardized residuals,

ε̃(s) =
Y(s) − Xβ̂(s)

σ(s)
, (4)

are multiplied by i.i.d. Gaussian random variables, r∗1, ..., r
∗
N , summed and scaled,

G∗(s) =
1
√

N

N∑
i=1

r∗i ε̃i(s), (5)

producing a field G∗ with approximately the same covariance as each error εi, where the superscript

asterisk (∗) indicates these are just one of many bootstrap realizations. With B bootstrap samples

G∗, we choose k as the (1 − α)100 percentile of the B suprema sups∈∂Âc
|G∗(s)| to approximate the160

LHS of (3) and apply Result 1 to obtain the CSs.

Up to this point, we have summarized the Gaussian Wild Bootstrap methodology as proposed

in SSS. However, when applying this method to our own simulations, we consistently found that

our coverage results fell below the nominal level. This was particularly severe for 3D simula-

tions we conducted using a small sample size (N = 60), where our results in some cases suffered165

from under-coverage 40% or more below the nominal level (see Fig. 6.2). Hence we made two

alterations: First, while SSS used Gaussian multipliers, we found improved performance using
9
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Rademacher variables, where each ri takes on 1 or -1 with probability 1/2; others have also re-

ported improved performance with Rademacher variables as well (Davidson and Flachaire, 2008).

Second, we implemented a Wild t-Bootstrap (Telschow and Schwartzman, 2019) method, normal-170

izing the bootstrapped residuals ε̃i(s) by their standard deviation σ̂∗. This detail was omitted in the

proof of Result 1 provided in SSS, where the true standard deviation was assumed to be known.

By taking into account the estimation of the standard deviation via the Wild t-Bootstrap, we found

improved performance for moderate sample sizes. The Wild t-Bootstrap version of G is

G̃∗(s) =
1
√

N

N∑
i=1

r∗i
ε̃i(s)
σ̂∗(s)

, (6)

where σ̂∗(s) is the standard deviation of the present realization of the bootstrapped residuals r∗i ε̃i(s).175

We then determine k as described above but using G̃∗ instead of G∗. Going forward, we refer to this

method as the “Wild t-Bootstrap”, to be contrasted with the original “Gaussian Wild Bootstrap”

method proposed in SSS.

With these two alterations we found a dramatic increase in performance for small sample sizes

in 3D simulations. Notably, in contrast to the Gaussian Wild Bootstrap, our simulation results180

presented in Section 4 suggest that empirical coverage rates for this modified procedure remain

valid, i.e. stay above the nominal level.

2.3. Approximating the Boundary on a Discrete Lattice

In the previous section, we described the ideal bootstrap procedure used to obtain the max-

imum distribution of G along the boundary ∂Ac in order to apply Result 1. However, in any185

practical application, data will be observed on a discrete grid of lattice points at a fixed resolution.

Therefore, a key challenge is how to appropriately approximate the true continuous boundary ∂Ac

from the lattice representation of the data.

In SSS, spline-interpolation was used to estimate a 1D boundary at a resolution greater than

their 2D sampled field (SSS, Section 4.1). However, to apply the method to fMRI data we will work190

with 3D images, and estimating a 2D spline boundary for a 3D field is more involved, requiring

careful tuning of the spline basis to accommodate the structure of the 3D signal. Instead, we

choose to use a first-order weighted linear interpolation method to approximate the signal values

10
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at estimated locations along the true, continuous boundary ∂Ac, providing a method of boundary

estimation that is less computationally intensive than spline interpolation.195

Consider two adjacent points on the lattice, sO and sI, such that sO lies outside of Ac, while

sI lies inside Ac. By the definition of Ac, wTβ(sO) < c, and wTβ(sI) ≥ c. Under the assumption

that the component of the signal between sO and sI increases linearly, we can find the location s∗

between sO and sI such that wTβ(s∗) = c, our estimate of where the true continuous boundary ∂Ac

crosses between sO and sI. We can then construct a linear interpolant for the location s∗, using200

weights

m1 =
wTβ(sI) − c

wTβ(sI) − wTβ(sO)
, m2 =

c − wTβ(sO)
wTβ(sI) − wTβ(sO)

, (7)

for locations sO and sI, respectively. By construction, applying m1 and m2 to the contrast image

returns the threshold: m1wTβ(sO) + m2wTβ(sI) = wTβ(s∗) = c. Applied to standardized residuals

ε̃(sO) and ε̃(sI), we can likewise obtain the residuals at the estimated continuous boundary point

ε̃(s∗) = m1ε̃(sO) + m2ε̃(sI).205

By repeating this procedure for all adjacent points sO and sI that lie on the lattice either side

of ∂Ac, we are able to estimate the standardized residual values at locations that should approx-

imately sample the true continuous boundary ∂Ac, and thus we can apply the ideal bootstrap

procedure outlined in Section 2.2. Of course, in practice we apply this interpolation method on the

observed, noisy data, using the plug-in estimated boundary ∂Âc.210

In the simulation results in Section 4, we assess performance of the method when the bootstrap

procedure is carried out over the true boundary ∂Ac, and the plug-in estimated boundary ∂Âc that

must be used in practice.

2.4. Assessment of Continuous Coverage on a Discrete Lattice

In testing the finite-sample validity of our method through simulation, it is imperative that we215

are able to accurately measure when violations of the subset condition Â+
c ⊂ Ac ⊂ Â

–
c occur.

While this may seem a trivial task, as touched on in the previous section, the boundaries of each

of these three sets can become ambiguous when data are collected on a discrete lattice.

To illustrate this point, consider the configuration of sets displayed in Fig. 3a. In this instance,

suppose the right half of the image corresponds to Ac (green pixels overlapped by yellow), and220
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Figure 3: Demonstrating the resolution issue for testing the subset condition Â+
c ⊂ Ac ⊂ Â

–
c .

Figure 3a: Here Ac is comprised of the right half of the image (all green and yellow pixels), and

Â+
c is shown as yellow pixels. It appears that Â+

c ⊂ Ac.

Figure 3b: The same configuration as Fig. 3a at double the resolution. Here, we have enough

detail to see that Â+
c has crossed the boundary ∂Ac (yellow seeping into blue), and the subset

condition Â+
c ⊂ Ac has been violated.

yellow pixels belong to Â+
c . We wish to determine whether the condition Â+

c ⊂ Ac has been

violated or not. One may argue that at the resolution for which the data have been acquired, all

pixels that belong to Â+
c also belong toAc, and therefore no violation has occurred. However, the

example presented in Fig. 3a has in fact been derived from a 2D simulation conducted at a higher

resolution: this 50 × 50 simulation was obtained by down-sampling a 100 × 100 grid by dropping225

every other pixel. Fig. 3a displays the sets Ac and Â+
c from the down-sampled, low resolution

simulation, while Fig. 3b shows the same set of results at the original resolution. In Fig. 3b we

see that there has been an upcrossing of the yellow pixels belonging to Â+
c over the boundary of

the green, and therefore the subset condition Â+
c ⊂ Ac has been violated. From this simulation,

it is clear that when we conclude that no violation has occurred in situations like Fig. 3a, our230

empirical coverage will miss violations and be positively biased. By an analogous argument the

same issue occurs when testing violations ofAc ⊂ Â
–
c .

In SSS this direct comparison of the lattice representation of the three sets was used to assess
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coverage in the simulations. While they observed this phenomenon of missed violations leading

to over-coverage, the proposed solution was to sequentially increase the resolution of the data. We235

instead again make use of interpolation.

Since, in simulation, we know the true continuous mean image and Ac, following the method

described in Section 2.2 we can obtain weights m1 and m2 to interpolate between points sO and sI

either side of the true, continuous boundary ∂Ac, in order to find a location s∗ that approximately

lies on the boundary (if the true mean is linear, it would be exactly on the boundary). To determine240

if s∗ ∈ Â+
c , we then re-apply the weights m1 and m2 and assess whether

wT β̂(s∗) − k σ̂(s∗)vw = m1

(
wT β̂(sO) − k σ̂(sO)vw

)
+ m2

(
wT β̂(sI) − k σ̂(sI)vw

)
≥ c. (8)

If the inequality holds, then by definition s∗ ∈ Â+
c . Otherwise, s∗ < Â+

c , and therefore we can

conclude that the subset condition Â+
c ⊂ Ac has been violated. By checking whether wT β̂(s∗) +

k σ̂(s∗)vw ≥ c, we can similarly test for a violation ofAc ⊂ Â
–
c .

By applying this interpolation scheme to all pairs of lattice points with one point inside, one245

outside, the lattice representation of the boundary, we have devised a method to more accurately

assess violations of the subset condition Â+
c ⊂ Ac ⊂ Â

–
c for configurations similar to Fig. 3a.

We applied this method for testing the subset condition in our simulations alongside a direct com-

parison of the lattice representations of the three sets of interest as was done in SSS. The addition

of the weighted interpolation method caused a considerable decrease in the empirical coverage250

results towards the nominal level in all of our 3D simulations. Using the direct comparison of the

three sets on its own here essentially determined total empirical coverage (Â+
c ⊂ Ac ⊂ Â

–
c for

all simulation runs), even when using small sample sizes and a low nominal coverage level. This

is likely to be because the discrete lattice of observed data points is relatively less dense inside

the true continuous process for larger, 3D settings, and therefore more violations of the subset255

condition are missed if only a direct comparison of the lattice representation of the CSs is carried

out.
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3. Methods

3.1. Simulations

In this section we describe the settings used in order to evaluate the CSs obtained for synthetic260

data. As a simplified instance of the general linear model setup described in Section 2.1, we

simulate 3000 independent samples of the signal-plus-noise model

Yi(s) = µ(s) + εi(s), i = 1, ...,N

using a range of signals µ(s), Gaussian noise structures εi(s) with stationary and non-stationary

variance, in two- and three-dimensional regions S . We compute the critical value k, applying the

Wild t-Bootstrap method outlined in Section 2.2 with B = 5000 bootstrap samples to both the true265

boundary ∂Ac and the plug-in boundary ∂Âc that would be used in practice. The boundaries were

obtained using the interpolation method outlined in Section 2.3. We then compare the empirical

coverage – the percentage of trials that the true thresholded signal is completely contained between

the upper and lowers CSs (i.e. the number of times for which Â+
c ⊂ Ac ⊂ Â

–
c) – across the two

sets of results, using the assessment method outlined in Section 2.4. In each simulation, we apply270

the method for sample sizes of N = 60, 120, 240 and 480, and using three nominal coverage

probability levels 1 − α = 0.80, 0.90 and 0.95.

3.2. 2D Simulations

We analyzed the performance of the CSs on a square region of size 100 × 100. For the true

underlying signal µ(s) we considered two different raw effects: First, a linear ramp that increased275

from a magnitude of 1 to 3 in the x-direction while remaining constant in the y-direction (Fig.

4.1a). Second, a circular effect, created by placing a circular phantom of magnitude 3 and radius

30 in the centre of the search region, which was then smoothed using a 3 voxel FWHM Gaussian

kernel (Fig. 4.1b). If we were to assume that each voxel had a size of 2mm3, we note that this

would amount to applying smoothing with a 6mm FWHM kernel, a fairly typical setting used in280

fMRI analyses.

To each of these signals we added subject-specific Gaussian noise εi, also smoothed using a

3 voxel FWHM Gaussian kernel, with homogeneous and non-homogeneous variance structures:
14
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The first noise field had a spatially constant standard deviation of 1 (Fig. 4.2a), the second field

had a linearly increasing standard deviation structure in the y-direction from
√

0.5 to
√

1.5 while285

remaining constant in the x-direction (Fig. 4.2b). Thus, the variance of this noise field spatially

increased in the y-direction from 0.5 to 1.5 in a non-linear fashion.

Altogether, the two underlying signals and two noise sources gave us four separate trials;

across all of the simulations, we obtained Confidence Sets for the noise-free clusterAc at a cluster-

forming threshold of c = 2.290
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(a) Signal 1.
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(b) Signal 2.

Figure 4.1: Linear ramp and circular signals µ(s).

Figure 4.1a: Signal 1. A linear ramp signal that increases from magnitude of 1 to 3 in the x-

direction.

Figure 4.1b: Signal 2. A circular signal with magnitude of 3 and radius of 30, centred within the

region and convolved with a 3 voxel FWHM Gaussian kernel.

15

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/631473doi: bioRxiv preprint 

https://doi.org/10.1101/631473
http://creativecommons.org/licenses/by/4.0/


10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Standard Deviation 1.
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(b) Standard Deviation 2.

Figure 4.2: Stationary and non-stationary standard deviation fields of the noise εi(s).

Figure 4.2a: Standard Deviation 1. Stationary variance of 1 across the region.

Figure 4.2b: Standard Deviation 2. Non-stationary (linear ramp) standard deviation field in-

creasing from
√

0.5 to
√

1.5 in the y-direction.

3.3. 3D Simulations

Four signal types µ(s) were considered to analyze performance of the method in three di-

mensions. The first three of these signals were generated synthetically on a cubic region of size

100 × 100 × 100: Firstly, a small spherical effect, created by placing a spherical phantom of mag-

nitude 3 and radius 5 in the centre of the search region, which was then smoothed using a 3 voxel295

FWHM Gaussian kernel (Fig. 5a). Secondly, a larger spherical effect, generated identically to the

first effect with the exception that the spherical phantom had a radius of 30 (Fig. 5b). Lastly, we

created an effect by placing four spherical phantoms of magnitude 3 in the region of varying radii

and then smoothing the entire image using a 3 voxel FWHM Gaussian (Fig. 5c). For each of these

signals, the final image was re-scaled to have a maximum intensity of 3.300

Similar to the two-dimensional simulations, for the three signals described above we added 3-

voxel smoothed Gaussian noise of homogeneous and heterogeneous variance structures. The first

noise field had a spatially constant standard deviation of 1, while the second field had a linearly

increasing standard deviation in the z-direction from
√

0.5 to
√

1.5, while remaining constant in

both the x- and y- directions. For all three effects, we obtained Confidence Sets for the threshold305

c = 2.
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For the final signal type, we took advantage of big data that has been made available through the

UK Biobank in an attempt to generate an effect that replicated the true %BOLD change induced

during an fMRI task. We randomly selected 4000 subject-level contrast of parameter estimate

result maps from the Hariri Faces/Shapes task-fMRI data collected as part of the UK Biobank310

brain imaging study. Full details on how the data were acquired and processed is given in Miller

et al. (2016), Alfaro-Almagro et al. (2018) and the UK Biobank Showcase; information on the

task paradigm is given in Hariri et al. (2002). From these contrast maps, we computed a group-

level full mean (Fig. 5d) and full standard deviation image. In the final simulation, we used the

group-level Biobank mean image as the true underlying signal µ(s) for each subject, and the full315

standard deviation image was used for the standard deviation of each simulated subject-specific

Gaussian noise field εi(s) added to the true signal. Because of the considerably large sample size

of high-quality data from which these maps have been obtained, we anticipate that both of these

images are highly representative of the true underlying fields that they approximate. Both images

were masked using an intersection of all 4000 of the subject-level brain masks.320

Once again, we smoothed the noise field using a 3 voxel FWHM Gaussian kernel; since the

Biobank maps were written with voxel sizes of 2mm3, this is analogous to applying 6mm FWHM

smoothing to the noise field of the original data. We obtained Confidence Sets for a threshold of

c = 0.25% BOLD change.

3.4. Application to Human Connectome Project Data325

For a real-data demonstration of the method proposed here, we computed CSs on 80 partic-

ipants data from the Unrelated 80 package released as part of the Human Connectome Project

(HCP, S1200 Release). We applied the method to subject-level contrast maps obtained for the

2-back vs 0-back contrast from the working memory task results included with the dataset. To

compare the CSs with results obtained from standard fMRI inference procedures, we also per-330

formed a traditional statistical group-level analysis on the data. A one-sample t-test was carried

out in SPM, using a voxelwise FWE-corrected threshold of p < 0.05 obtained via permutation

test with SPM’s SnPM toolbox. We chose to use the HCP for its high-quality task-fMRI data,

the working memory task specifically picked for its association with cognitive activations in sub-
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(b) Signal 2.
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(c) Signal 3.
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(d) Signal 4.

Figure 5: The four 3D signal types µ(s), from top-to-bottom: small sphere, large sphere, multiple

spheres, and the UK Biobank full mean image. Note that the colormap limits for the first three

signal types are from 0 to 3, while the colormap limits for the UK Biobank mean image is from

-0.4 to 0.5.
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cortical networks that can not be distinguished by the anatomy. Full details of the task paradigm,335

scanning protocol and analysis pipeline are given in Barch et al. (2013) and Glasser et al. (2013),

here we provide a brief overview.

For the working memory task participants were presented with pictures of places, tools, faces

and body parts in a block design. The task consisted of two runs, where on each run a separate

block was designated for each of the image categories, making four blocks in total. Within each340

run, for half of the blocks participants undertook a 2-back memory task, while for the other half

a 0-back memory task was used. Eight EVs were included in the GLM for each combination

of picture category and memory task (e.g. 2-back Place); we compute CSs on the subject-level

contrast images for the 2-back vs 0-back contrast results that contrasted the four 2-back related

EVs to the four 0-back EVs.345

Imaging was conducted on a 3T Siemans Skyra scanner using a gradient-echo EPI sequence;

TR = 720ms, TE = 33.1 ms, 208 × 180 mm FOV, 2.0 mm slice thickness, 72 slices, 2.0 mm

isotropic voxels, and a multi-band acceleration factor of 8. Preprocessing of the subject-level data

was carried out using tools from FSL and Freesurfer following the ‘fMRIVolume’ HCP Pipeline

fully described in Glasser et al. (2013). To summarize, the fundamental steps carried out to350

each individual’s functional 4D time-series data were gradient unwarping, motion correction, EPI

distortion correction, registration of the functional data to the anatomy, non-linear registration

to MNI space (using FSL’s Non-linear Image Registration Tool, FNIRT), and global intensity

normalization. Spatial smoothing was applied using a Gaussian kernel with a 4mm FWHM.

Modelling of the subject-level data was conducted with FSL’s FMRIB’s Improved Linear355

Model (FILM). The eight working task EVs were included in the GLM, with temporal deriva-

tives terms added as confounds of no interest, and regressors were convolved using FSL’s default

double-gamma hemodynamic response function. The functional data and GLM were temporally

filtered with a high pass frequency cutoff point of 200s, and time series were prewhitened to re-

move autocorrelations from the data.360

In comparison to a typical fMRI study, the 4mm FWHM smoothing kernel size used in the

HCP preprocessing pipeline is modest. Because of this, we applied additional smoothing to the

final contrast images to emulate maps smoothed using a 6mm FWHM Gaussian kernel.
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4. Results

4.1. Methodological Comparisons365

In this work we have proposed two fundamental methodological changes to the procedures

carried out in SSS: in Section 2.2 we suggested the Wild t-Bootstrap instead of the Gaussian Wild

Bootstrap used for SSS, and in Section 2.4 we introduced the interpolation method for assessing

empirical coverage alongside the direct comparison methods used for SSS. Here, we show the

impact of these methodological innovations on the empirical coverage results from simulations370

carried out using two different synthetic signals, the 2D circular signal (Signal 2. in Fig. 4.1b) and

the 3D large spherical signal (Signal 2. in Fig. 5). The standard deviation of the subject-specific

Gaussian noise fields εi(s) had a stationary variance of 1 across the region in both simulations (for

the 2D case, this corresponds to Standard Deviation 1. in Fig. 4.2).

Empirical coverage results for each of the three confidence levels 1 − α = 0.80, 0.90 and 0.95375

are presented for the 2D circular signal in Fig. 6.1 and for the 3D large spherical signal in Fig. 6.2.

In both simulations, for all methods the bootstrap procedure was carried out over the estimated

boundary ∂Âc (as must be done with real data). In each figure, the green curves highlight the

results for the Gaussian Wild Bootstrap and coverage assessment method that were applied in SSS.

The red curves highlight the results for the Wild t-Bootstrap and interpolation assessment method380

that we have proposed.

In Fig. 6.1 and Fig. 6.2, all simulations using the direct comparison assessment (SSS Simu-

lation Assessment) produced results substantially above the nominal level, converging to almost

100% for both the Gaussian Wild Bootstrap (green curves) and Wild t-Bootstrap (blue curves)

methods across all three confidence levels. We suspect this is due to the resolution issue described385

in Section 2.4, suggesting that this assessment method missed violations of the coverage condition

Â+
c ⊂ Ac ⊂ Â

–
c causing a considerable positive bias in all of these results. Further evidence of

this is suggested by the empirical coverage obtained for simulations using the interpolation assess-

ment method (BTSN Simulation Assessment, pink and red curves), which appear to be converging

much closer to the nominal level as is theoretically expected by Result 1.390

Considering only the results using the interpolation assessment, in both figures empirical cov-
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erage for the Wild Bootstrap method (pink curves) came below the nominal level for small sample

sizes. For the 2D circle simulation, the empirical coverage result for 60 subjects was 84.7% for

the nominal target of 1 − α = 0.95 (right plot in Fig. 6.1). For the 3D spherical simulation this

under-coverage was even more severe, where the corresponding empirical coverage result was395

54.9% (right plot in Fig. 6.2). In comparison, coverage performance for the Wild t-Bootstrap

method (red curves) was much improved, staying close to the nominal level in both the 2D and

3D simulations across all sample sizes. While for the 3D spherical signal the empirical coverage

remained slightly above the nominal target, for the circular signal almost all results lie within the

95% confidence interval of the nominal coverage level. For these reasons, in the remaining sim-400

ulation results presented in this section we only consider the Wild t-Bootstrap method with our

proposed interpolation assessment.
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Figure 6.1: Coverage results for the 2D circular signal simulation with homogeneous Gaussian

noise (Signal 2., Standard deviation 1. in Fig. 4.2). Empirical coverage results are presented for

implementations of the CS method with and without the Wild t-Bootstrap we propose in Section

2.2 and the interpolation schema for assessing simulations results we propose in Section 2.4. All

empirical coverage results for simulations using the SSS assessment method are close to 100%,

suggesting that this assessment substantially biases the results upwards. Using our proposed as-

sessment method, while both the Wild t-Bootstrap and Gaussian Wild bootstrap converge to the

nominal level, the Wild t-Bootstrap performed better for small sample sizes.
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Figure 6.2: Coverage results for the 3D large spherical signal (Signal 2. in Fig. 5) simulation with

homogeneous Gaussian noise. Empirical coverage results are presented for implementations of the

CS method with and without the Wild t-Bootstrap we propose in Section 2.2, and the interpolation

schema for assessing simulations results we propose in Section 2.4. Once again, all simulations

using the SSS assessment method quickly converge to close to 100%. Using our proposed as-

sessment method, the Gaussian Wild bootstrap had severe under-coverage for small sample sizes,

while the Wild t-Bootstrap results hover slightly above the nominal level for all sample sizes.
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4.2. 2D Simulations

Empirical coverage results for each of the three confidence levels 1 − α = 0.80, 0.90 and

0.95, are presented for the linear ramp signal (Signal 1. in Fig. 4.1a) in Fig. 7.1, and for the405

circular signal (Signal 2. in Fig. 4.1b) in Fig. 7.2. Results are also presented in tabular format in

Table. S1. In both plots, results obtained for simulations applying the bootstrap procedure over

the estimated boundary ∂Âc are displayed with a solid line, while results for simulations using the

true boundary ∂Ac are displayed with a dashed line. We emphasize that when computing CSs for

real data, only the estimated boundary can be used.410

For the linear ramp, across all confidence levels we observed valid, over-coverage for the

estimated boundary method, and under-coverage for the true boundary method. In both cases,

the degree of agreement between our empirical results and the nominal coverage level improved

for larger confidence levels, and as the sample size increased. For instance, while our estimated

boundary empirical results were around 88% when the nominal target level was set at 80% (Fig.415

7.1, left), corresponding empirical coverage results hovered around 97% for a nominal target of

95% (Fig. 7.1, right). Comparing the differences between the solid and dashed curves, there is

also greater harmonization between the estimated and true boundary results for higher confidence

levels. The method performed similarly regardless of whether homogeneous or heterogeneous

noise was added to the model, evidenced by the minimal differences between the red and the blue420

curves for each of the two boundary methods seen in the plots.

For the circular signal the method performed remarkably well, with almost all our empirical

coverage results lying within the 95% confidence interval of the nominal coverage rate (red and

blue curves sandwiched between black dashed lines for all three plots in Fig. 7.2). Once again, the

use of homogeneous or heterogeneous noise in the model had minimal difference on the method’s425

empirical coverage performance, and in this setting, our results were virtually identical whether

the estimated boundary or true boundary was used for the bootstrap procedure. This has made the

dashed curves hard to distinguish in the plots, as the solid curves lie practically on top of them.
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Figure 7.1: Coverage results for Signal 1., the 2D linear ramp signal. While the true boundary

coverage results (dashed curves) fall under the nominal level, results for the estimated boundary

method (solid curves) that must be applied to real data remain above the nominal level. Per-

formance of the method improved for larger confidence levels, and in particular, the estimated

boundary results for a 95% confidence level seen in the right plot hover slightly above nominal

coverage for all sample sizes.
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Figure 7.2: Coverage results for Signal 2., the 2D circular signal. Coverage performance was

close to nominal level in all simulations. The method was robust as to whether the subject-level

noise had homogeneous (red curves) or heterogeneous variance (blue curves), or as to whether the

estimated boundary (dashed curves) or true boundary (solid curves) method was used; in all plots,

all of the curves lie practically on top of each other.
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4.3. 3D Simulations

Empirical coverage results for each of the three confidence levels 1 − α = 0.80, 0.90 and 0.95,430

are presented in Figs. 8.1, 8.2, 8.3 and 8.4 respectively for each of the four signal types (small

sphere, large sphere, multiple spheres, Biobank full mean) displayed in Fig. 5. Results are also

presented in tabular format in Table. S2. Once again, results obtained for simulations applying the

bootstrap procedure over the estimated boundary ∂Âc are displayed with a solid line, and results

for simulations using the true boundary ∂Ac are displayed with a dashed line.435

Overall, the results for all four signal types were consistent: In general, empirical coverage

always came above the nominal target level, and the extent of over-coverage diminished when a

higher confidence level was used. Particularly, for a nominal target of 1 − α = 0.95, all of our 3D

empirical coverage results lie between 95% and 98%. The method was robust as to whether the

bootstrap procedure was applied over the true or estimated boundary, or as to whether the variance440

of the noise field was homo- or heterogeneous. The similarity of the empirical coverage results,

in spite of differences in these specific settings, is exhibited in all of the plots by the uniformity

of the red and blues curves (indicating minimal differences in performance whether the noise had

homogeneous or heterogeneous variance), and agreement between the solid and dashed curves

(indicating minimal differences in performance whether the true boundary or estimated boundary445

was used). In the empirical coverage plots for the small and large spherical signals shown in Figs.

8.1 and 8.2, all of these curves lie virtually on top of each other.

While performance with the multiple spheres and Biobank signals presented in Figs. 8.3 and

8.4 was slightly better when using the true boundary, the true- and estimated boundary perfor-

mance converged as the sample size increased.450
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Figure 8.1: Coverage results for Signal 1., the 3D small spherical signal. For all confidence levels,

coverage remained above the nominal level in all simulations, and for a 95% confidence level

(right plot), coverage hovered slightly above the nominal level for all sample sizes. The method

was robust as to whether the subject-level noise had homogeneous (red curves) or heterogeneous

variance (blue curves), or as to whether the estimated boundary (dashed curves) or true boundary

(solid curves) method was used.
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Figure 8.2: Coverage results for Signal 2., the large 3D spherical signal. Coverage results here

were very similar to the results for the small spherical signal shown in Fig. 8.1, suggesting that

the method is robust to changes in boundary length.
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Figure 8.3: Coverage results for Signal 3., the multiple spheres signal. Once again, for all confi-

dence levels, coverage remained above the nominal level in all simulations. Here, the true bound-

ary method (dashed curves) performed slightly better than the estimated boundary method (solid

curves) in small sample sizes, although the choice of boundary made less of a difference for a

higher confidence level. For a 95% confidence level (right plot), all results hover slightly above

nominal coverage for all sample sizes.
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Figure 8.4: Coverage results for Signal 4., the UK Biobank full mean signal, where the full stan-

dard deviation image was used as the standard deviation of the subject-level noise fields. Coverage

results here were similar to the results for the multiple spheres signal shown in Fig. 8.3: In small

sample sizes, coverage was slightly improved for the true boundary method (dashed curves) com-

pared to the estimated boundary method (solid curves), however, for a 95% confidence level (right

plots), all results hover slightly above nominal coverage for all sample sizes.
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4.4. Human Connectome Project

Confidence Sets obtained from applying the method to 80 subjects contrast data from the

Human Connectome Project working memory task are shown in Fig. 9 and Fig. 10.

In both Fig. 9 and Fig. 10, the red upper CS localized brain regions within the frontal cortex

commonly associated to working memory. This included areas of the middle frontal gyrus (left455

and right; Fig. 9, sagittal and coronal slices), superior frontal gyrus (left and right, Fig. 10,

coronal slice) anterior insula (left and right; Fig. 9, sagittal and axial slices), as well as the anterior

cingulate (Fig. 10, all slices). In all of the above regions, the method identified clusters of voxels

for which we can assert with 95% confidence there was a percentage BOLD change raw effect

greater than 2.0% (Fig. 9 and Fig. 10, bottom plots).460

Further brain areas localized by the upper CS were the frontal pole (left and right; Fig. 9,

sagittal and axial slices), supramarginal gyrus (left and right; Fig. 9, sagittal slice and Fig. 10,

coronal and axial slices), precuneous (Fig. 10, sagittal slice) and cerebellum (Fig. 9, sagittal slice).

While for these areas we can assert with 95% confidence there was a percentage BOLD change

raw effect greater than at least 1.0% (Fig. 9 and Fig. 10, top plots), on-the-whole the method only465

localized areas where there was a BOLD change of at least 2.0% in parts of the frontal cortex. This

can be observed by the ‘disappearance’ of the red CSs in brain regions located in the ocipital lobe

for the 2.0% BOLD change plots when compared with the corresponding 1.0% and 1.5% BOLD

change plots in Fig. 9 and Fig. 10.

As the percentage BOLD change threshold increases between plots, there is a shrinking of470

both the blue lower CSs and red upper CSs: By using a larger threshold, there are less voxels we

can confidently declare have surpassed this higher level of percentage BOLD change, and thus the

volume of the red upper CSs decreases (in some cases, vanishing). At the same time, there are

more voxels we expect to be able to confidently declare have fallen below the threshold. Since

these are precisely the (grey background) voxels that lie outside of the lower blue CSs, the volume475

of the blue lower CSs also decreases.

Finally, in Fig. S1 and Fig. S2 the red upper CSs are compared with the thresholded t-statistic

map (green-yellow voxels) obtained from applying a traditional one-sample t-test group-analysis

to the 80 subjects working memory task contrast data, using a voxelwise FWE-corrected threshold
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of p < 0.05. Differences here highlight how statistical significance may not translate to practical480

significance; while over 28,000 voxels were declared as active in the thresholded t-statistic results,

only 4,818 voxels were contained in the upper CS indicating a percentage BOLD change of at

least 1.0%.
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Figure 9: Slice views of the Confidence Sets for 80 subjects data from the HCP working memory

task for c = 1.0%, 1.5% and 2.0% BOLD change thresholds. The upper CS Â+
c is displayed in red,

and the lower CS Â–
c displayed in blue. In yellow is the point estimate set Âc, the best guess from

the data of voxels that surpassed the BOLD change threshold. The red upper CS has localized

regions in the frontal gyrus, frontal pole, anterior insula, supramarginal gyrus and cerebellum for

which we can assert with 95% confidence that there has been (at least) a 1.0% BOLD change raw

effect.

34

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/631473doi: bioRxiv preprint 

https://doi.org/10.1101/631473
http://creativecommons.org/licenses/by/4.0/


Threshold c Sagittal (X = 47) Coronal (Y = 71) Axial (Z = 60)
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Figure 10: Further slice views of the Confidence Sets. Here, we see that the red upper CS has

also localized regions in the anterior cingulate, superior front gyrus, supramarginal gyrus, and

precuneous for which we can assert with 95% confidence that there has been (at least) a 1.0%

BOLD change raw effect.
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5. Discussion

5.1. Spatial Inference on %BOLD Raw Effect Size485

Thorough interpretation of neuroimaging results requires an appreciation of the practical (as

well as statistical) significance of differences through visualization of raw effect magnitude maps

with meaningful units (Chen et al., 2017). In this work, we have presented a method to create

confidence sets for raw effect size maps, providing formal confidence statements on regions of

the brain where the %BOLD response magnitude has exceeded a specified activation threshold,490

alongside regions where the %BOLD response has not surpassed this threshold. Both of these

statements are made simultaneously, and across the entire brain. This not only enables researchers

to infer brain areas that have responded to a task, but also allows for inference on areas that did

not respond to the task. In this sense, the method goes beyond statistical hypothesis testing, where

the null-hypothesis of no activation can ‘fail to be rejected’, but never accepted. By operating495

on percentage BOLD change units, instead of t-statistic values, the confidence set maps present

a clear and more direct interpretation of the biophysical changes that occur during a neuroimag-

ing study, which can be distorted by the thresholded statistic maps commonly reported at the end

of an investigation (Engel and Burton, 2013). In essence, the CSs synthesize information that is

usually provided separately in a raw effect size and t-statistic map, determining practically signif-500

icant effects in terms of effect magnitude, that are also reliable in terms of statistical significance

traditionally given by p-values in a statistic image. While in this work we have focused on BOLD

fMRI, the methods presented here are applicable to any neuroimaging measure that can be fit in a

group-level GLM.

The choice of threshold c is ultimately up to the user, and may depend on the aims of the505

investigation. Researchers may choose a threshold based on prior knowledge of raw effect sizes

observed in previous similar studies, and it is likely that localization of larger raw effects will be

possible as sample sizes increase. Obtaining the CSs for the Human Connectome Project contrast

data in this work was computationally quick, each analysis taking no longer than a couple of min-

utes. Therefore, one possible strategy is to evaluate a variety of different c’s on pilot or historical510

data before fixing a value to use on a study of interest.
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5.2. Analysis of HCP data and Simulation Results

In our analysis of the HCP emotional faces task-fMRI dataset, we have primarily focused on

activated areas localized by the red upper CS. However, the confidence set maps in Fig. 9 and Fig.

10 also quantify the spatial precision of the point estimate ‘best guess from the data’ activation515

clusters. While so far we have described the confidence sets in terms of the red and blue upper

and lower CSs, we now highlight that the set difference between the upper and lowers CSs acts

as a confidence region itself; with 95% confidence, we can assert that the boundary of the point

estimate set (raw effect size > threshold; yellow voxels overlapped by red in Fig. 9 and Fig. 10) is

completely contained within this region. The set difference region, visualized by blue and yellow520

voxels (but not red) in Fig. 9 and Fig. 10, therefore anticipates how the point estimate clusters

may fluctuate if the experiment was to be repeated again. From this perspective, the vast areas

of the brain covered by blue in Fig. 9 and Fig. 10 demonstrate the high level of uncertainty in

localizing a raw effect size of, for example, 1.0% BOLD change, despite the large sample size of

N = 80 used for the HCP. The regions of greatest uncertainty were sub-cortical areas, covered by525

expansive clusters of blue as seen in the axial slices displayed in Fig. 9 and sagittal slices in Fig.

10. Large intersubject variability here may be explained by the high multi-band acceleration factor

used in the HCP scanning protocol, which is generally more suited for scanning the cortex (Smith

et al., 2013).

For the 2D simulations, the method achieved close to nominal coverage for the circular sig-530

nal, but performed less well for the ramp signal, obtaining under-coverage for the true boundary

method and over-coverage for the estimated boundary method. We believe differences in the cir-

cle and ramp results are not due to changes in the signal shape per se, but instead are caused by

differences in the slope of each shape close to the true boundary ∂Ac. Since the linear ramp signal

has a shallower gradient at the true boundary compared to the circle, local changes in the observed535

signal around the boundary are dominated by changes in the noise. Since the noise is more wavey

than the signal, the linear interpolation method for obtaining the boundary is likely to be less ac-

curate for the ramp, causing too many violations of the subset condition, which may explain the

under-coverage for the true boundary results seen here.

For the 3D simulations, the method obtained over-coverage in all of our results. Here, the540
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degree of over-coverage was consistently larger for the smaller confidence level of 1 − α = 0.80

in comparison to the larger confidence level of 1 − α = 0.95. Notably, the over-coverage was

also more severe for signals with a longer boundary, such as the multiple spheres and Biobank

signals, when compared to the Small Sphere signal that had a shorter boundary length. One

possible reason for this is that our proposed method for assessing coverage may still be missing545

instances where violations of the subset condition Â+
c ⊂ Ac ⊂ Â

–
c occur, causing the results to be

slightly positively biased. While our assessment method reduces the influence of grid coarseness

by sampling locations on the true continuous boundary ∂Ac, ultimately we can still only assess

coverage at a discrete set of points on a continuous process. For signals with a longer boundary

length, the set of sampled locations obtained with the interpolation method is relatively less dense550

within the true continuous boundary, and thus it is more likely violations of the subset condition are

missed. Over-coverage for smaller confidence levels may also be explained by this, as theoretically

more violations should occur here, but these may be missed due to inaccuracies caused by the

discreteness of the lattice. This line of reasoning is consistent with Section 4.4 of SSS, where it

was shown that coverage approached the nominal level as the resolution of the grid was increased.555

5.3. Methodological Innovations

In this work, we have advanced on the original methods applied in SSS. From a theoretical

standpoint, we have proposed a Wild t-Bootstrap method (dividing bootstrap residuals by boot-

strap standard deviation) to compute the critical quantile value k. We have also introduced an

interpolation scheme for obtaining the boundary and assessing the simulation coverage results to560

reduce the influence of grid coarseness. In Section 4.1, we demonstrated that applying the as-

sessment method in SSS could lead to empirical coverage of close to 100%, suggesting that this

method may considerably bias the simulation results upwards. When using our proposed assess-

ment, the Wild Bootstrap method suffered from under-coverage, most severely for small sample

sizes in the 3D setting of the large spherical signal presented in Fig. 6.2. This was greatly reme-565

died by the Wild t-Bootstrap method, for which empirical results stayed close to the nominal target

independent of sample size.

Our simulations using the original procedures may not seem consistent with the simulation
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results published in Figure 5 of SSS, where empirical coverage stayed close to the nominal tar-

get. However, the signal-plus-noise models investigated to test the performance of the CSs in SSS570

were much smoother than the synthetic signals considered to emulate fMRI data with this effort.

By applying a larger degree of smoothing, the signals used in SSS effectively had a much higher

resolution. Because of this, it is likely the resolution issue presented in Fig. 3 was less critical,

reducing the positive bias in empirical coverage induced from using the original simulation assess-

ment procedure. Further evidence for this is provided in Figure 7 of SSS, where they observed an575

increase in coverage after repeating their simulations on a coarser lattice. In our simulation results

in Section 4.1, the scale of under-coverage from using the Gaussian Wild bootstrap method was

much more severe for the 3D simulation on the spherical signal in Fig. 6.2 compared to the 2D

circular signal in Fig. 6.1. This may explain why the Gaussian Wild bootstrap method performed

relatively well in SSS, as only 2D signals were considered there.580

5.4. Limitations & Future Work

The principal limitation of this work is one that is intentional and explicit: Our method is for

spatial inference on maps of raw and not standardized effects, such as Cohen’s d or partial R2 (t-

or F-statistics, which scale with sample size, do not estimate population quantities and are not

suitable for making confidence statements). Even when scaled to percentage BOLD change, it has585

been shown that raw effects can modulate with acquisition parameters such as the scanner field

strength or echo time (UIudag et al., 2009). Users should therefore be cautious when combining

effect estimates from studies using heterogeneous acquisition setups, and clearly specify such

differences when reporting the results of any meta-analysis on raw effects. It is also known that

inhomogeneities in the vasculature of the brain is a cause of variation in the BOLD response.590

Therefore, we recommend that any interpretation of %BOLD change inferred from the CSs is

referenced against a variance map or similar image that indicates the most venous brain regions.

We note that each of these points are general complications of raw effect sizes within fMRI, rather

than issues with the method proposed in this effort per se. Nonetheless, the use of standardized

effect estimates may help to remedy these problems in the future. The statistical characteristics595

of standardized effect maps are fundamentally different to the raw effect images motivating the

39

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/631473doi: bioRxiv preprint 

https://doi.org/10.1101/631473
http://creativecommons.org/licenses/by/4.0/


method here, and the topic of our current work is to develop CSs for standardized effect size

images.

The need for resampling to conduct inference is another limitation of this effort, especially

given the big data motivation of this work. However, the bootstrap is only conducted on the600

estimated boundary, ∂Âc, not the whole 3D volume, which substantially reduces the computational

burden. For very large datasets, techniques for approximating empirical distributions can be used

to improve the accuracy of the estimation of k based on a smaller number (e.g. B = 500) of

bootstrap samples (Winkler et al., 2016).
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Appendix A. Supplementary Human Connectome Project Results

Threshold c Sagittal (X = 61) Coronal (Y = 75) Axial (Z = 37)

1.0% BOLD change

R L R L

1.5% BOLD change

R L R L

2.0% BOLD change

R L R L

Supplementary Figure 1: Comparing the upper Confidences Sets for the HCP working memory

task data (same slice views as Fig. 9) with the thresholded t-statistic results obtained by applying

a traditional group-level one-sample t-test, voxelwise p < 0.05 FWE correction (green-yellow

voxels). While over 25,000 voxels were determined as statistically significant with the standard

inference method, less than 5,000 voxels were asserted to have at least a 1.0% BOLD change by

the CSs. In particular, the two statistically significant clusters spanning the left and right side of

the frontal lobe contained almost no voxels with a practical effect size of over 1.5% BOLD change.
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Threshold c Sagittal (X = 47) Coronal (Y = 71) Axial (Z = 60)

1.0% BOLD change

R L R LR L R LR L R L

1.5% BOLD change

R L R LR L R LR L R L

2.0% BOLD change

R L R LR L R LR L R L

Supplementary Figure 2: Comparing the upper Confidences Sets for the HCP working memory

task data (same slice views as Fig. 10) with the thresholded t-statistic results obtained by applying

a traditional group-level one-sample t-test, voxelwise p < 0.05 FWE correction (green-yellow

voxels). While one large statistically significant cluster covers the supramarginal gyrus, angular

gyrus and precuneous, the CSs localize the precise areas with practically significant effect sizes

within each of these regions.
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Supplementary Table 1. Empirical coverage results for the 2D simulations using nominal (nom.)

coverage levels 1 − α = 80%, 90% and 95%. Results are shown for applying the Wild t-Bootstrap

method to the residual field along the estimated boundary ∂Âc (top) and the true boundary ∂Ac

(bottom).

2D Signal 1. (Ramp) 2D Signal 2. (Circle)

Standard Dev 1. Standard Dev 2. Standard Dev 1. Standard Dev 2.

∂Âc

80% nom.
N = 60 90.13% ± 0.54% 87.57% ± 0.60% 78.13% ± 0.75% 80.23% ± 0.73%

120 87.53% ± 0.60% 88.40% ± 0.58% 80.53% ± 0.72% 78.70% ± 0.75%
240 87.43% ± 0.61% 87.33% ± 0.61% 79.73% ± 0.73% 79.53% ± 0.74%
480 87.40% ± 0.61% 85.07% ± 0.65% 78.50% ± 0.75% 77.40% ± 0.76%

90% nom.
N = 60 95.53% ± 0.38% 94.83% ± 0.40% 88.90% ± 0.57% 89.90% ± 0.55%

120 94.07% ± 0.43% 93.73% ± 0.44% 90.13% ± 0.54% 89.40% ± 0.56%
240 94.23% ± 0.43% 93.60% ± 0.45% 89.17% ± 0.57% 90.17% ± 0.54%
480 93.50% ± 0.45% 93.33% ± 0.46% 89.30% ± 0.56% 88.40% ± 0.58%

95% nom.
N = 60 97.67% ± 0.28% 97.33% ± 0.29% 94.10% ± 0.43% 94.60% ± 0.41%

120 97.13% ± 0.30% 96.60% ± 0.33% 94.40% ± 0.42% 94.37% ± 0.42%
240 97.30% ± 0.30% 97.07% ± 0.31% 94.43% ± 0.42% 95.53% ± 0.38%
480 96.97% ± 0.31% 97.13% ± 0.30% 94.80% ± 0.41% 93.73% ± 0.44%

∂Ac

80% nom.
N = 60 60.27% ± 0.89% 57.30% ± 0.90% 78.17% ± 0.75% 80.23% ± 0.73%

120 66.03% ± 0.86% 68.30% ± 0.85% 80.53% ± 0.72% 78.67% ± 0.75%
240 71.10% ± 0.83% 72.23% ± 0.82% 79.83% ± 0.73% 79.57% ± 0.74%
480 76.27% ± 0.78% 76.17% ± 0.78% 78.57% ± 0.75% 77.40% ± 0.76%

90% nom.
N = 60 78.47% ± 0.75% 76.60% ± 0.77% 88.97% ± 0.57% 90.00% ± 0.55%

120 81.67% ± 0.71% 83.40% ± 0.68% 90.20% ± 0.54% 89.43% ± 0.56%
240 85.20% ± 0.65% 85.83% ± 0.64% 89.17% ± 0.57% 90.17% ± 0.54%
480 88.50% ± 0.58% 87.23% ± 0.61% 89.27% ± 0.57% 88.43% ± 0.58%

95% nom.
N = 60 88.97% ± 0.57% 87.27% ± 0.61% 94.17% ± 0.43% 94.57% ± 0.41%

120 89.87% ± 0.55% 90.67% ± 0.53% 94.47% ± 0.42% 94.30% ± 0.42%
240 92.07% ± 0.49% 92.47% ± 0.48% 94.40% ± 0.42% 95.50% ± 0.39%
480 94.23% ± 0.43% 94.10% ± 0.43 % 94.87% ± 0.40% 93.73% ± 0.44%
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Supplementary Table 2. Empirical coverage results for the 3D simulations using nominal (nom.)

coverage levels 1 − α = 80%, 90% and 95%. Results are shown for applying the Wild t-Bootstrap

method to the residual field along the estimated boundary ∂Âc (top) and the true boundary ∂Ac

(bottom).

3D Signal 1. (Small Sphere) 3D Signal 2. (Large Sphere)

Standard Dev 1. Standard Dev 2. Standard Dev 1. Standard Dev 2.

∂Âc

80% nom.
N = 60 83.40% ± 0.68% 83.77% ± 0.67% 85.10% ± 0.65% 85.73% ± 0.64%

120 83.67% ± 0.67% 84.03% ± 0.67% 85.87% ± 0.64% 85.23% ± 0.65%
240 84.03% ± 0.67% 83.77% ± 0.67% 85.23% ± 0.65% 85.40% ± 0.64%
480 85.03% ± 0.65% 82.20% ± 0.70% 87.67% ± 0.60% 85.30% ± 0.65%

90% nom.
N = 60 92.30% ± 0.49% 92.87% ± 0.47% 92.40% ± 0.48% 93.47% ± 0.45%

120 92.07% ± 0.49% 91.27% ± 0.52% 93.00% ± 0.47% 93.50% ± 0.45%
240 92.33% ± 0.49% 92.87% ± 0.47% 93.30% ± 0.46% 92.90% ± 0.47%
480 93.03% ± 0.46% 91.53% ± 0.51% 93.50% ± 0.45% 93.47% ± 0.45%

95% nom.
N = 60 96.87% ± 0.32% 96.83% ± 0.32% 96.40% ± 0.34% 96.70% ± 0.33%

120 96.07% ± 0.35% 95.60% ± 0.37% 96.97% ± 0.31% 97.10% ± 0.31%
240 96.20% ± 0.35% 96.83% ± 0.32% 96.23% ± 0.35% 96.90% ± 0.32%
480 96.30% ± 0.34% 96.13% ± 0.35% 96.83% ± 0.32% 93.80% ± 0.44%

∂Ac

80% nom.
N = 60 83.60% ± 0.68% 83.90% ± 0.67% 85.20% ± 0.65% 85.80% ± 0.64%

120 83.80% ± 0.67% 83.93% ± 0.67% 85.90% ± 0.64% 85.23% ± 0.65%
240 84.03% ± 0.67% 83.90% ± 0.67% 85.27% ± 0.65% 85.40% ± 0.64%
480 85.03% ± 0.65% 82.27% ± 0.70% 87.73% ± 0.60% 85.37% ± 0.65%

90% nom.
N = 60 92.43% ± 0.48% 92.90% ± 0.47% 92.37% ± 0.48% 93.40% ± 0.45%

120 91.97% ± 0.50% 91.43% ± 0.51% 92.97% ± 0.47% 93.60% ± 0.45%
240 92.37% ± 0.48% 92.90% ± 0.47% 93.33% ± 0.46% 92.90% ± 0.47%
480 93.03% ± 0.46% 91.40% ± 0.51% 93.57% ± 0.45% 93.47% ± 045%

95% nom.
N = 60 96.87% ± 0.32% 96.93% ± 0.31% 96.37% ± 0.34% 96.70% ± 0.33%

120 96.07% ± 0.35% 95.53% ± 0.38% 96.97% ± 0.31% 97.13% ± 0.30%
240 96.17% ± 0.35% 96.93% ± 0.31% 96.23% ± 0.35% 96.80% ± 0.32%
480 96.33% ± 0.34% 96.13% ± 0.35% 96.77% ± 0.32% 96.80% ± 0.32%
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Supplementary Table 2. (continued)

3D Signal 3. (Multiple Spheres) 3D Signal 4. (UK Biobank)

Standard Dev 1. Standard Dev 2. UK Biobank SD

∂Âc

80% nom.
N = 60 89.47% ± 0.56% 89.20% ± 0.57% 89.17% ± 0.57%

120 87.60% ± 0.60% 88.17% ± 0.59% 87.17% ± 0.61%
240 86.17% ± 0.63% 86.33% ± 0.63% 86.27% ± 0.63%
480 86.13% ± 0.63% 86.10% ± 0.63% 87.67% ± 0.60%

90% nom.
N = 60 95.20% ± 0.39% 94.87% ± 0.40% 95.23% ± 0.39%

120 94.53% ± 0.42% 93.97% ± 0.43% 94.63% ± 0.41%
240 93.67% ± 0.44% 93.17% ± 0.46% 93.73% ± 0.44%
480 93.97% ± 0.43% 93.87% ± 0.44% 93.50% ± 0.45%

95% nom.
N = 60 97.93% ± 0.26% 97.73% ± 0.27% 97.37% ± 0.29%

120 97.37% ± 0.29% 97.47% ± 0.29% 97.73% ± 0.27%
240 97.23% ± 0.30% 96.50% ± 0.34% 96.93% ± 0.31%
480 97.23% ± 0.30% 97.63% ± 0.28% 96.83% ± 0.32%

∂Ac

80% nom.
N = 60 84.30% ± 0.66% 85.33% ± 0.65% 83.30% ± 0.68%

120 84.93% ± 0.65% 86.20% ± 0.63% 85.13% ± 0.65%
240 85.73% ± 0.64% 85.60% ± 0.64% 84.97% ± 0.65%
480 86.03% ± 0.63% 85.97% ± 0.63% 87.73% ± 0.60%

90% nom.
N = 60 92.93% ± 0.47% 92.20% ± 0.49% 92.77% ± 0.47%

120 93.20% ± 0.46% 93.27% ± 0.46% 93.50% ± 0.45%
240 93.37% ± 0.45% 93.07% ± 0.46% 92.67% ± 0.48%
480 93.97% ± 0.43% 93.80% ± 0.44% 93.57% ± 0.45%

95% nom.
N = 60 96.80% ± 0.32% 96.50% ± 0.34% 96.70% ± 0.33%

120 96.90% ± 0.32% 96.83% ± 0.32% 97.07% ± 0.31%
240 97.20% ± 0.30% 96.30% ± 0.34% 96.40% ± 0.34%
480 97.27% ± 0.30% 97.63% ± 0.28% 96.77% ± 0.32%

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/631473doi: bioRxiv preprint 

https://doi.org/10.1101/631473
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Theory
	Overview
	The Wild t-Bootstrap Method for Computation of k
	Approximating the Boundary on a Discrete Lattice
	Assessment of Continuous Coverage on a Discrete Lattice

	Methods
	Simulations
	2D Simulations
	3D Simulations
	Application to Human Connectome Project Data

	Results
	Methodological Comparisons
	2D Simulations
	3D Simulations
	Human Connectome Project

	Discussion
	Spatial Inference on %BOLD Raw Effect Size
	Analysis of HCP data and Simulation Results
	Methodological Innovations
	Limitations & Future Work

	Contributions
	Data Availability
	Acknowledgements
	References

