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Abstract

Background:The Biopharmaceutics Classification System (BCS), which 

classifies bioactive molecules based on solubility and permeability, is widely used to 

guide new drug development and drug formulation, as well as predict 

pharmacokinetics. Here we performed computer simulations to study correlations 

between a molecule's structure and its BCS classification.

Methods:A total of 411 small molecules were assigned to BCS categories based 

on published drug data, and their Pybel-FP4 fingerprints were extrapolated. The 

information gain(IG) of each fingerprint was calculated and its characteristic structure 

analyzed. IG was calculated using multiple thresholds, and results were verified using 

support vector machine prediction, while taking into account the dose 

coefficient(0-0.1, 0.1-1, or>1). Structural functional features common to fingerprints 

of compounds in each type of BCS class were determined using computer 

simulations. 

Results:BCS classes III and IV appear to share several structural and functional 

characteristics, including Secondary aliphaticamine, Michael_acceptor, Isothiourea, 

and Sulfonamide Sulfonic_derivatives.

Conclusion:We demonstrate that our approach can correlate characteristic 

fingerprints of small-molecule drugs with BCS classifications, which may help guide 

the development and optimization of new drugs.
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Introduction

The Biopharmaceutics Classification System (BCS) [1-2] was proposed in 1995 [3] to 

classify drugs into four categories based on their in vitro solubility and ability to be absorbed 

in the intestine (permeability):class I, high solubility/high permeability; class II, low 

solubility/high permeability; class III, high solubility/low permeability; and class IV, low 

solubility/low permeability [4] (Fig 1). The definition of high solubility according to the US 

Food and Drug Administration is that the highest dose of a single administration can be 

dissolved in 250 ml or less of an aqueous solution at 37℃ at pH1.0-7.5. Solubility and 

intestinal permeability have proven to be an adequate starting point for drug product 

development and regulation [5]. The role of BCS in drug development is facilitating 

biowaivers of in vivo bioequivalence studies [6]. At present, the BCS classification of drugs is 

achieved mainly experimentally, which requires a large amount of human, material, and 

financial resources, so a new method is urgently needed.

Fig 1. Biopharmaceutics Classification System. Schematic of the Biopharmaceutical 

classification system (BCS) detailing characteristics of each drug class.

Compared to experimental methods, computer-aided drug design(CADD) can reduce 

research and development costs and minimize the use of human and financial resources. 

Computer simulation is widely used in CADD: for example, FP4 and MACCS [7] molecular 

fingerprints [8] are used in new drug research. These fingerprints are developed to describe 
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chemical structures in a chemical database. Meanwhile, computer simulation uses some 

evaluation indicators, such as information gain (IG), which refers to the weight of a 

fingerprint in this category[9], and frequency of a substructure (f) [10]. Even though a few 

studies of the application of computer simulation have been published recently, such as 

estimation of ADME (Absorption, Distribution, Metabolism, Excretion) properties and 

prediction of drug-induced liver toxicity [9-10], research on prediction of drug BCS 

classification based on structure has not been reported.

In this study, we combined BCS classification with computer simulation for the first time 

to identify the characteristic structures of each type of small-molecule drug. This approach 

may be useful for determining the BCS classification of new drugs. We used FP4 molecular 

fingerprints to describe the chemical structures of small-molecule drugs, and then calculated 

IG and f values to evaluate computer simulations. Furthermore, we used a Support-Vector 

Machine (SVM) [11-13] as the evaluation criteria for BCS classification accuracy (Fig 2). 

SVM is a two-class classification model for linear separable cases. For linear indivisible 

cases, samples with low-dimensional input space are transformed into high-dimensional 

feature spaces by nonlinear mapping algorithms so that samples can be classified linearly 

[14].

Fig 2. Support-Vector Machine schematic diagram. Schematic showing typical Support 

Vector Machine (SVM) data output. Red and green balls represent small-molecule drugs. The 

degree of difference, called a hyperplane, in the molecular fingerprints is given by the 
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distance separatingthe red data points from the green point. The red or green data points 

closest to the hyperplane form thesupport vector.

In addition, we introduced the concept of dose coefficient F, which we define as the ratio 

of the molecular mass of each small-molecule drug to the mass in the maximum dose. Drug 

dissolution and absorption as well as the requirement for excipients are all critical factors in 

design of drugs in all BCS classes [15-17]. Dose size affects the absorption of the drug, and 

the maximum dose of the drug affects the solubility of the drug. Moreover, small-molecule 

drugs have different molecular masses. Therefore using the dose coefficient F may eliminate 

the influence of the maximum dose. 

In these ways, the present study may help promote the development of new drugs and 

further development of existing drugs, and it may shorten the time-to-market for drugs.

Materials and methods

Establishment of database and molecular fingerprint analysis

A total of 359 small drug molecules were identified by the Provisional BCS 

Classification system (http://www.ddfint.net/search.cfm) (S1 Table). An additional 52 small 

drug molecules were identified in the literature using keyword search terms [18]. The 

molecular structures were downloaded (http://pubchem.ncbi.nlm.nih.gov/) for computer 

simulation.The BCS classification in the present study was the one recommended by the 
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World Health Organization with CLogP [19] as the classification standard. 

Molecular fingerprints were calculated by inserting the molecular structure into Open 

Babel software. The resulting .sdf files were entered into ChemDes 

(http://www.scbdd.com/fingerprints/index/), which calculated the Pybel-FP4 fingerprints[20]. 

The following formulas were used to calculate information entropy and IG value [9] for each 

molecular fingerprint:

Information entropy of all molecules in the entire database

                                          (1)020121 loglog)( ppppXH 

where p1 stands for the possibility of molecules in the first category, and p0 indicates the 

possibility of molecules in the second category.

The effect of a molecular fingerprint on the overall system

                                         
(2))()()()()( tXHtPtXHtPTXH 

where P(t) stands for the probability that a molecular fingerprint will appear in the entire 

system, and P( ) indicates the probability that a molecular fingerprint will not appear in the t

entire system.

Information entropy of a molecular fingerprint under high solubility conditions

                                                    (3))(log)()(log)()( 020121 tptptptptXH 

Information entropy of a molecular fingerprint under low solubility conditions
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(4))(log)()(log)()t( 020121 tptptptpXH 

The influence of a molecular fingerprint on the entire molecule

                                                  (5))()(H)( TXHXTIG 

The larger the IG value, the greater is the effect of the structural composition on the 

entire molecular structure.

In this study, values of 1 equate to high solubility and 0 to low solubility.

Next, the frequency of a substructure (f) value was calculated [10]:

                 (6)classtotalresubstructu

totalclassresubstructu

NN
NN





_

_resubstructuaoffrequency 

Both f and IG values were ordered from largest to smallest, and the first 20 values were 

selected and the common parts were taken as the characteristic molecular fingerprint to be 

determined. If the IG value of the top 20 molecular fingerprints was greater than 0.01, it 

indicated that the molecular fingerprint had a significant influence on the whole molecule, but 

a value below 0.01 meant the influence was small and the BCS category could not be clearly 

distinguished.

SVM verification of BCS classification

To determine the accuracy of the SVM macros in differentiating small-molecule drugs 

into separate BCS classes, the classifications provided by the Provisional BCS website were 
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used as a reference. IG values were extrapolated from molecular fingerprints and converted to 

binary file format. The binary FP4 molecular fingerprints were run through the SVM macros. 

Thresholds of 0, 0.001, 0.005, 0.01, or 0.02 were chosen based on solubility and permeability. 

The data were divided into training and test sets in the ratio of 1:4 based on the drug class 

assigned to each small molecule by the following macros: SP1(I-II), SP0(III-IV), PS1(I-III), 

PS0(II-IV), P(I, II-III, IV), S(I, III-II, IV).

A validation set [21] was created by examining the SVM output of the 359 

small-molecule drugs from the known BCS classification as recognized by the World Health 

Organization. Data were derived as above, but thresholds were removed from the SVM 

macros. The accuracy of the output was compared to the known class designation of these 

molecules.

Every combination comparing one set to another was tested in the SVM software to 

calculate the accuracy of the classification. Due to the similarity between the training and test 

sets, the classification by the SVM software was considered accurate if it showed a value 

between 70% and 90%. A value less than 70% meant that the BCS classification was not 

complete enough to distinguish between the two types of data, while more than 90% meant 

excessive SVM training, such that the machine's ability to generalize was insufficient. After 

the SVM was performed, molecular fingerprints were entered into SMARTS_InteLigand 

from Open Babel (http://www.scbdd.com/pybel_desc/fps-fp4/) [22] and the small-molecule 

drug structure was recreated based on fingerprint characteristics.
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Classification based on dose coefficient F 

When the SVM verification result was outside the ideal percentage range, the accuracy 

of the computer simulation prediction was improved using secondary classification according 

to dose coefficient F. We defined the concept of dose coefficient F for the first time, which 

considers the ratio of the molecular mass of each small-molecule drug to the mass in the 

maximum dose. This classification was divided into the following categories: 0 to 0.1, 0.1 to 

1, and >1.

Verification of results

The obtained BCS feature structures were compared with those of small drug molecules 

with clear BCS classification in the BCS database to verify whether the results were accurate 

(Fig 3).

Fig 3. Experimental flowchart. Schematic describing the work flow of the study. 

Abbreviations: IG, Information gain; f, frequency of a substructure; SVM, Support Vector 

Machine.

Results

Molecular fingerprints sharing IG and f values
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Preliminary screening was performed by identifying commonly shared molecular 

fingerprints from the lists containing the top 20 results with either the highest IG or f values 

(Tables 1-4 and S1 File). However, the common molecular fingerprints determined by IG and 

f values overlapped among BCS categories, making it impossible to assign molecules to a 

BCS category based solely on these values. Therefore, this study utilized SVM software to 

verify accuracy.

Table 1. I-II comparison(SP1) result (S1 File. I-II Comparison(SP1)).

Abbreviations: SP1, I-II comparison; p0(t), the probability of fingerprint in the first category; 

p1(t), the probability of fingerprint in the second category; IG, Information gain; f, frequency of 

a substructure; f^2, square of f.

Table 2. III-IV comparison(SP0) result (S1 File. III-IV Comparison(SP0)).

Abbreviations: SP0, III-IV comparison; p0(t), the probability of fingerprint in the first category; 

p1(t), the probability of fingerprint in the second category; IG, Information gain; f, frequency of 

a substructure; f^2, square of f.

Table 3. I-III comparison(PS1) result (S1 File. I-III Comparison(PS1)).

Abbreviations: PS1, I-III comparison; p0(t), the probability of fingerprint in the first category; 

p1(t), the probability of fingerprint in the second category; IG, Information gain; f, frequency of 

a substructure; f^2, square of f.
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Table 4. II-IV comparison（PS0）result (S1 File. II-IV Comparison(PS0)).

Abbreviations: PS0, II-IV comparison; p0(t), the probability of fingerprint in the first category; 

p1(t), the probability of fingerprint in the second category; IG, Information gain; f, frequency of 

a substructure; f^2, square of f.

SVM prediction results

The accuracy of the BCS classification between the training and test sets was evaluated 

by SVM (Tables 5-10). When the IG threshold was 0.005 and only solubility or permeability 

was considered, the resulting SVM prediction was highly accurate (70-85%). In contrast, 

when drug classes were compared based on high or low solubility or high and low 

permeability, the accuracy of the SVM prediction was low, indicating large variability 

between the BCS populations. These data suggest that the current terms defining each drug 

class are too vague for this type of throughput and require additional information to improve 

classification accuracy.

Table 5. SVM predictive value under high permeability.

Abbreviations: SP1, I-II comparison; SVM, Support-Vector Machine.

Table 6. SVM predictive value under low permeability.
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Abbreviations: SP0, III-IV comparison; SVM, Support-Vector Machine.

Table 7. SVM predictive value under high solubility.

Abbreviations: PS1, I-III comparison; SVM, Support-Vector Machine.

Table 8. SVM predictive value under low solubility.

Abbreviations: PS0, II-IV comparison; SVM, Support-Vector Machine.

Table 9. SVM predictive value compared with high permeability and low permeability.

Abbreviations: P, I.II-III.IV comparison; SVM, Support-Vector Machine.

Table 10. SVM predictive value compared with high solubility and low solubility.

Abbreviations: S, I.III-II.IV comparison; SVM, Support-Vector Machine.

SVM prediction results based on dose coefficient F classification

The BCS classification was subdivided by the dose coefficient, and SVM prediction was 

performed (Tables 11-16 and S2 File). Compared to the SVM predictions without dose 
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coefficient F, the SVM predictions with the coefficient of 0-0.1 improved BCS prediction 

accuracy when the SVM had a threshold of 0.01 or 0.02. Furthermore, when the dose 

coefficient was greater than 1, the accuracy of the SVM prediction improved within each 

threshold range. This indicated that the dose coefficient F affected the accuracy of the SVM 

prediction and the screening of the characteristic molecular fingerprint. Therefore, addition of 

the dose coefficient F can improve SVM accuracy.

Table 11. SVM value of I-II comparison after classification based on FP4 type BCS dose 

coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector 

Machine.

Table 12. SVM value of I-III comparison after classification based on FP4 type BCS 

dose coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector 

Machine.

Table 13. SVM value of II-IV comparison after classification based on FP4 type BCS 

dose coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector 

Machine.
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Table 14. SVM value of III-IV comparison after classification based on FP4 type BCS 

dose coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector 

Machine.

Table 15. SVM values of I, II-III, IV comparison after classification based on FP4 type 

BCS dose coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector 

Machine.

Table 16. SVM values of I, III-II, IV comparison after classification based on FP4 type 

BCS dose coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector 

Machine.

Molecular fingerprints characteristic of BCS classes III and IV

Based on the IG value, f value, dose coefficient F, and SVM prediction results, 

characteristic molecular fingerprints were screened for small-molecule drugs assigned to BCS 
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classes III and IV (Tables 17-19). Feature structures of class III drugs when the dose 

coefficient was 0-0.1 included Secondary aliphaticamine, Tertiary_amide, Primary_alcohol, 

and Carbonic_acid_derivatives. A dose coefficient of 0.1-1 included Primary_alcohol and 

Hetero_N_basic_no_H, and a dose coefficient greater than 1 included Secondary_carbon and 

Michael_acceptor. Structural features of class IV drugs when the dose coefficient was 0-0.1 

included Sulfonamide, Sulfonic_derivatives, and Dialkylether. A dose coefficient of 0.1-1 

included NOS_methylen_ester_and_similar, Hetero_methylen_ester_and_similar, and 

Isothiourea. Finally, a dose coefficient greater than 1 included Sulfonamide 

Sulfonic_derivatives, Secondary_amides, and Vinylogous_amides.

Table 17. Characteristic molecular fingerprints with dose coefficients in the range of 

0-0.1.

Abbreviations: BCS, Biopharmaceutics Classification System; p0(t), the probability of 

fingerprint in the first category; p1(t), the probability of fingerprint in the second category; IG, 

Information gain.

Table 18. Characteristic molecular fingerprints with dose coefficients in the range of 

0.1-1.

Abbreviations: BCS, Biopharmaceutics Classification System; p0(t), the probability of 

fingerprint in the first category; p1(t), the probability of fingerprint in the second category; IG, 

Information gain.
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Table 19. Characteristic molecular fingerprints with dose coefficients greater than 1.

Abbreviations: BCS, Biopharmaceutics Classification System; p0(t), the probability of 

fingerprint in the first category; p1(t), the probability of fingerprint in the second category; IG, 

Information gain.

Verification of results

We verified the accuracy of our results by comparing the obtained BCS feature structures 

with those of small drug molecules with clear BCS classification in the BCS database (S3 

File). These data confirmed that the molecular feature structures we identified were consistent 

with small-molecule drugs found in BCS classes III and IV, and that this method can be used 

as an accurate predictor.

Discussion

In this study, we used computer simulation to analyze the common molecular fingerprints 

of 411 drug molecules. We determined that IG value, f value, and dose coefficient F were all 

necessary for the accuracy of SVM classification prediction. Lastly, we generated five macros 

to calculate and classify BCS (S4 File).

Different BCS classifications have been developed by the World Health Organization, 

the US Food and Drug Administration and the European Medicines Agency. The FDA 
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definition of high solubility is that the highest dose allowed for a single drug administration 

can be dissolved in 250 ml or less of an aqueous solution at 37℃ and pH1.0-7.5. The other 

regulatory bodies narrow the pH range to 1.2-6.8 or 1.0-6.8 [23]. In this study, we followed 

the classification from the World Health Organization. 

The introduction of the dose coefficient into the classification prediction software 

improved the reliability and accuracy of the results. Some drugs have a maximum dose of 

1000 (Cefmetazole), while some drugs have a maximum dose of only 0.003 (Alfacalcidol). 

Moreover, small-molecule drugs have different molecular masses. In order to eliminate these 

two differences and make the results more reliable and accurate, we defined the concept of 

dose coefficient F as a standard for BCS secondary classification for the first time, which 

considers the ratio of the molecular mass of each small-molecule drug to the mass in the 

maximum dose.

This study failed to obtain the characteristic fingerprints of class I and class II drugs, 

which may be due to the fact that the constructed database is not large enough, such that the 

frequencies of fingerprints of various features are too low. Therefore, in future studies, it is 

necessary to continuously increase the number of small-molecule drugs in the database, so 

that the characteristic fingerprints obtained are more meaningful. Since the present study used 

only CLogP standards, future studies should include ALogP and KLogP [24] to make the 

research more extensive.

Conclusion
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In this study, we used FP4 fingerprints to describe the chemical structures of drugs, and 

calculated IG values and f values as indicators of computer simulations. Furthermore, we used 

SVM as the evaluation criteria for the accuracy of BCS classification. The structural features 

of drugs in BCS classes III and IV were successfully obtained, including Secondary 

aliphaticamine, Michael_acceptor, Isothiourea, and Sulfonamide Sulfonic_derivatives. These 

structural features can be used for the classification and formulation of drugs in these two 

classes. We believe that with the increase in number of the exact classification of class I and 

class II drugs, the characteristic structures of the two types of drugs can be obtained 

successfully and further guide the development of new drugs.
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