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Abstract

Background:The Biopharmaceutics Classification System (BCS), which
classifies bioactive molecules based on solubility and permeability, is widely used to
guide new drug development and drug formulation, as well as predict
pharmacokinetics. Here we performed computer simulations to study correlations

between a molecule's structure and its BCS classification.

Methods:A total of 411 small molecules were assigned to BCS categories based
on published drug data, and their Pybel-FP4 fingerprints were extrapolated. The
information gain(IG) of each fingerprint was calculated and its characteristic structure
analyzed. IG was calculated using multiple thresholds, and results were verified using
support vector machine prediction, while taking into account the dose
coefficient(0-0.1, 0.1-1, or>1). Structural functional features common to fingerprints
of compounds in each type of BCS class were determined using computer

simulations.

Results:BCS classes III and IV appear to share several structural and functional
characteristics, including Secondary aliphaticamine, Michael acceptor, Isothiourea,

and Sulfonamide Sulfonic derivatives.

Conclusion:We demonstrate that our approach can correlate characteristic
fingerprints of small-molecule drugs with BCS classifications, which may help guide

the development and optimization of new drugs.
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Introduction

The Biopharmaceutics Classification System (BCS) [1-2] was proposed in 1995 [3] to
classify drugs into four categories based on their in vitro solubility and ability to be absorbed
in the intestine (permeability):class I, high solubility/high permeability; class II, low
solubility/high permeability; class III, high solubility/low permeability; and class IV, low
solubility/low permeability [4] (Fig 1). The definition of high solubility according to the US
Food and Drug Administration is that the highest dose of a single administration can be
dissolved in 250 ml or less of an aqueous solution at 37°C at pH1.0-7.5. Solubility and
intestinal permeability have proven to be an adequate starting point for drug product
development and regulation [5]. The role of BCS in drug development is facilitating
biowaivers of in vivo bioequivalence studies [6]. At present, the BCS classification of drugs is
achieved mainly experimentally, which requires a large amount of human, material, and

financial resources, so a new method is urgently needed.

Fig 1. Biopharmaceutics Classification System. Schematic of the Biopharmaceutical

classification system (BCS) detailing characteristics of each drug class.

Compared to experimental methods, computer-aided drug design(CADD) can reduce
research and development costs and minimize the use of human and financial resources.
Computer simulation is widely used in CADD: for example, FP4 and MACCS [7] molecular

fingerprints [8] are used in new drug research. These fingerprints are developed to describe
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chemical structures in a chemical database. Meanwhile, computer simulation uses some
evaluation indicators, such as information gain (IG), which refers to the weight of a
fingerprint in this category[9], and frequency of a substructure (f) [10]. Even though a few
studies of the application of computer simulation have been published recently, such as
estimation of ADME (Absorption, Distribution, Metabolism, Excretion) properties and
prediction of drug-induced liver toxicity [9-10], research on prediction of drug BCS

classification based on structure has not been reported.

In this study, we combined BCS classification with computer simulation for the first time
to identify the characteristic structures of each type of small-molecule drug. This approach
may be useful for determining the BCS classification of new drugs. We used FP4 molecular
fingerprints to describe the chemical structures of small-molecule drugs, and then calculated
IG and f values to evaluate computer simulations. Furthermore, we used a Support-Vector
Machine (SVM) [11-13] as the evaluation criteria for BCS classification accuracy (Fig 2).
SVM is a two-class classification model for linear separable cases. For linear indivisible
cases, samples with low-dimensional input space are transformed into high-dimensional
feature spaces by nonlinear mapping algorithms so that samples can be classified linearly

[14].

Fig 2. Support-Vector Machine schematic diagram. Schematic showing typical Support
Vector Machine (SVM) data output. Red and green balls represent small-molecule drugs. The

degree of difference, called a hyperplane, in the molecular fingerprints is given by the


https://doi.org/10.1101/631820
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/631820; this version posted May 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

distance separatingthe red data points from the green point. The red or green data points

closest to the hyperplane form thesupport vector.

In addition, we introduced the concept of dose coefficient F, which we define as the ratio
of the molecular mass of each small-molecule drug to the mass in the maximum dose. Drug
dissolution and absorption as well as the requirement for excipients are all critical factors in
design of drugs in all BCS classes [15-17]. Dose size affects the absorption of the drug, and
the maximum dose of the drug affects the solubility of the drug. Moreover, small-molecule
drugs have different molecular masses. Therefore using the dose coefficient F may eliminate

the influence of the maximum dose.

In these ways, the present study may help promote the development of new drugs and

further development of existing drugs, and it may shorten the time-to-market for drugs.

Materials and methods
Establishment of database and molecular fingerprint analysis

A total of 359 small drug molecules were identified by the Provisional BCS

Classification system (http://www.ddfint.net/search.cfm) (S1 Table). An additional 52 small

drug molecules were identified in the literature using keyword search terms [18]. The

molecular structures were downloaded (http://pubchem.ncbi.nlm.nih.gov/) for computer

simulation. The BCS classification in the present study was the one recommended by the
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World Health Organization with CLogP [19] as the classification standard.

Molecular fingerprints were calculated by inserting the molecular structure into Open
Babel software. The resulting .sdf files were entered into ChemDes

(http://www.scbdd.com/fingerprints/index/), which calculated the Pybel-FP4 fingerprints[20].

The following formulas were used to calculate information entropy and IG value [9] for each

molecular fingerprint:
Information entropy of all molecules in the entire database
H(X)=—p110g2p1—p010g2p0 (1)

where p; stands for the possibility of molecules in the first category, and p, indicates the

possibility of molecules in the second category.

The effect of a molecular fingerprint on the overall system
H(X|T)=P()H(X[t)+ P(t)H(X|t) (2)

where P(t) stands for the probability that a molecular fingerprint will appear in the entire

system, and P(E) indicates the probability that a molecular fingerprint will not appear in the

entire system.

Information entropy of a molecular fingerprint under high solubility conditions

H(X]r) =~ p(0)log: p(6) ~ pu(t) log:pi©) -

Information entropy of a molecular fingerprint under low solubility conditions
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H(X|t) =—pi(t)log:pi(t) — pu(t) log: p(t) 4)
The influence of a molecular fingerprint on the entire molecule
IG(T)=H(X)-H(X|T) (5)

The larger the 1G value, the greater is the effect of the structural composition on the

entire molecular structure.
In this study, values of 1 equate to high solubility and 0 to low solubility.

Next, the frequency of a substructure (f) value was calculated [10]:

N substructure _ class X ]\]total

frequency of a substructure =
Nsubstructure _ total X Nelass (6)

Both f and IG values were ordered from largest to smallest, and the first 20 values were
selected and the common parts were taken as the characteristic molecular fingerprint to be
determined. If the IG value of the top 20 molecular fingerprints was greater than 0.01, it
indicated that the molecular fingerprint had a significant influence on the whole molecule, but
a value below 0.01 meant the influence was small and the BCS category could not be clearly

distinguished.

SVM verification of BCS classification

To determine the accuracy of the SVM macros in differentiating small-molecule drugs

into separate BCS classes, the classifications provided by the Provisional BCS website were
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used as a reference. IG values were extrapolated from molecular fingerprints and converted to
binary file format. The binary FP4 molecular fingerprints were run through the SVM macros.
Thresholds of 0, 0.001, 0.005, 0.01, or 0.02 were chosen based on solubility and permeability.
The data were divided into training and test sets in the ratio of 1:4 based on the drug class
assigned to each small molecule by the following macros: SP1(I-1I), SPO(III-1V), PS1(I-III),

PSO(II-1V), P(1, II-11L, 1V), S(I, II-1L, IV).

A validation set [21] was created by examining the SVM output of the 359
small-molecule drugs from the known BCS classification as recognized by the World Health
Organization. Data were derived as above, but thresholds were removed from the SVM
macros. The accuracy of the output was compared to the known class designation of these

molecules.

Every combination comparing one set to another was tested in the SVM software to
calculate the accuracy of the classification. Due to the similarity between the training and test
sets, the classification by the SVM software was considered accurate if it showed a value
between 70% and 90%. A value less than 70% meant that the BCS classification was not
complete enough to distinguish between the two types of data, while more than 90% meant
excessive SVM training, such that the machine's ability to generalize was insufficient. After
the SVM was performed, molecular fingerprints were entered into SMARTS InteLigand
from Open Babel (http://www.scbdd.com/pybel desc/fps-fp4/) [22] and the small-molecule

drug structure was recreated based on fingerprint characteristics.
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Classification based on dose coefficient F

When the SVM verification result was outside the ideal percentage range, the accuracy
of the computer simulation prediction was improved using secondary classification according
to dose coefficient F. We defined the concept of dose coefficient F for the first time, which
considers the ratio of the molecular mass of each small-molecule drug to the mass in the
maximum dose. This classification was divided into the following categories: 0 to 0.1, 0.1 to

1, and >1.

Verification of results

The obtained BCS feature structures were compared with those of small drug molecules

with clear BCS classification in the BCS database to verify whether the results were accurate

(Fig 3).

Fig 3. Experimental flowchart. Schematic describing the work flow of the study.

Abbreviations: 1G, Information gain; f, frequency of a substructure; SVM, Support Vector

Machine.

Results

Molecular fingerprints sharing I1G and f values
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Preliminary screening was performed by identifying commonly shared molecular
fingerprints from the lists containing the top 20 results with either the highest IG or f values
(Tables 1-4 and S1 File). However, the common molecular fingerprints determined by 1G and
f values overlapped among BCS categories, making it impossible to assign molecules to a
BCS category based solely on these values. Therefore, this study utilized SVM software to

verify accuracy.

Table 1. I-I1 comparison(SP1) result (S1 File. I-II Comparison(SP1)).

Abbreviations: SP1, I-II comparison; py(t), the probability of fingerprint in the first category;
p1(t), the probability of fingerprint in the second category; IG, Information gain; f, frequency of

a substructure; f*2, square of f.

Table 2. III-1V comparison(SP0) result (S1 File. ITI-IV Comparison(SP0)).

Abbreviations: SPO, III-IV comparison; po(t), the probability of fingerprint in the first category;
p1(t), the probability of fingerprint in the second category; IG, Information gain; f, frequency of

a substructure; f*2, square of f.

Table 3. I-11I comparison(PS1) result (S1 File. I-III Comparison(PS1)).

Abbreviations: PS1, I-III comparison; po(t), the probability of fingerprint in the first category;
pi(t), the probability of fingerprint in the second category; IG, Information gain; f, frequency of

a substructure; f*2, square of f.
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Table 4. II-IV comparison (PS0) result (S1 File. II-IV Comparison(PS0)).

Abbreviations: PSO, II-IV comparison; py(t), the probability of fingerprint in the first category;
p1(t), the probability of fingerprint in the second category; IG, Information gain; f, frequency of

a substructure; f*2, square of f.

SVM prediction results

The accuracy of the BCS classification between the training and test sets was evaluated
by SVM (Tables 5-10). When the IG threshold was 0.005 and only solubility or permeability
was considered, the resulting SVM prediction was highly accurate (70-85%). In contrast,
when drug classes were compared based on high or low solubility or high and low
permeability, the accuracy of the SVM prediction was low, indicating large variability
between the BCS populations. These data suggest that the current terms defining each drug
class are too vague for this type of throughput and require additional information to improve

classification accuracy.
Table 5. SVM predictive value under high permeability.

Abbreviations: SP1, I-II comparison; SVM, Support-Vector Machine.

Table 6. SVM predictive value under low permeability.
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Abbreviations: SPO, III-IV comparison; SVM, Support-Vector Machine.

Table 7. SVM predictive value under high solubility.

Abbreviations: PS1, I-III comparison; SVM, Support-Vector Machine.

Table 8. SVM predictive value under low solubility.

Abbreviations: PS0, II-IV comparison; SVM, Support-Vector Machine.

Table 9. SVM predictive value compared with high permeability and low permeability.

Abbreviations: P, LII-IIL.IV comparison; SVM, Support-Vector Machine.

Table 10. SVM predictive value compared with high solubility and low solubility.

Abbreviations: S, LIII-IL.IV comparison; SVM, Support-Vector Machine.

SVM prediction results based on dose coefficient F classification

The BCS classification was subdivided by the dose coefficient, and SVM prediction was

performed (Tables 11-16 and S2 File). Compared to the SVM predictions without dose
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coefficient F, the SVM predictions with the coefficient of 0-0.1 improved BCS prediction
accuracy when the SVM had a threshold of 0.01 or 0.02. Furthermore, when the dose
coefficient was greater than 1, the accuracy of the SVM prediction improved within each
threshold range. This indicated that the dose coefficient F affected the accuracy of the SVM
prediction and the screening of the characteristic molecular fingerprint. Therefore, addition of

the dose coefficient F can improve SVM accuracy.

Table 11. SVM value of I-II comparison after classification based on FP4 type BCS dose

coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.

Table 12. SVM value of I-II1 comparison after classification based on FP4 type BCS

dose coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.

Table 13. SVM value of II-IV comparison after classification based on FP4 type BCS

dose coefficient.

Abbreviations: BCS, Biopharmaceutical -classification system; SVM, Support-Vector

Machine.
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Table 14. SVM value of III-IV comparison after classification based on FP4 type BCS

dose coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.

Table 15. SVM values of L, II-III, IV comparison after classification based on FP4 type

BCS dose coefficient.

Abbreviations: BCS, Biopharmaceutical -classification system; SVM, Support-Vector

Machine.

Table 16. SVM values of L, III-II, IV comparison after classification based on FP4 type

BCS dose coefficient.

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.

Molecular fingerprints characteristic of BCS classes III and IV

Based on the IG value, f value, dose coefficient F, and SVM prediction results,

characteristic molecular fingerprints were screened for small-molecule drugs assigned to BCS
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classes III and IV (Tables 17-19). Feature structures of class III drugs when the dose
coefficient was 0-0.1 included Secondary aliphaticamine, Tertiary amide, Primary alcohol,
and Carbonic_acid derivatives. A dose coefficient of 0.1-1 included Primary alcohol and
Hetero N basic no H, and a dose coefficient greater than 1 included Secondary carbon and
Michael acceptor. Structural features of class IV drugs when the dose coefficient was 0-0.1
included Sulfonamide, Sulfonic derivatives, and Dialkylether. A dose coefficient of 0.1-1
included NOS methylen ester and similar, Hetero methylen ester and similar, and
Isothiourea. Finally, a dose coefficient greater than 1 included Sulfonamide

Sulfonic_derivatives, Secondary amides, and Vinylogous amides.

Table 17. Characteristic molecular fingerprints with dose coefficients in the range of

0-0.1.

Abbreviations: BCS, Biopharmaceutics Classification System; py(t), the probability of
fingerprint in the first category; p;(t), the probability of fingerprint in the second category; IG,

Information gain.

Table 18. Characteristic molecular fingerprints with dose coefficients in the range of

0.1-1.

Abbreviations: BCS, Biopharmaceutics Classification System; py(t), the probability of
fingerprint in the first category; p;(t), the probability of fingerprint in the second category; IG,

Information gain.
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Table 19. Characteristic molecular fingerprints with dose coefficients greater than 1.

Abbreviations: BCS, Biopharmaceutics Classification System; pg(t), the probability of
fingerprint in the first category; pi(t), the probability of fingerprint in the second category; IG,

Information gain.

Verification of results

We verified the accuracy of our results by comparing the obtained BCS feature structures
with those of small drug molecules with clear BCS classification in the BCS database (S3
File). These data confirmed that the molecular feature structures we identified were consistent
with small-molecule drugs found in BCS classes III and IV, and that this method can be used

as an accurate predictor.

Discussion

In this study, we used computer simulation to analyze the common molecular fingerprints
of 411 drug molecules. We determined that IG value, f value, and dose coefficient F were all
necessary for the accuracy of SVM classification prediction. Lastly, we generated five macros

to calculate and classify BCS (S4 File).

Different BCS classifications have been developed by the World Health Organization,

the US Food and Drug Administration and the European Medicines Agency. The FDA
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definition of high solubility is that the highest dose allowed for a single drug administration
can be dissolved in 250 ml or less of an aqueous solution at 37°C and pH1.0-7.5. The other
regulatory bodies narrow the pH range to 1.2-6.8 or 1.0-6.8 [23]. In this study, we followed

the classification from the World Health Organization.

The introduction of the dose coefficient into the classification prediction software
improved the reliability and accuracy of the results. Some drugs have a maximum dose of
1000 (Cefmetazole), while some drugs have a maximum dose of only 0.003 (Alfacalcidol).
Moreover, small-molecule drugs have different molecular masses. In order to eliminate these
two differences and make the results more reliable and accurate, we defined the concept of
dose coefficient F as a standard for BCS secondary classification for the first time, which
considers the ratio of the molecular mass of each small-molecule drug to the mass in the

maximum dose.

This study failed to obtain the characteristic fingerprints of class I and class II drugs,
which may be due to the fact that the constructed database is not large enough, such that the
frequencies of fingerprints of various features are too low. Therefore, in future studies, it is
necessary to continuously increase the number of small-molecule drugs in the database, so
that the characteristic fingerprints obtained are more meaningful. Since the present study used
only CLogP standards, future studies should include ALogP and KLogP [24] to make the

research more extensive.

Conclusion
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In this study, we used FP4 fingerprints to describe the chemical structures of drugs, and
calculated IG values and f values as indicators of computer simulations. Furthermore, we used
SVM as the evaluation criteria for the accuracy of BCS classification. The structural features
of drugs in BCS classes III and IV were successfully obtained, including Secondary
aliphaticamine, Michael acceptor, Isothiourea, and Sulfonamide Sulfonic_derivatives. These
structural features can be used for the classification and formulation of drugs in these two
classes. We believe that with the increase in number of the exact classification of class I and
class II drugs, the characteristic structures of the two types of drugs can be obtained

successfully and further guide the development of new drugs.
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Fig 1. Biopharmaceutics Classification System,

Fig 2. Support-Vector Machine schematic diagram.
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Fig 3. Experimental flow chart.

Table 1. I-11 comparison(SP1) result (S1 File, I-1I1 Comparison(SP1)).

Molecular
palt) m (L) IG f 2

fingerprint
Fingerprint 129 0.0526 0 0.0266 1.9561 3.8265
Fingerprint 13 0 0.0367 0.0188 -2.0459 4. 1856
Fingerprint29 0 0.0275 0.0140 -2.0459 4. 1856

Abbreviations: SP1, I-II comparison; py(t), the probability of fingerprint in the first
category; py(t), the probability of fingerprint in the second category; IG, Information
gain, f, frequency of a substructure; 2, square of f.
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Table 2. III-1V comparison(SP0) result (S§1 File. ITI-1V Comparison(SP0)).

Molecular
Polt) Pi(t) IG f 2
fingerprint
Fingerprint211 0.0102 0.1667 0.0635 -2.7381 7.4972
Fingerprint214 0.0102 0.1667 0.0635 -2.7381 7.4972
Fingerprnint183 0.0102 0.1429 0.0514 -2.6531 T.0387
bioRxiv preprint doi: https://doi.org/10.1101/631820; this version posted May 8, 2019. The copyright holder for this preprint (which was not
certified by peepmg‘zﬂﬁn mlﬁ)ﬁfunder, Whlj)nl'cljz? ag(r: -gc\‘(ell.ooﬁ)r(]lt\g?ng(t:%zsa? ltigemwggprepnnt in perpetuitfy Ilﬂﬁnla]e available __333 33 11 . 1111
Fingerprint182 0.0102 0.1190 0.0398 -2.5397 6.4500
Fingerprint65 0.0408 0.1905 0.0390 -1.7460 3.0486
Fingerprnint66 0.0408 0.1905 0.0390 -1.7460 3.0486
Fingerprint49 0.0102 0.0952 0.0287 -2.3810 5.6689
Fingerprint150 0.0102 0.0952 0.0287 -2.3810 3.6689
Fingerpnint101 0.0714 0 0.02635 1.4286 2.0408
Fingerpnnt200 0 0.0476 0.0252 -3.3333 11.1111

Abbreviations: SPO, I1I-IV comparison; pe(t), the probability of fingerprint in the first
category; pi(t), the probability of fingerprint in the second category; IG, Information
gain, f, frequency of a substructure; f*2, square of f.
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Table 3. I-1I1 comparison(PS1) result (S1 File. I-11I Comparison(PS1)).

Molecular
Palt) py (t) IG f 2
fingerprint
Fingerprint13 0 02857 0.1641 -2.1633 4 6797
Fingerprint41 0 0.0816 0.0433 -2.1633 4.6797
Fingerpnnt281 0 0.0816 0.0433 -2.1633 4.6797
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Abbreviations: PS1, I-III comparison; pg(t), the probability of fingerprint in the first
category; pi(t), the probability of fingerprint in the second category; IG, Information
gain, f, frequency of a substructure; "2, square of f.


https://doi.org/10.1101/631820
http://creativecommons.org/licenses/by/4.0/

Table 4. II-1V comparison (PS0) result (S1 File. II-IV Comparison(PS0)).

Molecular
polt) pr (1) IG f £A2
fingerprint
Fingerprint17 0.0092 0.2143 0.0888 -3.0972 9.3925
Fingerprint28 0.0459 0.3095 0.0849 -2.2117 4 8918
Fingerprint63 0.0092 0.1905 0.0761 -3.0418 9.2528
bioRxiv preprint doi: https://doi.org/10.1101/631820; this version posted May 8, 2019. The copyright holder for this preprint (which was not
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Fingerprint 128 0.0092 0.1190 0.0403 -2.7631 7.6460
Fingerprint24 0.0092 0.0952 0.0292 -2.5991 6.7555
Fingerpnint33 0.0092 0.0952 0.0292 -2.5991 6.7555
Fingerprint37 0 0.0476 0.0248 -3.5952 12.9257
FingerprnintH9 0 0.0476 0.0248 -3.3952 12,9257
Fingerpnnt129 0 0.0476 0.0248 -3.5952 12.9257

Abbreviations: PS0, II-IV comparison; pg(t), the probability of fingerprint in the first
category; pi(t), the probability of fingerprint in the second category; IG, Information
gain; f, frequency of a substructure; 2, square of f.
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Table 5. S¥M predictive value under high permeability.

SP1(1-1T) Training (%) Test (%)
0 797733 71.1111
0.001 79.7753 622222
0.005 76.9663 73.3333
AL, o080 0L st oy 8203, oprghil o i e 41t o o
. <o Ao mematenatiens= 77.5281 68.8889
0.02 73.0337 73.3333
Abbreviations: SP1, I-II companson; SVM, Support-Vector Machine.
Table 6. S¥M predictive value under low permeability.
SPO(III-IV) Training (%) Test (%)
0 71.4286 64.2857
0.001 71.4286 64.2857
0.005 71.4286 71.4286
0.01 69.6429 71.4286
0.02 79.4643 67.8571

Abbreviations: SPO, III-IV comparison; SVM, Support-Vector Machine.
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Table 7. SVM predictive value under high solubility.

PS1(I-IIT) Training (%) Test (%)
0 78.2353 71.4286
0.001 76.4706 71.4286
0.005 £0.0000 85.7143
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0.01 85.2941] 69.0476

0.02 80.5882 80.9524

Abbreviations; PS1, I-III comparison, SVM, Support-Vector Machine.

Table 8. SVM predictive value under low solubility.

PSO(II-IV) Training (%) Test (%)
0 71.9008 66.6667
0.001 727273 70.0000
0.005 73.5537 $3.3333
0.01 76,8393 69 0476
0.02 75.2066 80.0000

Abbreviations: PSO, II-IV comparison; SVM, Support-Vector Machine.
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Table 9. SVM predictive value compared with high permeability and low permeability.

P(LII-IILIV) Training (%) Test (%)

0 758600 76.7100

0.001 61,3800 61.6400

0.005 61.0300 63.0100

0.01 63.4500 53.4200
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certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
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Abbreviations: P, LII-II1.IV comparison; SVM, Support-Vector Machine.

Table 10. SVM predictive value compared with high solubility and low solubility.

S(LII-ILIV) Training (%) Test (%)
0 57.5862 61.6438
0.001 65.1724 37.5342
0.005 71.0345 68.4932
0.01 74,8276 73.9726
0.02 71.3793 65.7534

Abbreviations: S, LIII-I1.IV companson; SVM, Support-Vector Machine.
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Table 11. SVM value of I-1I comparison after classification based on FP4 type BCS dose

coefficient,
Group Threshold Training (%) Test (%)
0 J0.0000 J0.0000
0.001 70.0000 70.0000
Pybel. FP4-BCS-F-0-0.1-1-I1 0.005 71.2500 65 0000
Cened e FEww) }’s"i'ﬁie"’éﬁiﬁgﬂlfﬁﬂéfr?ﬁvsh}i%}é%fé%ji?%%‘ﬁi ;:E%ﬁﬁé:ﬁé%?ﬁ?@éﬂ ot rpfé’rrpté‘tiﬁnpﬁ??s"M?é’ ‘ 75 0000
0.02 72,5000 ST
0 61,2500 784211
(.001 61.2500 52.6316
Pybel FP4-BCS-F-0.1-1-1-I1 (0,005 73,7500 789474
0.01 68.7500 73.6842
0.02 80.0000 894737
0 32.3529 20.0000
(0,001 82 3529 800000
Pybel . FP4-BCS-F-1-1-11 0,003 76,4706 100.0000
0.01 764706 100.0000
0.02 38.2353 600000

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.
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Table 12. S¥M value of I-1IT comparison after classification based on FP4 type BCS dose

cocfTicient.
Group Threshold Training (%) Test (%)
0 61.7284 83.3333
L AL i pstetien s i o P SR
Pybel FP4-BCS-F-0-0.1-1-111 0.005 69.1358 58.3333
0.01 64.1975 750000
0.02 67.9012 62.5000
0 80.3020 62.5000
0.001 80,3030 81.2500
Pybel FP4-BCS-F-0.1-1-I-111 0.005 41.8182 36.2500
0.01 83,3333 68.7500
0.02 83.3333 93.7500
0 85.7143 83,3333
0.001 90.4762 66.6667
Pybel FP4-BCS-F-1-I-111 0,005 85.7143 833333
0.01 90.4762 66.6667
0.02 80.9524 100.0000

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.
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Table 13. SVM value of II-1V comparison after classification based on FP4 type BCS dose

cocfTicient.
Group Threshold Training (%) Test (%)
0 83.3333 62.5000
L B N e rems s, v, il i s o 22000
Pybel. FP4-BCS-F-0-0.1-11-1V 0.005 76.6667 87.5000
001 766667 875000
0.02 80.0000 75.0000
0 71.8750 §1.2500
0.001 73.4375 75.0000
Pybel FP4-BCS-F-0.1-1-11-1V 0.005 43.4375 75.0000
0.01 73.4375 75.0000
0.02 75.0000 81.2500
0 59,2593 57.1429
0.001 70.3704 42.8571
Pybel FP4-BCS-F-1-11-1V 0.005 70,3704 57.1429
0.01 81.4815 71.4826
0.02 70.3704 42 8571

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.
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Table 14. SVM value of I1I-IV comparison after classification based on FP4 type BCS dose

coefTicient.

Group Threshold Training (%) Test (%)

0 83.68710 75.0000

0.001 87.0968 66.6667

ceriien 322‘3?&Wﬁﬁﬁéﬁﬁ%ﬁ@ﬁ@j&&%@%ﬂ%ﬁﬁfEézdggéﬁmgéH Pt perpetity. 18 Bl 91.6667

0.01 90.3226 58.3333

0.02 100.0000 333330

0 66.0000 769231

0.001 63.0000 61.5385

Pybel FP4-BCS-F-0.1-1-111-1V 0.005 74.0000 69.2308

0.01 74.0000 69 2308

0.02 72.0000 769231

0 58.0645 62.5000

0.001 61.2903 50.0000

Pybel FP4-BCS-F-1-111-1V 0.005 61.2903 50.0000
0.01 74.1935 100.0000

0.02 64.5161 75.0000

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.
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Table 15. SVM values of I, II-111, IV comparison after classification based on FP4 type BCS
dose coefficient.

Group Threshold Training (%) Test (%)

0 67.5439 79.3103

0.001 69.2982 72.4138
bRfé’by"p‘dﬁﬂéﬁ@ﬁ!ﬁ%ﬁﬁ%@ﬁ#&%&%@ﬁt@!’ﬁggZl(l’l‘-’dmw Bprint i perpetaity. 1 1 AaeeeVaTde 58.6207
0.01 71.0526 65.5172

0.02 69.2982 72.4138

0 61.5385 62.5000

0.001 63.8462 53.1250

Pybel FP4-BCS-F-0.1-1-LII-IILIV 0.005 70.7692 50.0000
0.01 73.8462 68.7500

0 69.3878 41.6670

0.001 63.2653 66.6667

Pybel. FP4-BCS-F-1-LII-1ILIV 0.005 59.1837 83.3330
0.01 59.1837 83.3333

0.02 71.4286 91.6667

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.
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Table 16. SVM values of I, ITI-I1, IV comparison after classification based on FP4 type BCS

dose coefficient.
Group Threshold Training (%) Test (%)
0 72.8070 758621
0.001 74.5614 68.9635
PCenifien oy peer roview) i he author/iunder. who has aranted BioRx & hiense 10 dispiay e ProprNt in perpotaly. 1 1 made avalable.

Pybel FP4-BCS-F-02 1F =110 "0 005 75.4386 65.5172
0.01 73.6842 724138
0.02 79.8246 62.0690
0 73.8462 68.7500
0.001 75.3846 56.2500
Pybel FP4-BCS-F-0.1-1-LIN-ILIV 0.005 76.9231 68.7500
0.01 76.1538 62.5000
0.02 74.6154 59.3750
0 57.1429 50.0000
0.001 59.1837 41.6667
Pybel FP4-BCS-F-1-LII-ILIV 0.005 73.4694 50.0000
0.01 81.6327 66.6667
0.02 73.4694 58.3330

Abbreviations: BCS, Biopharmaceutical classification system; SVM, Support-Vector

Machine.
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Table 17. Characteristic molecular fingerprints with dose coefficients in the range of 0-0.1.

BCS category  Fingerprint  Structure name polt) palt) IG

Secondary
Fingerprint25 0.23638 0.058% 0.0386
aliphatic amine
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- Fingerprint]l3  Primary alcohol 0.1579 0.0588 0.0154

Carbonic_acid d
Fingerprint143 0.1579 0.0538% 0.0154

envatives

Fingerprini211 Sulfonamide 0 01176 0.0638

IV Sulfonic derivat

Fingerpnint214

1VCS 0 0.1176 0.0638
Fingerprint16 Dialkylether 0.1053 0 0.0406

Abbreviations: BCS, Biopharmaceutics Classification System; py(t), the probability of
fingerprint 1n the first category; pi(t), the probability of fingerprint in the second
category; IG, Information gain.
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Table 18. Characteristic molecular fingerprints with dose coefficients in the range of 0.1-1.

BCS category  Fingerprint  Structure name polt) pilt) IG
Fingcrprinlﬂ P]‘iﬂ'lﬂl‘:;-‘_ﬂ'ﬂﬂ-hﬂl 0.2895 0 0.1222
Hetero N_basic
Fingerprint 180
I no H 0.2632 0.1176 0.0208
NOS methylen
bioRxiv preprint doi: https://doi.org/10.1101/631820; this version posted May 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, wig-has granted bchJ%a license to display the preprint in perpetuity. It is made available
WEEEIA TR Dematoggl@rseand S1mi
ar 0.0263 0.3529 0.1391
Hetero_methyle
IV : : -
Fingerprint66  n_ester and si
milar 0.0263 0.3529 0.1391
Fingerprint150 [sothiourca 0.0263 0.2353 0.0749

Abbreviations; BCS, Biopharmaceutics Classification System; pg(t), the probability of

fingerprint in the first category; pi(t), the probability of fingerprint in the second

category; I1G, Information gain.
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Table 19. Characteristic molecular fingerprints with dose coefficients greater than 1.

BCS category  Fingerprint  Structure name Palt) py(t) 1G
Secondary carb
Fingerprint2
on (0.2895 0.0588 0.0573
Michael accept
1 Fingerprint303
P eniiion by pecr review) f the Authorfiunder. who hat aranted BioRoay & hense 0 disqing e peeprt n porpetai 0 A avatatie. 0 0.0301
under aCC-BY 4.0 International license.
Fingerprint211 Sulfonamide 0 0.1765 0.0976
Sulfonic derivat
Fingerpnini214
VS 0 0.1765 0.0976
Secondary _amid
A Fingerprint100
= 0.0526 0.2353 0.0483
Vinylogous ami
Fingerprint138
des 0.0789 0.2353 0.0313

Abbreviations: BCS, Biopharmaceutics Classification System; pg(t), the probability of
fingerprint in the first category; pi(t), the probability of fingerprint in the second
category; IG, Information gain.
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