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Introductory paragraph 
 
A better understanding of the genetic mechanisms regulating hematopoiesis are 
necessary, and could augment translational efforts to generate red blood cells (RBCs) 
and/or platelets in vitro. Using available genome-wide association data sets, we applied 
a machine-learning framework to identify genomic features enriched at established 
platelet trait associations and score variants genome-wide to identify biologically 
plausible gene candidates. We found that high-scoring SNPs marked relevant loci and 
genes, including an expression quantitative trait locus for Tropomyosin 1 (TPM1). 
CRISPR/Cas9-mediated TPM1 knockout in human induced pluripotent stem cells 
(iPSCs) unexpectedly enhanced early hematopoietic progenitor development. Our 
findings may help explain human genetics associations and identify a novel genetic 
strategy to enhance in vitro hematopoiesis, increasing RBC and MK yield.  
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Main Text 
 
Elucidating genetic mechanisms governing hematopoiesis has broad value in 
understanding blood production and hematologic diseases.1 Given interest in generating 
red blood cells (RBCs) and platelets from in vitro culture of induced pluripotent stem 
cells,2,3 there is also translational value in harnessing genetic and molecular processes 
that regulate hematopoiesis. For example, recent advances have increased platelet yield 
in vitro,2 but generating MKs cost-effectively will require novel strategies based on better 
knowledge of underlying mechanisms.2,4,5  
 
In vitro systems might be improved by identifying novel factors from human genetic 
studies. Genome wide association studies (GWAS) have linked hundreds of single 
nucleotide polymorphisms (SNPs) with platelet trait variability.6–9 Because most GWAS 
SNPs are non-coding, likely influencing transcriptional expression of key genes,10,11 it 
has been challenging to derive functional biochemical understanding of the key genes of 
action,11–13 and few studies have elucidated biochemical mechanisms for platelet trait 
variability loci.14–18 One strategy to narrow focus on candidate genes is to link non-coding 
variation to expression of nearby genes.1,19,20 However, platelet trait variation GWAS 
have thus far implicated >6700 expression quantitative trait loci (eQTL) affecting 
expression of >1100 genes (Methods), highlighting a need to more specifically identify 
putatively functional sites. 
  
To further narrow studies onto credible candidates for functional follow-up (Fig. 1a), we 
applied a penalized logistic regression model to select a subset of 628 different 
chromatin features that best distinguished 73 platelet trait GWAS SNPs6 from matched 
control SNPs not associated with platelet traits (Methods, Fig. 1b, and Supplementary 
Table 1). The resultant predictive model selected 9 epigenomic features and was able to 
discriminate between positive and negative labeled examples (Area Under the Receiving 
Operator Curve (AUC) = 0.793, Fig. 1c, Supplementary Fig. 1a, and Table 1). Each 
selected feature had a positive coefficient, meaning each was more likely to overlap a 
platelet-associated GWAS SNP than a control.  
 
While some care in interpretation was required, it was encouraging that the model 
selected biologically plausible features. GATA1 and FLI1 are critical MK transcription 
factors,21,22 and most of our features came from hematopoietic cells (primary MK, K562, 
GM12878; Table 1). Furthermore, this set of 9 chromatin features are functionally 
predicted to identify regulatory elements near and within gene bodies (Table 1). This 
regulatory localization is consistent with previous observations.14 
 
We calculated a trait-enrichment score based on SNP overlap with each of the 9 
selected features, weighted by our penalized regression model coefficients (Methods, 
Table 1). Resultant scores were significantly higher for training, holdout and validation 
sets of platelet trait GWAS SNPs, relative to SNPs genome-wide (p<0.0001, Fig. 2a, 
Supplementary Table 2). Our regression model performed well compared to other 
methods20,23,24 (Fig. 2b-c, Supplementary Fig. 1b). 
 
We next assessed biological support for penalized regression scoring beyond the 
machine learning framework. First, we evaluated the biological specificity of variation 
prioritized by the model, given practical limitations associated with fine-mapping and 
cellular validation experiments. The number of high-scoring SNPs from our model fell 
within the range of other predictors (Fig. 2d), and Gene Ontology analysis indicated that 
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the nearest genes to penalized regression-prioritized variants were enriched for 
biologically relevant pathways (Methods, Fig. 2e and Supplementary Tables 3-5). 
Second, SNP scores correlated with summary association statistics for platelet trait-
GWAS data6 (Supplementary Fig. 2a-b), with variants that were nominally associated 
but not yet genome-wide significant (and not used during the training or testing phases) 
having a significantly higher average score compared to SNPs with no clear association 
(p<0.0001, Methods, Supplementary Fig. 2c-d). This correlation suggested that our 
scoring algorithm was valid genome-wide and could potentially reveal true biological 
associations, as had the GWAS itself.6,14,15,17 Third, FANTOM5 enhancer regions25 were 
enriched for high-scoring SNPs, with an average score >0.9 compared with an average 
score 0.21 genome-wide (Methods, Supplementary Fig. 3a), consistent with the 
hypothesis that functional non-coding SNPs associate with active regulatory regions.11,26 
We further observed that enhancer regions in hematopoietic cell types scored 
significantly higher than enhancers from irrelevant control cells (Supplementary Fig. 
3a). This argues for trait specificity in hematopoietic enhancers, consistent with prior 
studies.27 Lastly, most high-scoring SNPs from the regression model were in gene 
bodies or near transcriptional start sites (TSSs, Supplementary Fig. 3b), with SNPs 
near key MK genes scoring significantly higher than SNPs in matched control regions28 
(Supplementary Fig. 3c). Collectively, this evidence indicated that our model 
successfully targeted hematopoietic trait-relevant loci, particularly those near and within 
gene bodies. 
 
We reasoned that active variants would (i) be in high linkage disequilibrium (LD) with 
established platelet trait GWAS loci, (ii) score highly relative to other SNPs within that LD 
block, (iii) regulate target gene(s) as quantitative trait loci, and (iv) overlap GATA binding 
sites.29,30 We prioritized GATA binding sites based on the importance of GATA factors in 
hematopoiesis21,31 and in our scoring algorithm (Methods, Fig. 1c).  
 
This approach led us directly to SNPs known to impact hematopoiesis, MK and/or 
platelet biology (Table 2 and Supplementary Table 6). For example, rs342293 is a 
GWAS SNP6 that regulates PIK3CG gene expression15 (Fig. 3a-d). In platelets, PIK3CG 
activity regulates PIK3 signaling32 and response to collagen.33 The GATA site is 
disrupted in the presence of the SNP minor allele (Fig. 3d). Individuals harboring this 
minor allele had increased mean platelet volume (MPV) and decreased platelet 
reactivity.15  
 
This approach also highlighted rs11071720, found within the 3rd intron of the 
Tropomyosin 1 (TPM1) gene locus. This SNP was in reasonably strong LD with the 
sentinel GWAS SNP6 rs3809566 (EUR r2=0.73, Fig. 3e-h). The rs11071720 minor allele, 
which disrupts a near-canonical GATA binding site, is an eQTL associated with 
decreased TPM1 expression34,35 (Methods, Fig. 3h, and Supplementary Fig. 4), higher 
platelet count, and lower mean platelet volume (MPV).8 Further, the minor allele for high-
scoring rs4075583 (EUR r2=0.71 with rs3809566) was associated with decreased TPM1 
expression in heterologous cells,36 though not in GTEx tissues.35 To our knowledge, 
neither of these SNPs, nor TPM1, had been functionally evaluated in the context of 
human hematopoiesis. 
 
Given that these high-scoring putatively active SNPs impacted TPM1 expression, we 
investigated functions for the TPM1 gene in an in vitro human model of primitive 
hematopoiesis.37 We anticipated that total gene deletion would show stronger effects 
than non-coding SNP modification.38 Using CRISPR/Cas9, we targeted a ~5kb region 
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containing TPM1 exons 4-8 in iPSCs (Fig. 4a), anticipating creation of a null allele.39 We 
confirmed deletion by sequencing and western blot (Fig. 4b and Supplementary Fig. 
5). In total, we obtained 3 TPM1 knockout (KO) clones from 2 separate genetic 
backgrounds. Karyotype and copy number variation analyses confirmed that engineering 
these clones did not introduce any de novo genomic aberrancies (data not shown).  
 
TPM1 protein was most abundant in iPSCs and downregulated during hematopoietic 
differentiation (Fig. 4b). Early differentiation proceeded normally in KO clones, with 
normal patterns of primitive streak and mesoderm gene expression (Fig. 4c) and 
pluripotency marker loss (Supplementary Fig. 6). The kinetics by which hemogenic 
endothelium (KDR+/CD31+) and hematopoietic progenitor cells (HPCs, CD34+/CD43+) 
emerged were also normal (Fig. 4d-e). In this culture system, hemogenic endothelium 
yields HPCs. 
 
Remarkably, KO clones showed enhanced formation of hemogenic endothelium (Fig. 
4d) and KO HPC yield roughly doubled that of WT controls (Fig. 4e-f and 
Supplementary Fig. 7) with normal cell surface expression of hematopoietic markers 
(Supplementary Fig. 8). KO HPCs generated normal quantities of mature MKs in liquid 
expansion culture (Fig. 4g). KO MK morphology and activation in response to agonists 
were normal (Supplementary Fig. 9-10). KO HPCs also generated increased numbers 
of erythroid cells (Fig. 4h) and normal quantities of myeloid cells (Supplementary Fig. 
11).  
 
Microarray gene expression analyses of WT and KO MKs revealed no statistically 
significant changes in MK genes, though Gene Set Enrichment Analysis (GSEA) showed 
a trend toward higher MK-related pathway expression in KO MKs (Supplementary Fig. 
12a-e). Overall, 19 molecular pathways were upregulated in KO MKs (Supplementary 
Fig. 12f and Supplementary Table 7). 
 
These data support a model whereby TPM1 deficiency enhances in vitro hematopoiesis 
and resulting RBC and MK yield, perhaps helping to explain human genetic association 
data linking SNPs that lower TPM1 expression34,36 with increased platelet count (Fig. 3h 
and Fig. 4i).8 Consistent with an impact on HPCs, TPM1-related SNPs have marginal 
effects on red cell traits in addition to genome-wide significant effects on platelet traits 
(Supplementary Fig. 13). These findings not exclude additional effects on terminal MK 
or RBC development in vitro, nor in vivo effects outside the scope of our model. 
 
TPM1 deficiency could leave filamentous actin more ‘accessible’ to other modulator,40,41 
such as other TPMs. Of these, TPM4 promotes MK development18 and likely modulates 
actin dynamics similar to TPM1.42 TPM4 isoforms were upregulated during MK 
differentiation and significantly increased in TPM1 KO iPSCs (Fig. 4b and 
Supplementary Fig. 14). Increased TPM4 may partially account for our observed 
enhanced HPC and MK yield. 
 
Enhanced hematopoiesis in TPM1KO iPSCs contrasts detrimental effects of TPM1 
deficiency on organism fitness in other contexts.6,43,44 For example, abrogated D. rerio 
thrombopoiesis with tpma-directed morpholinos6 resembles human TPM4 deficiency18 
rather than TPM1 deficiency. This highlights the importance of species-specific genetic 
validation, particularly given inter-species disparities in hematopoiesis.45  
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In conclusion, we used penalized regression modeling and cellular validation to define a 
role for TPM1 in constraining in vitro hematopoiesis. In addition to understanding a 
genetic modifier of hematopoietic traits,6,8 application of our results may augment RBC 
and MK yield in vitro. Recent advances increasing per-MK platelet yields2 have focused 
a spotlight on increasing cost effectiveness of in vitro MK generation. In addition to 
improved recognition of genes and mechanisms underlying quantitative hematopoietic 
trait variation, application of the computational approach described herein could also 
help to specify trait-specific causal genetic variants for virtually any clinically relevant 
human trait. 
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Methods 
 
In silico analysis. Relevant data sets and coding scripts can be found on GitHub 
(https://github.com/thomchr/2019.PLT.TPM1.Paper). Human genome version hg19 was 
used for all analyses, and we utilized the LiftOver script when necessary 
(https://bioconductor.org/packages/release/workflows/html/liftOver.html). GWAS 
summary statistics for were obtained courtesy of Nicole Soranzo (for 6) and are publicly 
available (http://www.bloodcellgenetics.org/). 
 
Expression Quantitative Trait Locus analysis. To estimate the number of eQTLs 
implicated by prior platelet trait GWAS, SNPs in high LD with established GWAS loci8 
(EUR r2>0.9) were identified using PLINK. From this set of SNPs, eQTLs and affected 
genes were identified from GTEx V7.35 Numbers reported in the text reflect unique eQTL 
SNPs, which often functioned across multiple tissues. The affected gene estimate 
reflects the number of unique Ensembl gene identifiers (ENSG).  
 
SNP selection. Platelet trait GWAS SNPs were identified from Gieger et al (see Table 1 
in 6). When two SNPs had been identified in a given region, the SNP with the greater 
effect size was chosen. The resultant 73 SNPs comprised our training SNP set 
(Supplementary Table 2). The remaining 8 SNPs were designated as a holdout set. 
From a total of 710 platelet trait (PLT, platelet count; MPV, mean platelet volume; PDW, 
platelet distribution width; PCT, platelet-crit)-associated GWAS SNPs from a more 
recent study,8 614 had rsIDs that matched our scored genome; these comprised our 
validation set. All of these SNP sets can be found on GitHub. We used the Genomic 
Regulatory Elements and GWAS Overlap algoRithm (GREGOR)46 tool to select control 
SNPs for our study. GREGOR matched SNPs based on Distance to nearest gene, “LD 
buddies” (i.e., number of SNPs within a LD block) and Minor allele frequency, and 
identified controls for each of the 73 training set SNPs.   
 
Chromatin feature selection. We collected a subset of available features tracks from 
ENCODE47, including data for hematopoietic (K562 and GM12878) as well as other cell 
types (H1-hESC, HUVEC, HeLa, HepG2). We also collected available feature tracks 
from primary MKs.21,48 See Supplementary Table 1 for a list of these features.  
 
Penalized regression modeling. To generate our model, we first analyzed training set 
GWAS SNPs (73) and matched controls SNPs (780,632) for overlap with 628 chromatin 
features (data set available on GitHub). Columns representing our 3 baseline 
parameters (Distance to Nearest Gene, LD Buddies and Minor Allele Frequency) were 
also included in this data table for each SNP. This chromatin feature overlap data file 
was then analyzed using the least absolute shrinkage and selection operator (LASSO, 
L1 regularization, glmnet version 2.0-2)49,50 with 10-fold cross-validation and forced 
inclusion of the 3 baseline parameters. Baseline parameters were assigned penalty 
factors of 0, while other chromatin features were assigned penalty factors of 1. Features 
and coefficients were taken from the lse (Df 12, %Dev 0.062980, l 6.203e-05). For 
downstream genome-wide analyses, we scored all SNPs within NCBI dbSNP Build 147.   
 
Model performance comparison. We used ROCR51 to compare prediction model 
performance. We used public databases to obtain SNP scores for alternative models 
(CADD v1.3, GWAVA (unmatched score), DeepSea; 
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https://cadd.gs.washington.edu/download, 
http://www.sanger.ac.uk/resources/software/gwava, http://deepsea.princeton.edu).  
 
Model specificity analysis. To compare how restrictive and specific predictive models 
were for high-scoring SNPs, we first obtained scored NCBI dbSNP Build 147 SNPs for 
LASSO, GWAVA and CADD models. We quantified the number of SNPs that fell within 
the top 10% of scores. For GWAVA, this included any SNP scored >0.90 given a 
maximum score of 1.0. For CADD, this included any SNP scored >32.4 (maximum 
PHRED score 36). For LASSO, this included any SNP scored >2.32 (maximum score 
2.58).  
 
To assess biological specificity, we identified the top 1% highest-scoring SNPs from 
each model (LASSO, GWAVA, CADD) after excluding platelet trait-associated GWAS 
loci (81 SNPs from 6 and 710 SNPs from 8). We then used closestBed 
(https://bedtools.readthedocs.io/en/latest/content/tools/closest.html) to identify the 
nearest gene to each of these SNPs. Genes and positioned were defined by BioMart 
(http://www.biomart.org/). We then used the Gene Ontology resource 
(http://geneontology.org/) to analyze pathway enrichment. Input analysis settings were 
Binomial tests and calculated FDR for GO Biological Process complete. Pathways 
identified with FDR<5% are presented in Fig. 2e and Supplementary Tables 3-5. 
Pathways shown in Fig. 2e are GO:0045652, GO:1902036, GO:1901532, GO:1903706, 
GO:0048534, GO:0030097, and GO:0030220. 
 
Score validation. Gene Ontology pathways were used to identify key MK genes. A total 
of 132 “MK genes” were collected from pathways that were returned after a search for 
the term “megakaryocyte”, including “positive regulation of megakaryocyte 
differentiation”, “negative regulation of megakaryocyte differentiation”, “regulation of 
megakaryocyte differentiation”, “megakaryocyte differentiation”, “megakaryocyte 
development”, “platelet alpha granule”, “platelet formation”, “platelet morphogenesis” and 
“platelet maturation” (Supplementary Table 8). Gene locations for hg19 were obtained 
from the UCSC Genome Browser Table Browser feature. 
 
The Genomic Regions Enrichment of Annotation Tool28 (GREAT) was used in 
combination with the UCSC Genome Browser52 (Table Browser interface) to analyze 
SNP locations and proximity to known genes. 
 
Enhancer regulatory regions were defined according to the FANTOM5 data set.25 
Presented FANTOM5 data represent scores for all overlapping SNPs from dbSNP 147. 
 
Linkage disequilibrium structure assessment. The SNP Annotation and Proxy 
Search tool (https://archive.broadinstitute.org/mpg/snap/ldsearch.php), LDlink  
(https://analysistools.nci.nih.gov/LDlink), and 1000 Genomes Project (phase 3) data 
were used to measure linkage disequilibrium in the EUR population.  
 
Transcription factor binding site identification. Transcription factor binding sites were 
identified using the Find Individual Motif Sequences (FIMO) and Analysis of Motif 
Enrichment (AME) tools from MemeSuite (http://meme-suite.org). To identify GATA 
sites, the genomic sequence contexts for LD blocks containing each GWAS SNP were 
analyzed for matches (p<0.001) by manual curation of canonical or near-canonical 
GATA binding motif in all orientations (AGATAA, TTATCA, AATAGA, TTATCT). 
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Human iPSC generation. iPSC models were generated as described from peripheral 
blood mononuclear cells.53 The “CHOP10” and “CHOP14” lines were used in this study. 
CRISPR/Cas9-mediated genome editing was performed as described54 per protocols 
from the CHOP Human Pluripotent Stem Cell Core Facility 
(https://ccmt.research.chop.edu/cores_hpsc.php) with the following guide sequences: 5’ 
(1) ATGACGAAAGGTACCACGTCAGG, 5’ (2) TGAGTACTGATGAAACTATCAGG, 3’ 
(1) CCCTTTTCTTGCTGCTGTGTTGG, 3’ (2) GGAGAGTGATCAAGAAATGGAGG. 
 
Karyotyping (Cell Line Genetics, Madison, WI) and copy number variation (CHOP 
Center for Applied Genomics, Philadelphia, PA) analyses were performed per 
institutional protocols. 
 
iPSC hematopoietic differentiation and analysis. iPS cells were differentiated in 
HPCs and terminal lineages (MKs, erythroid, myeloid) per published protocols.37,55–57 
Validated flow cytometry gating for pluripotency (SSEA3+/SSEA4+), hemogenic 
endothelium (KDR+/CD31+), hematopoietic progenitors (CD43+/CD34+ and 
CD41+/CD235+) and terminal lineages can be found in these references.  
 
Flow cytometry. Flow cytometry analysis was performed on a Cytoflex LX  and FACS-
sorting was performed on a FACS Aria II (BD Biosciences). Flow cytometry data were 
analyzed using FlowJo 10 (Tree Star, Inc.). The following antibodies were used for flow 
cytometry: FITC-conjugated anti-CD41 (BioLegend), PE-conjugated anti-CD42b (BD 
Biosciences), APC-conjugated anti-CD235 (BD Biosciences), PB450-conjugated anti-
CD45 (BioLegend), AF488-conjugated anti-SSEA3 (BioLegend, AF647-conjugated anti-
SSEA4 (BioLegend), PE-conjugated anti-KDR (R&D Systems), PECy7-conjugated 
antiCD31 (BioLegend), PECy7-conjugated anti-CD34 (eBioscience) and FITC-
conjugated anti-CD43 (BioLegend).  
 
Gene expression analysis by RT-semiquantitative PCR. Total RNA was prepared 
using PureLink RNA micro kits (Invitrogen) in which samples were treated with RNase-
free DNase. The reverse transcription of RNA (100 ng-1 μg) into cDNA was performed 
using random hexamers with Superscript II Reverse Transcriptase (RT) (Life 
Technologies), according to the manufacturer’s instructions. Real-time quantitative 
polymerase chain reaction (PCR) was performed on QuantStudio 5 Real-Time PCR 
Instrument (Applied Biosystems). All experiments were done in triplicate with SYBR-
GreenER pPCR SuperMix (Life Technologies), according to the manufacturer's 
instructions. Primers (Supplementary Table 9) were prepared by Integrated DNA 
Technologies or Sigma Aldrich. Dilutions of human genomic DNA standards ranging 
from 100 ng/μl to 10 pg/μl were used to evaluate PCR efficiency of each gene relative to 
the housekeeping gene TATA-Box Binding Protein (TBP).  
 
Microarray analysis. For microarray analysis, 50,000 cells were FACS-sorted directly 
into Trizol. RNA was extracted from using a miRNeasy Mini Protocol (Qiagen). Samples 
passing quality control were analyzed using the human Clariom D Assay (ThermoFisher 
Scientific) and analyzed using Transcriptome Analysis Console (ThermoFisher 
Scientific) Software and Gene Set Enrichment Analysis 
(http://software.broadinstitute.org/gsea/index.jsp) software.  
 
Cell analysis and imaging. For Cytospins, FACS-sorted MKs were spun onto a glass 
slide and stained with May-Grünwald and Giemsa. Images were obtained on an 
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Olympus BX60 microscope with a 40X objective. An Invitrogen EVOS microscope with a 
10x objective was used to image cells in culture.  
 
Western blots. Cell pellets were resuspended in Laemmli buffer, sonicated for 5 min, 
and boiled for 5 min at 95 degrees C. Lysates were centrifuged at 10,000 rpm for 5 min 
at room temperature, and supernatants were used for analysis. Lysate volumes were 
normalized to cell counts. Samples were run on 4-12% NuPAGE Bis-Tris gels 
(Invitrogen) and transferred onto nitrocellulose membranes (0.45um pore size, 
Invitrogen) at 350mA for 90 minutes. Following blocking in 5% milk for 1 h, membranes 
were incubated with primary antibodies overnight at 4°C. After washing thrice in TBST, 
membranes were incubated with secondary horseradish peroxidase-conjugate 
antibodies for 1h at room temperature, washed in TBST thrice, and developed using 
ECL western blotting substrate (Pierce) and HyBlot CL autoradiography film (Denville 
Scientific). The following antibodies were used for western blotting: Rabbit anti-TPM1 
(D12H4, #3910, Cell Signaling Technologies), Mouse anti-TPM1/TPM2 (15D12.2, 
MAB2254, Millipore Sigma), Mouse anti-TPM3 (3D5AH3AB4, ab113692, Abcam), 
(Rabbit anti-TPM4 (AB5449, Millipore Sigma), and Mouse anti-b Actin (A1978, Sigma). 
Western blot band quantitation was performed using FIJI (https://fiji.sc/). 
 
MK activation assay. MKs were pelleted and resuspended in Tyrode’s Salts (Sigma) 
with 0.1% bovine serum albumin (BSA) containing FITC-conjugated PAC-1 (BD 
Biosciences), PacBlue-conjugated CD42a (eBioscience) and APC-conjugated CD42b 
(eBioscience) at a concentration of roughly 100,000 cells per 50µl. Following addition of 
Convulxin (Enzo Biochem) or Thrombin (Sigma), cells were incubated at room 
temperature in the dark for 10 min. Cells were then incubated on ice for 10 min. An 
additional 100µl Tyrode’s Salts containing 0.1% BSA were added and cells were 
immediately analyzed by flow cytometry.  
 
Data presentation. Genome-wide SNP Scores were loaded as custom tracks into the 
UCSC Genome Browser.52 Images depicting genomic loci were generated using this 
tool, as well as Gviz.58 Other data were created and presented using R, Adobe Illustrator 
CS6 or GraphPad Prism 6. 
 
Statistics. Statistical analyses were conducted using R or GraphPad Prism 6. 
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Figure Legends 
 
Fig. 1. A machine learning approach to identify genes and loci that regulate 
megakaryocyte and platelet development.  
a, Schematic outline of our approach. We identified a machine learning-based predictive 
scoring algorithm based on platelet trait GWAS loci and applied the resultant scoring 
algorithm genome-wide to predict causal variants and genes. We validated this model 
computationally and by establishing biochemical activity of novel loci. b, Platelet trait 
GWAS SNPs6 and matched control SNPs46 were analyzed for overlap with 628 
chromatin features (e.g., histone marks and TF binding sites) from 7 different cell types 
(K562, GM12878, HeLa, HUVEC, H1-hESC, HepG2, primary MKs).21,59 LASSO49 
analysis identified chromatin features that best discriminated GWAS SNPs. c, The best 
LASSO model identified 9 chromatin features from the indicated cell types, in addition to 
background characteristics. Bar heights are LASSO coefficients, indicating the relative 
importance of each feature.  
 
 
Figure 2. A LASSO-based model most specifically identifies SNPs relevant to 
megakaryocyte and platelet biology.  
a, SNP scores for the training holdout,6 and validation8 sets of platelet trait-associated 
GWAS SNPs were significantly higher than genome-wide SNP scores. Bars represent 
mean+-SEM, ****p<0.0001 by ANOVA. b,c, Performance comparison of our LASSO-
based model to DeepSEA,23 GWAVA,20 and CADD24 for (b) training or (c) holdout SNP 
sets. AUC values are shown in the legend with each plot. d, Bar heights represent the 
percent of all SNPs scored in the top numerical decile for the indicated models. The 
number of SNPs that fell within this top score decile is indicated. e, Hematopoietic 
pathways60 identified by the highest-scoring 1% of SNPs identified by LASSO, GWAVA, 
or CADD, excluding established platelet trait loci6,8 (FDR, False Discovery Rate). 
 
 
Figure 3. Fine-mapping GWAS-implicated regions using LASSO-based SNP 
scores and putative GATA binding sites identifies active loci and eQTLs.  
a,b,c, Part (a) shows SNP scores genes near platelet trait GWAS SNP rs342293.6 This 
GWAS SNP is shown in black and linked SNPs (EUR r2>0.7) in cyan. Bar heights depict 
SNP scores. The boxed region is expanded in (b) to show genomic context, including 
key chromatin features (Fig. 1c). The delineated area (red dashed line) is expanded in 
(c) to show the local DNA sequence, including rs342293 (underlined) and canonical 
GATA binding site29 (red). d, The major and minor rs342293 alleles and associated 
phenotypes.15 e,f,g, SNP scores and genes (e) near platelet trait GWAS SNP 
rs3809566.6 This GWAS SNP is shown in black and linked SNPs (EUR r2>0.7) in cyan. 
Bar heights depict SNP scores. The boxed region is expanded in (f) to show local 
genomic context, including TPM1 exons and key chromatin features (Fig. 1c). The 
delineated area (red hashed line) is expanded in (g) to show the local DNA sequence, 
including rs11071720 (underlined) and a putative GATA binding site29 (red). h, The 
major and minor rs11071720 alleles and associated phenotypes.8,34 Allele percentages 
based on UCSC genome browser and dbSNP. 
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Fig 4. TPM1 deficiency enhances iPSC-derived HPC and MK generation. 
a, A 5 kb region (TPM1 exons 4-8, red box) was targeted for CRISPR/Cas9-mediated 
deletion to create KO iPSCs. b, Western blots showing TPM1-4 expression in wild type 
(WT) and KO iPSCs, hematopoietic progenitor cells (HPC, differentiation d8) and FACS-
sorted MKs (CD41+/CD42b+, expansion d3). TPM1 antibodies targeted exon 4 (top) or 
exon 9d (2nd panel). c, Expression of primitive streak and mesoderm genes are normally 
expressed in differentiating KO iPSCs. d,e, KO cells yield (d) hemogenic endothelium 
(KDR+/CD31+) and (e) hematopoietic progenitor cells (CD43+/CD34+) with normal 
kinetics, but in enhanced abundance. Percent (%) cells within boxed regions are shown 
from a representative experiment. f, Quantification of WT and KO non-adherent HPCs 
on differentiation day 8. Bars represent fold change in HPCs (mean±SD) vs WT for ³4 
experiments. (Top) Culture images on differentiation d8, with HPCs (light color) floating 
above an adherent monolayer. Scale bar, 20mm. g, WT and KO HPCs put into MK 
expansion culture generate equivalent numbers of MKs. Points represent CD41+/CD42b+ 
MKs percentage multiplied by total cell count, normalized to cell count on day 0. h, KO 
HPCs put into erythroid (Ery) expansion culture generate more erythroid cells than WT 
HPCs. Points represent CD235+ percentage multiplied by total cell count, normalized to 
cell count on day 0. i, Model in which KO iPSCs yield more HPCs than WT, generating 
more total MKs and RBCs. ns, not significant, *p<0.05, **p<0.01 by ANOVA. 
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Table Legends 
 
Table 1. Nine chromatin features discriminate platelet trait GWAS SNPs from 
controls. In addition to background characteristics, penalized regression modeling 
identified 9 independently enriched chromatin features. The cell type for each feature 
data set and function for each feature61–66 are displayed. Coefficients for each feature, 
indicating relative importance, are shown at right. Ery, erythroid. FLI1, Friend Leukemia 
Virus Integration 1. RbBP5, Retinoblastoma Binding Protein 5. 
 
 
Table 2. LASSO-based fine-mapping identifies eQTLs in established platelet trait 
GWAS loci that overlie GATA binding sites. Listed are SNPs within GWAS LD blocks 
(EUR r2>0.7) scoring in the top 5% (LASSO) that overlap canonical or near-canonical 
GATA binding sites and are eQTLs for at least 1 gene (GTEx V7).35 Associated GWAVA 
scores and percentiles are shown. Genes in bold have evidence supporting function in 
human hematopoiesis, megakaryocytes, and/or platelets, except where indicated.  
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Table 1. Thom et al 
 
 

 

Cell Type Mark Function Coefficient 
1o MK GATA1 Ery/MK TF 5.08e-01 
1o MK FLI1 Ery/MK TF 6.17e-02 
K562 H3K36me3 Active gene bodies 4.11e-01 
K562 H3K79me2 Enhancers 1.15e-01 
K562 RbBP5 SET1 methylation complex 4.45e-01 
Gm12878 H3K4me1 Enhancers, 5’ active genes 3.08e-01 
Gm12878 H3K4me2 Enhancers, promoters, TF binding sites 5.36e-01 

Gm12878 H3K27ac Active genes, enhancers, TF binding sites 1.14e-01 

HUVEC H3K4me2 Enhancers & promoters 8.59e-02 
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Table 2. Thom et al 
 

 

 

#SNP names and locations refer to hg19 genome. 
*eQTL in human platelets,18 though not in GTEx tissues.38 
**Function suggested by D. rerio morpholino experiments. 
 
 
 

rsID# Chr Pos 
(Mb) 

LASSO 
(%ile) 

GWAVA 
(%ile) 

Nearest 
Gene eQTL Gene  Support 

rs625132  2 31.5 1.29 
(96th) 

0.19 
(73rd) EHD3 EHD3  

rs72879290  2 43.6 1.37 
(96th) 

0.27 
(81st) THADA PLEKHH2, RN7SL531P 67 

rs342293  7 106.4 2.00 
(99th) 

0.94 
(99th) CC71L PIK3CG* 15 

rs7088799  10 65.0 2.01 
(99th) 

0.27 
(81st) JHD2C NRBF2, MRPL35P2 68 

rs7899657  10 65.3 1.03 
(95th) 

0.17 
(69th) REEP3 REEP3  

rs17655663  11 0.27 1.58 
(98th) 

0.72 
(97th) NLRP6 SIRT3, NLRP6, BET1L, RIC8A, 

PSMD13, SCGB1C1, AC136475.3 
69,70 

rs72882962  11 0.27 1.68 
(98th) 

0.48 
(91st) NLRP6 SIRT3, NLRP6, BET1L, RIC8A, 

PSMD13, SCGB1C1 
69,70 

rs6589734  11 119.2 1.90 
(99th) 

0.95 
(99th) MUC18 CBL, NLRX1, HINFP, HMBS 71 

rs941207  12 57.0 2.08 
(99th) 

0.68 
(96th) BAZ2A BAZ2A, RBMS2  

rs11071720  15 63.3 1.59 
(98th) 

0.58 
(94th) TPM1 TPM1, RAB8B, LACTB, APH1B 6**, 72 

rs4819526  22 20.0 1.90 
(99th) 

0.89 
(99th) ARVC COMT, ARVCF, TANGO2 73 
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