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Abstract

Acute myeloid leukemia (AML) is a cancer of hematopoietic systems that poses high
population burden, especially among pediatric populations. AML presents with high
molecular heterogeneity, complicating patient risk stratification and treatment planning.
While molecular and cytogenetic subtypes of AML are well described, significance of
subtype-specific gene expression patterns is poorly understood and effective modeling of
these patterns with individual algorithms is challenging. Using a novel consensus
machine learning approach, we analyzed public RNA-seq and clinical data from
pediatric AML patients (N = 137 patients) enrolled in the TARGET project.

We used a binary risk classifier (Low vs. Not-Low Risk) to study risk-specific
expression patterns in pediatric AML. We applied the following workflow to identify
important gene targets from RNA-seq data: (1) Reduce data dimensionality by
identification of differentially expressed genes for AML risk (N = 1984 loci); (2)
Optimize algorithm hyperparameters for each of 4 algorithm types (lasso, XGBoost,
random forest, and SVM); (3) Study ablation test results for penalized methods (lasso
and XGBoost); (4) Bootstrap Boruta permutations with a novel consensus importance
metric.

We observed recurrently selected features across hyperparameter optimizations,
ablation tests, and Boruta permutation bootstrap iterations, including HOXA9 and
putative cofactors including MEIS1. Consensus feature selection from Boruta
bootstraps identified a larger gene set than single penalized algorithm runs (lasso or
XGBoost), while also including correlated and predictive genes from ablation tests.

We present a consensus machine learning approach to identify gene targets of likely
importance for pediatric AML risk. The approach identified a moderately sized set of
recurrent important genes from across 4 algorithm types, including genes identified
across ablation tests with penalized algorithms (HOXA9 and MEIS1). Our approach
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mitigates exclusion biases of penalized algorithms (lasso and XGBoost) while obviating
arbitrary importance cutoffs for other types (SVM and random forest). This approach
is readily generalizable for research of other heterogeneous diseases, single-assay
experiments, and high-dimensional data. Resources and code to recreate our findings
are available online.

Introduction 1

Acute leukemia is the most prevalent childhood cancer, accounting for 30% of childhood 2

cancers overall [1, 3]. Major subtypes of pediatric acute leukemia include acute myeloid 3

leukemia (AML) and acute lymphoblastic leukemia (ALL), accounting for 15% and 85% 4

of these leukemia cases, respectively [1]. Despite improving survival rates, pediatric 5

AML remains deadlier than ALL [1]. AML is a heterogeneous cancer of the blood and 6

bone marrow myeloid stem cells that presents with numerous molecular subtypes 7

actionable for stratification and treatment. These subtypes are often based on 8

cytogenetics, molecular data, and other characteristics [2, 4]. By contrast to adult AML, 9

pediatric AML is characterized by rare somatic mutations, absence of common adult 10

AML mutations, and relatively frequent structural variants [4]. These findings indicate 11

the importance of age-based targeted therapies for AML treatment, and the potential 12

for molecular assays to further our understanding of how gene expression relates to 13

pediatric AML risk, prognosis, and treatment. We utilized RNA-seq expression data to 14

better understand its relation to pediatric AML risk, which remains poorly understood. 15

Interest in identification of biomarker and gene target sets of cancer risk using 16

RNA-seq data has endured for over a decade [10]. For statistical rigor and clinical 17

utility, reduction of high-dimensional, whole-genome expression sets of tens of thousands 18

of genes is vital. Differential gene expression (DEG) analysis is typically used to achieve 19

dimensionality reduction by selecting loci with maximal expression contrast between 20

sample groups. This is typically followed by fitting and optimization of models to these 21

reduced sets of DEGs, further narrowing focus to loci showing the greatest contrast and 22

most predictive qualities between sample sets. For the present work, we consider this 23

cumulative process of dimensionality reduction, model fitting, and optimization as a 24

problem of gene feature selection. 25

Selection of important genes from expression data remains challenging for biomedical 26

research, partly because the commonly applied cross-sectional case/control study design 27

confounds results interpretability. Further, underlying biological dynamics can be 28

nuanced and complex in disease processes, especially for molecularly heterogeneous 29

cancers like AML. These problems can be tractable with modern machine learning 30

approaches, which include the recently developed eXtreme Gradient Boosting 31

(XGBoost) algorithm and Boruta permutation method [7, 12]. With computational 32

advances, these and other methods are more robust, efficient, and accessible to 33

quantitative researchers than ever before. However, these improvements don’t address 34

the need to reconcile disparate findings from applying multiple distinct algorithm types 35

to biomedical data. For this task, it is useful to devise a formalized consensus approach 36

that leverages feature importance metrics across algorithms to arrive at a consensus 37

important feature set. Far from straightforward, development and formalization of 38

consensus feature selection methods with machine learning presents its own challenges. 39

Researchers must reconcile results interpretability, model performance variations, and 40

selection of important features across disparate algorithms and their respective 41

assumptions, strengths, and weaknesses. Further, vital properties of consensus feature 42

selection methods, especially best practices for their use, have yet to be established for 43

biomedical research. Nevertheless, development of such methods is warranted and could 44

become a boon for biomedical research. 45

2/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/632166doi: bioRxiv preprint 

https://doi.org/10.1101/632166
http://creativecommons.org/licenses/by/4.0/


The present work is a starting point for addressing aforementioned obstacles for 46

identifying consensus important gene features that help elucidate how gene expression 47

differences relate to pediatric AML risk. We used clinical and RNA-seq data from 48

pediatric AML samples (N = 137 patients) provided by the TARGET consortium. We 49

focused on achieving consensus from 4 distinct algorithms, including lasso, random 50

forest, support vector machines (SVM), and XGBoost [11,13,14]. These represent a 51

variety of algorithm types, each with distinct assumptions, strengths, and weaknesses. 52

Random forest and SVM do not natively differentiate important from non-important 53

features, necessitating an importance or weight cutoff be set to identify the most 54

important features. By contrast, lasso and XGBoost perform penalized regression and 55

ensemble learning, respectively, which returns greatly restricted feature subsets, though 56

at the cost of feature exclusion bias (see Results). We addressed these issues by 57

bootstrapping Boruta permutations with a novel consensus importance metric based on 58

relative feature importance rank across these 4 algorithms. 59
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60

Figure 1. Clinical and demographic information summary for TARGET pediatric AML dataset. A. Survival 61

in Low (binary risk group, BRG = 0), compared to Not-Low (BRG=1) clinical risk group. B Volcano plot of 62

differentially expressed genes (DEGs), x-axis is log2 fold-change, y-axis is -1 times log10 of unadjusted p-value 63

from t-tests, significance threshold (horizontal line) set at ¡0.01 p-adjusted and (vertical lines) —log2FC—¿1. 64

C Heatmap of DEG expression (Z-score of normalized expression) with sample-wise clinical annotations 65

(“cto” is primary ctogenetic subtype). 66
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Materials and Methods 67

Pediatric AML Dataset 68

We accessed TARGET pediatric cancer assay and clinical data from the Genomic Data 69

Commons (GDC, website) on February 4th, 2018. The TARGET pediatric AML cohort 70

consists of samples from 156 patients, with tissues including primary peripheral blood 71

(N = 26), recurrent bone marrow samples (N= 40), primary bone marrow (N = 119), 72

and recurrent peripheral blood (N = 2). For the following analyses, we combined 73

primary blood and bone tissues from 145 patients, retaining one sample per patient. 74

Gene Expression Data 75

RNA-seq data is from pediatric AML patients (N = 137 samples) with clinical and 76

assay data from pediatric cancer patients from the Therapeutically Applicable Research 77

To Generate Effective Treatments (TARGET) initiative, a collaboration between the 78

National Cancer Institute (NCI) and Children’s Oncology Group (COG) clinical trials 79

(website). We obtained RNA-seq expression data as raw gene counts, produced using 80

the Illumina Hi-Seq platform from Genomic Data Commons repository 81

(https://gdc.cancer.gov/). In brief, raw reads were aligned to GRCh38 using STAR 82

aligned in 2-pass mode and gene counts were produced using the HTSeq-counts analysis 83

workflow with Gencode v22 annotations. Full details of the data processing pipeline can 84

be found at the GDC (’https://docs.gdc.cancer.gov/Data/’). The GDC file manifest are 85

included in (Supplemental Table 4). Gene counts were then normalized using trimmed 86

mean of M (TMM) values method and converted to log2 counts per million (CPM, [18]). 87

Pediatric AML Clinical Risk and Binary Risk Classifier 88

We defined a binarized version of the clinical risk group classifier (low vs. standard or 89

high): Risk group classifications are defined based on patient cytogenetics and 90

mutations, and which pertains broadly to patient outlook in terms of risk of relapse, 91

recurrence, and/or disease progression. 92

We focused on the “Risk Group” variable from the patient clinical data table. This 93

variable is an aggregate pertaining to a combination of risk of recurrence, progression, 94

and relapse ( [1]). Patients were categorized as either low or not-low (e.g. standard or 95

high) risk, and this categorization, called binarized risk group (BRG), was used in the 96

machine learning investigation. Patients missing data for risk group were excluded from 97

the analysis. BRG sample groups were approximately balanced according to important 98

demographic variables, including age at first diagnosis and gender (Table 1). 99

Differentially Expressed Genes (DEGs) 100

To reduce noise and false positive rate, we opted to exclude genes with low expression 101

levels and which demonstrated significant differential expression in a contrast between 102

the binarized risk groups in the training data subset using the voom function from the 103

limma Bioconductor package ( [11]). With this pre-filter, we identified N = 1,998 104

(9.33% retained) differentially expressed genes (DEGs) showing substantial mean 105

differences between risk groups (absolute log2 fold-change ¿= 1, adj. p-value ¡ 0.05). 106
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Machine Learning Algorithms and Hyperparameter 107

Optimizations 108

We trained and tested gene expression-basd models for predicting BRG using a variety 109

of algorithms, including two types of ensemble approaches (random forest and 110

XGBoost), a kernel-based classifier (Support Vector Machines or SVM), and penalized 111

regression (lasso). These algorithms quantify feature importance in the following ways: 112

1. Lasso assigns beta-value coefficient (positive, negative, or null/0) for use in penalized 113

regression; 2. SVM assigns a feature weight (positive or negative) for inclusion in 114

kernel-based estimator; 3. XGBoost assigns importance (positive or null/0) from gain 115

across splits; 4. Random forest assigns importance using mean decrease in Gini index 116

(positive value). 117

With each algorithm type, we fitted models by varying algorithm hyperparameters 118

(Table 1, Figure 2, and Results). For Random Forest, we varied the number of trees 119

(ntrees) from 2,000 to 10,000. For XGBoost, we varied training depth and repetitions. 120

For SVM, we varied the kernel type to be linear or radial, and the weight filter to be 121

none or 50%. For lasso, we varied the alpha value to be from 0.8-1.2 (Table 1 column 3). 122

These runs informed hyperparameters used in each of the 4 algorithms with bootstraps 123

of Boruta permutations (Supplemental Material, Figure 4). 124

Permutations of Sample Label Switching 125

To test accuracy of sample labels and quantify possible miss-classification, we performed 126

permutation tests with risk label reassignment. For each algorithm, the training dataset 127

class labels were randomly permuted (switched) 5000 times, such that each patient in 128

the training set was randomly assigned to, the class label switching allows one to infer 129

that the feature contribution for correct classification is not likely due to chance. 130

Ablation Tests 131

To characterize predictive gene sets and networks, we performed ablation tests with 132

penalized algorithms (lasso and XGBoost). In each ablation iteration, we excluded 133

selected gene features from all prior iterations before re-fitting and assessing fitted 134

models with remaining DEGs. We repeated this for 15 and 70 iterations for lasso and 135

XGBoost, respectively (Figure 3, Supplemental Figures 1 and 2, Supplemental 136

Materials). We assessed the expression correlation (whole sample dataset) between first 137

iteration selected genes and the next successive 2 and 3 iterations for lasso and 138

XGBoost, respectively (Figure 3B and 3C, Supplemental Figures 1 and 2). 139

Analysis Code and Data Availability 140

Analysis was conducted on the publicly available TARGET pediatric AML cohort 141

(Supplemental Table 4 for download manifest). The majority of analysis was conducted 142

using the R programming language with packages from Bioconductor and CRAN 143

repositories ( [7, 11–14], Supplemental Methods). Pediatric AML RNA-seq and clinical 144

data were bundled into SummarizedExperiment objects for convenience (Supplemental 145

Materials). Scripts, notebooks, code, and data objects are available online (website). 146
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Results 147

Pediatric AML Risk Group Demographics 148

This study focused on whether gene expression could be used to predict pediatric AML 149

risk, as defined using the classical cytogenetic and molecular classification scheme [3]. 150

We initially identified TARGET pediatric AML patients with primary blood or bone 151

cancer samples (N = 137 patients) and defined a binarized risk group (BRG) classifier 152

as either low risk or not-low risk, where the latter category combines “standard” and 153

“high” risk patients (Figure 1). Summary statistics indicated binarized risk was 154

approximately balanced for important demographic characteristics, including age at first 155

diagnosis, gender, and bone marrow leukemic blast percentage and peripheral blasts 156

(Supplemental Table 1). However, the “not-low” risk group had a significantly lower 157

median for white blood cell count at diagnosis (29.3 [range: 1.30-519] in not-low versus 158

53.5 [range:1.60-253] in low-risk, p = 0.032). We randomly divided samples into training 159

(N = 96 samples) and test (N = 49 samples) subsets, at a ratio of 2:1, preserving BRG 160

sample group frequencies in each subset. We used training data to calculate 161

differentially expressed genes (DEGs), and the train and test set classifications to fit 162

and assess fitted models below. 163

Dimensionality Reduction with Differentially Expressed Genes 164

(DEGs) 165

We pre-filtered the RNA-seq gene expression dataset to limit the number of features 166

included in the initial model training. Using the training dataset, gene expression for 167

standard or high risk patient (not-low risk, BRG = 1, N = 55 samples) were contrasted 168

to patients at low risk (low risk group, BRG = 0, N = 38 samples) using differential 169

expression analysis. From approximately 60,000 genes assayed, we identified 1,984 170

differentially expressed between risk groups (—log2FC— <1, p-adj. >0.05, Figure 1B 171

and 1C, Supplemental Table 2, Methods). This increased the mean of normalized 172

expression differences from 0.50 to 1.71 (median increase from 0.32 to 1.51). Mean of 173

variance differences also increased from 0.76 to 2.19 (median increase from 0.31 to 2.19). 174

Algorithm Hyperparameter Optimization 175

We performed hyperparameter optimization with four distinct algorithm types (lasso, 176

random forest, SVM, and XGBoost) to determine optimal values to use in following 177

ablation and consensus tests (Figure 2, Table 1). These algorithms include two 178

ensemble methods (random forest and XGBoost) two penalized methods (XGBoost and 179

lasso) and two unpenalized methods (SVM and random forest). These algorithms 180

quantify feature importance in the following ways: 1. Lasso assigns beta-value 181

coefficient (positive, negative, or null/0) for use in penalized regression; 2. SVM assigns 182

a feature weight (positive or negative) for inclusion in kernel-based estimator; 3. 183

XGBoost assigns importance (positive or null/0) from gain across splits; 4. Random 184

forest assigns importance using mean decrease in Gini index (positive value). For each 185

algorithm, we tested at least 3 distinct hyperparameter value sets (Table 1 column 3), 186

and compared model performances. We observed a variety of model performance 187

fluctuations across optimizations for each algorithm (Supplemental Material). All fitted 188

XGBoost and lasso models showed uniformly high performance. For SVM, radial kernel 189

tests showed worse performance than linear kernel tests. Where there were clear 190

performance benefits, we selected the optimal hyperparameter sets for inclusion in our 191

consensus importance metric (Figure 4, Supplemental Material). 192
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Figure 2. Results of hyperparameter optimizations. A Results of 3 lasso iterations varying alpha from 195

0.5-1.2 (shows all genes with not-null coefficients). B SVM 4 iterations, varying linear and radial kernel, 196

and no weight filter versus top 50% weight filter (shows features with top 99th quantile absolute weight). 197

C XGBoost (“XGB”) 3 iterations, varying steps (shows all with not-null importance). D Random forest 198

(“RF”) 3 iterations varying ntrees from 5-15k (shows top 99th quantile importance). 199

Ablation Tests and Exclusion Bias with Lasso and XGBoost 200

Unlike Random Forest and SVM, lasso and XGBoost penalize uninformative and/or 201

correlated features, resulting in 0 or null importance assignment for most genes. Lasso 202

assigns a beta-value coefficient for regression, and XGBoost estimates gain from 203

fractional contributions to splits. Feature omission can reduce data dimensionality and 204

overfitting risk, though this is likely not optimal in biomedical research settings where 205

the objective is to identify a set of gene targets. Exclusion of correlated features can 206

obscure gene sets or pathways of importance, constituting an omission bias. We 207

performed ablation studies using lasso and XGBoost. For each iteration of ablation, we 208

excluded all features selected from prior iterations before refitting lasso or XGboost 209

models, respectively (Figure 3, Supplemental Figures 1 and 2, Supplemental Materials, 210

Methods). 211

In the absence of an omission bias, we expected consistent decline in fitted model 212

performance with successive ablation iterations. Instead, we observed oscillation 213

between performance recovery and decline across successive ablation iterations, with 214

gradual performance decline across 15 and 70 ablation iterations of lasso and XGBoost, 215

8/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/632166doi: bioRxiv preprint 

https://doi.org/10.1101/632166
http://creativecommons.org/licenses/by/4.0/


respectively (Figure 3C and Supplemental Figure 1). Interestingly, models fitted in later 216

iterations could recover substantial performance, and this trend was even more 217

exaggerated for XGBoost than lasso ablation iterations. This trend likley reflects signal 218

gain and loss of alternative predictive and related or correlated gene sets and pathways, 219

which are unrepresented in sets from earlier ablation iterations. As iteration increases, 220

gene members of alternate functional sets may be successively selected then exhausted, 221

resulting in initial performance recovery followed by successive performance loss. These 222

findings highlight the importance of carefully evaluating iterations of penalized methods 223

in biomedical research, and the utility of ablation tests. 224

A

B

C

225

Figure 3. Lasso ablation test results. A. Beta-value coefficients (non-zero) from first lasso iteration. B. 226

Correlation of selected gene feature expression (Spearman Rho, whole dataset) from iterations 2 and 3 with 227

iteration 1 features expression. C. Fitted model performance across 15 ablation iterations, showing (top) 228

true positive (TPR, red) and true negative (TNR, blue) rates, and (bottom) false discovery (FDR, green) 229

and false omission (FOR, purple). 230

We observed substantial correlated expression, both positive and negative, across 231

genes selected in the first 3 and 4 ablation iterations for lasso and XGboost, respectively 232

(Figure 3C and Supplemental Figure 2). Correlated expression could result from direct 233

or indirect functional interactions or relatedness. We observed evidence for functional 234

similarity across these selected gene sets, especially shared HOX pathway membership. 235

Surprisingly, HOXA9 was selected in the first iteration of lasso ablation, but not until 236

the fourth iteration of XGBoost ablation (Figure 3A, Supplemental Figure). HOXA9 is 237

known to be co-expressed in multiple pediatric AML subtypes, and its activity can be 238

used to predict patient risk [5, 9] (Figure 3A). We further note substantial positive 239

correlation between HOXA9 and the HOX family gene MEIS1, which was selected in 240

iteration 3 of lasso ablations. MEIS1 expression is linked to hematopoietic stem cell 241

development, and HOXA9-MEIS1 complexes were found to correlate with AML subtype 242

and outcome [8,17,19,20]. 243
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Consensus Important Gene Features from Boruta Permutation 244

Bootstraps 245

We designed and applied a consensus machine learning algorithm to identify recurrent 246

important gene features. We used a consensus importance metric (”nrank”, Figure 4, 247

Supplemental Figure 3-10, Supplemental Material), which returns a normalized median 248

absolute rank after calculating the algorithm-specific importance metrics from lasso, 249

random forest, XGBoost, and SVM. We then permuted this calculation in the Boruta 250

method for 1,000 bootstraps, with redraw of 2/3rds of pediatric AML samples in each 251

bootstrap, to simulate redraw of the training sample subset ( [12], Supplemental 252

Methods). For comparison, we also used single-algorithm importance for 4 algorithms in 253

Boruta permutations across 1,000 bootstraps apiece (Supplemental Material). Across 254

these tests, we evaluated importance calculation histories (Supplemental Figure 4), 255

gene-wise summaries of label assignments (either “rejected”,”tentative”, or “confirmed” 256

in each Boruta bootstrap iteration, Supplemental Figures 5-9), and finally extent of 257

consensus across Boruta bootstrap runs using each respective importance metric (Figure 258

4C, Supplemental Figure 10). 259

260

B

C
A

261

Figure 4. Methods to determine consensus important gene features from Boruta bootstraps (N = 1,000). 262

A Workflow calculating “nrank” consensus importance, or normalized median absolute importance rank, 263

across 4 algorithms (lasso, SVM, random forest, and XGBoost). B Feature (green is confirmed, red is 264

rejected, yellow is tentative) and shadow feature-wise (blue lines) importance (rank, y-axis) across Boruta 265

permutations (x-axis, max = 100). C Upset plot of recurrent confirmed features (present in at least 20% 266

or 200/1,000 bootstraps) across Boruta bootstrap analyses with 5 distinct importance metrics (XGB = 267

XGBoost importance, SVM = SVM importance, Nrank = consensus importance nrank, Lasso = lasso 268

importance, RF = random forest importance). Red genes and data are shared across consensus, lasso, and 269

10/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/632166doi: bioRxiv preprint 

https://doi.org/10.1101/632166
http://creativecommons.org/licenses/by/4.0/


random forest runs, purple is confirmed genes unique to consensus run, blue is confirmed genes shared only 270

by consensus and lasso runs. 271

To understand these results, it is necessary to summarize the Boruta method. In 272

each permutation, this method calculates observed importance for “real” features and 273

importance distribution of “shadow” features. Shadow features are obtained by random 274

reassignment of expression values to samples, which breaks correlation of expression 275

with class (AML risk). Real features are rejected if their importance is sufficiently 276

similar to the shadow feature importance distribution. Remaining features are then 277

retained in following permutations. Ultimately a label of “rejected” (non-important), 278

“tentative” (marginal features), or “confirmed” (high-confidence important features) to 279

each gene feature (Boruta citation). Evaluating real and shadow feature importance 280

across Boruta permutations for a sampling of bootstraps, we observed a range of 281

behavior across the various importance metrics used (Supplemental Figure 4). XGBoost 282

showed no exclusion of rejected features across permutations. By contrast, the 283

remaining methods, including nrank consensus, showed progressive retention of 284

confirmed or tentative features and omission of rejected ones. 285

We studied recurrent selected genes in each test by setting progressively more 286

stringent cutoffs (e.g. gene was labeled confirmed in >1, >20% or 200/1,000 bootstraps, 287

or >50% or 500/1,000 bootstraps). We observed a range in the total sizes of confirmed 288

feature sets across runs, and total recurrent confirmed feature sets from the consensus 289

nrank run fell in the middle of this range. Interestingly, about 50% of consensus nrank 290

confirmed features overlapped with recurrent confirmed features from random forest, 291

SVM, and lasso runs, though not XGBoost (Figure 4C, Supplemental Figure 10). 292

Certain confirmed genes, including HOXA9 and MEIS1, were present in the final 293

recurrent confirmed gene set (Table 2). These genes were identified in the first 4 294

ablation iterations with lasso and XGBoost, and their inclusion in the consensus gene 295

set indicates our approach mitigates exclusion bias of independent penalized algorithms. 296

Discussion 297

We present a consensus feature selection strategy, including a novel consensus rank 298

importance metric and implementation with bootstraps of Boruta permutations. This 299

consensus approach can mitigate possible algorithm feature exclusion biases of penalized 300

algorithms (lasso and XGBoost) while obviating the need to set arbitrary importance 301

cutoffs with algorithms not natively performing feature selection (random forest and 302

SVM). Prior studies characterized numerous molecular subtypes in pediatric AML, 303

reflecting heavy utilization of whole genome sequencing, methylation, and other assay 304

types, with less utilization of RNA-seq gene expression data ( [4, 6]). We focused 305

primarily on data from RNA-seq, which may be underutilized for characterization of 306

pediatric AML and clinical risk. Our consensus gene feature set validates prior 307

literature and demonstrates how a single-assay approach can be used to characterize 308

clinical risk in a molecularly heterogeneous cancer. 309

Among consensus important genes for pediatric AML risk, we identified numerous 310

potential therapeutic targets. HOXA9 has been implicated in MLL 311

(KMT2A)-rearranged AMLs and MLL-HOXA9 fusion has been shown to induce 312

leukemogenesis in xenograph and mouse models [16]. Interestingly, SLTRK5 and ITGB3 313

are both highly and aberrantly expressed on the cell-surface. This suggests these genes 314

may be good potential targets for antibody and CAR-T cell therapies. SLTRK5 has 315

been shown to be aberrantly expressed in nearly 80% of AML and coincides with 316

high/standard risk clinical features, allowing one the potential to improve outcomes for 317

AMLs with poor prognosis [15]. 318

While the present work describes a thorough application of algorithm and machine 319
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learning to elucidate expression-based gene targets in AML risk, we must note certain 320

limitations. The TARGET pediatric AML dataset is moderate in size, and further 321

limited when training and test subsets are used, increasing risk of model overfitting. We 322

note that our consensus approach could mitigate the effects of individual model 323

overfitting because its output is a gene list rather than a fitted model. 324

Our consensus machine learning approach can and should be formalized and 325

fine-tuned for better performance, efficacy, and generalizability. This can be achieved in 326

several possible ways, including iterative recalculation of DEGs, bootstrapping in 327

hyperparameter optimization, and inclusion of alternative consensus importance metrics 328

besides the “nrank” method used here (Results, Supplemental Material). Finally, best 329

practices for consensus feature selection, such as minimal data size or optimal test/train 330

split for a given effect magnitude, have yet to be established for biomedical data. To 331

this end, our results here are promising, and we have provided sufficient notebooks and 332

scripts such that our consensus method can be generalized to research other diseases or 333

datasets. 334

Supporting Information 335

S1 Figure 336

Correlation of gene expression (entire dataset) across gene features 337

selected in iteration 1 vs. iterations 2-4 of XGBoost ablation tests (see 338

Results, Supplemental Materials). 339

S2 Figure 340

XGBoost fitted model performances across 70 iterations of ablation. (Top) 341

true positive rate (TPR), and true negative rate (TNR). (Bottom) false 342

discovery rate (FDR) and false omission rate (FOR). 343

S3 Figure 344

Boruta permutations consensus rank metric comparison. Comparison of 345

naive (x-axis) and normalized (y-axis) rank across features, for each of 4 346

algorithms used (see Figure 4A, Supplemental Materials). 347

S4 Figure 348

Comparison of feature importance across Boruta permutations for 5 349

bootstrap iterations (selected at random). Each column shows bootstraps 350

for permutations with a different importance metric (either lasso, 351

consensus importance “nrank”, random forest “rf”, SVM “svm”, or 352

XGBoost “xgb”). 353

S5 Figure 354

Feature classification summary across Boruta bootstraps (N = 1,000) with 355

consensus importance (“nrank”). 356

S6 Figure 357

Feature classification summary across Boruta bootstraps (N = 1,000) with 358

Random Forest importance. 359
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S7 Figure 360

Feature classification summary across Boruta bootstraps (N = 1,000) with 361

lasso importance. 362

S8 Figure 363

Feature classification summary across Boruta bootstraps (N = 1,000) with 364

SVM importance. 365

S9 Figure 366

Feature classification summary across Boruta bootstraps (N = 1,000) with 367

XGBoost importance. 368

S10 Figure 369

Recurrent important gene features from Boruta bootstraps with 5 370

importance metrics, showing genes confirmed in 1/1,000 bootstraps (A), or 371

at least 5% or 50/1,000 bootstraps (B). 372

S1 Table 373

Summary descriptive statistics table by groups of binary risk group (BRG, 374

Low = 0, Not-low = 1). 375

S2 Table 376

Differentially expressed genes (DEGs) from training set comparison 377

(binary risk group, sBRG 0 vs 1). 378

S3 Table 379

Standardized output table showing gene-wise importance across 4 380

algorithms. Ensembl gene ID (column 1), gene synbol (2), lasso beta 381

coefficients (3:5), random forest importance (6:8), XGBoost importance 382

(9:11), and SVM weights (12:15). 383

S4 Table 384

Manifest for data download. 385
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