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Abstract 

Recent developments in machine learning implemented dimensionality reduction and clustering 

tools to classify the cellular composition of patient-derived tissue in multi-dimensional, single 

cell studies.  Current approaches, however, require prior knowledge of either categorical clinical 

outcomes or cell type identities.  These algorithms are not well suited for application in tumor 

biology, where clinical outcomes can be continuous and censored and cell identities may be 

novel and plastic.  Risk Assessment Population IDentification (RAPID) is an unsupervised, 

machine learning algorithm that identifies single cell phenotypes and assesses clinical risk 

stratification as a continuous variable.  Single cell mass cytometry evaluated 34 different 

phospho-proteins, transcription factors, and cell identity proteins in tumor tissue resected from 

patients bearing IDH wild-type glioblastomas.  RAPID identified and characterized multiple 

biologically distinct tumor cell subsets that independently and continuously stratified patient 

outcome.  RAPID is broadly applicable for single cell studies where atypical cancer and immune 

cells may drive disease biology and treatment responses. 

 

Introduction 

Malignant cells in human tumors are remarkably diverse in their functional cell identities 

and this intra-tumor cellular heterogeneity is closely linked to patient outcomes 
1, 2

.  However, 

bench and computational tools that have driven our understanding of altered phospho-protein 

signaling networks in cancer have historically been under-used in solid tumor research due to a 

lack of technology and samples.  In blood cancers, single cell profiles of signaling networks have 

revealed cancer cells present at diagnosis whose abundance is closely linked to subsequent 
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clinical outcomes, including patient survival 
3-7

.  This single cell snapshot proteomics approach 

focuses on a select set of key proteins that govern cell functional identity and can robustly 

measure targets, such as phospho-proteins, that are inaccessible to sequencing modalities.  

Suspension mass cytometry is a valuable platform for solid tumor analysis, as it is relatively low 

cost, well-powered to detect rare and novel cell types, and able to sensitively measure 

phosphorylated transcription factors and other mechanistic determinants of cancer cell identity 
8, 

9
.   

Quantitative analysis of single cell cytometry data has recently moved from an era of 

human-driven identification of cell types using guide markers (expert gating) and embraced 

machine learning tools that can automatically reveal and characterize novel and abnormal cells 
10-13

.  In building an automated cytometry workflow, algorithm developers need to decide 

whether users will supervise the discovery of cell subsets using clinical knowledge.  CITRUS is 

an automated cell subset discovery tool that uses prior knowledge of categorical labels, such as 

“disease” or “healthy”, to identify cell clusters associated with those labels 
14

.  CellCNN is 

another supervised analysis tool that requires prospective assignment of samples to categories 

and uses convolutional neural networks to learn a filter that predicts whether new cells match 

one of the groups 
15

.  Other cell subset discovery approaches do not supervise the analysis with 

knowledge of clinical outcomes but do use prior biological knowledge to identify cell 

subpopulations and then test whether differential outcomes are associated these cell subsets 
5, 6, 

16
.  In mass cytometry analysis, another common approach is to use tools for automated, 

unsupervised cell discovery and characterization, including SPADE 
17

, t-SNE 
18

, UMAP 
19

, 

FlowSOM 
20

, and Marker Enrichment Modeling (MEM 
21

).  These tools help explore the 

structure of multidimensional data and reveal subpopulations that can be overlooked in expert 

manual analysis 
10, 12, 13, 22

.  However, while it is possible to quickly review enriched features of 

the groups 
21

, it would also be powerful to test whether groups with similar phenotypes share an 

association with differential risk of death 
23

.  RAPID, a fully unsupervised workflow presented 

here, implements t-SNE, FlowSOM, and MEM analysis of single cell mass cytometry data to 

reveal risk stratifying cell populations 
23

.  

  Mass cytometry has recently been developed for human solid tumors 
11, 16, 24, 25

, 

including glioblastoma, the most common primary malignant brain tumor in adults 
26

. The 

median survival of glioblastoma patients after diagnosis has remained approximately 12-15 

months for over a decade 
27, 28

. These highly aggressive tumors are composed of both tumor and 

stromal cells, which harbor diverse genomic, transcriptomic, and proteomic expression profiles 

reflecting abnormal neural lineages 
24, 29, 30

. Previous studies in glioblastomas have either 

measured signaling states in bulk primary tumors 
31-33

 or characterized genomic and 

transcriptomic profiles in a modicum of single cells (<1000) 
29, 30, 34, 35

. These approaches, 

however, have not yet improved clinical practice or outcome for patients with glioblastoma. 

Although both inter- and intra-tumoral dysregulation of signaling in glioblastoma, particularly 

the disruption of receptor tyrosine kinase (RTK) homeostasis, is hypothesized to drive disease 

aggressiveness, very little is known about the activation states of signaling effector proteins in 
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glioblastoma and how these signaling changes may be associated with cell subpopulations and 

patient clinical outcomes 
36, 37

. Novel, molecularly-driven criteria may give valuable insights into 

the biology of tumor progression and identify patients more likely to benefit from targeted 

therapeutics in development for this devastating malignancy. 

Here, two new technologies were created in parallel: 1) a tailored set of 34 antibodies for 

single cell mass cytometry of glioblastoma focused on phospho-protein signaling effectors, stem 

cell proteins, and transcription factors critical to neural development, and 2) an unsupervised cell 

discovery workflow termed RAPID (Risk Assessment Population Identification).  These 

technologies were combined to reveal and characterize novel populations of risk stratifying 

glioblastoma cells.   

 

Comprehensive patient-specific analysis reveals glioblastoma cells with potentiated 

signaling and aberrant lineage protein co-expression  

Tissue samples were collected from 28 patients with IDH wild-type glioblastoma after 

primary surgical resection (Supplementary Table 1).  As of February 2019, the median 

progression free survival (PFS) and overall survival (OS) after diagnosis were 6.3 and 13 

months, respectively, similar to those observed in larger populations of patients undergoing 

standard therapy 
27

. Resected tissues were immediately dissociated into single-cell suspensions 

as previously reported 
38

. Cells were stained with a customized antibody panel for mass 

cytometry designed to capture the expression of known cell surface proteins, intracellular 

proteins, and phospho-signaling events (Figure 1, 2, Supplementary Table 2, Supplemental 

Information) that are critical for gliomagenesis and pathogenesis 
32, 39, 40, 30, 34, 35

. Collectively, the 

antigens included in this panel positively identified >99% of viable single cells within any given 

tumor sample.  

The first round of data analysis was patient-specific and used to computationally isolate 

the glioblastoma cells from the stromal cells.  A patient-specific t-SNE view of single-cell 

protein expression was generated for all tumor and stromal cells from each patient’s tumor 

(Supplemental Information).  These patient-specific t-SNE maps were generated using 26 of the 

34 measured markers 
18

 (Supplemental Table 2). Patient specific t-SNE maps revealed non-

glioblastoma populations of immune (CD45
+
) and endothelial (CD45

-
CD31

+
) cells, consistent 

with prior mass cytometry studies of gliomas 
11, 21, 24

. Non-immune, non-endothelial cells were 

computationally isolated from each individual patient prior to subsequent downstream analysis 

of tumor-intrinsic phenotypic parameters (Figure 1, 2).  These remaining CD45
-
CD31

-
 cells were 

labeled as glioblastoma cells.  Ion counts for mass-tagged antibody reporters spanned from 0 to 

nearly 10,000, representing protein expression from a sensitivity limit of around 400 molecules 

per cell to 1 x 10^7 molecules per cell 
8
.  This sensitivity and the ability to capture at least 4,500 

live glioblastoma cells from every patient provided excellent statistical power to observe rare cell 

types representing as little as 1% of the cancer cells (which might themselves be as little as 25% 

of the tumor cells).   
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Within a single patient’s tumor, plots of cell density across the t-SNE embedding 

revealed 5 or more phenotypically distinct subpopulations of glioblastoma cells (Figure 2, 

Supplemental Information). These intra-tumoral subsets of glioblastoma cells were distinguished 

by differences in expression of core neural identity proteins and by aberrant co-expression of 

neural lineage and stem cell proteins.   For example, in tumor LC26, abnormal glioblastoma cell 

subsets were apparent and distinguished by lineage aberrancy. Common abnormal co-expression 

phenotypes in glioblastoma cells included expression of astrocytic S100B and stem-like CD133 

or co-expression of markers associated with different molecular subtypes of glioblastoma, such 

as mesenchymal (CD44) and classical (EGFR) (Figure 2) 
32

.   

Additional intra-tumoral diversity in glioblastoma cells was revealed by quantification of 

the phosphorylation states of eight signaling effectors (Figure 2; p-STAT5
Y694

, p-STAT3
Y705

, p-

S6
S235/S236

, pSTAT1
Y701

, p-NFĸB (p65) 
S529

, p-AKT
S473

, p-ERK1/2
T202/Y204

 .and p-p38
T180/Y182

).  

Subsets of cells distinguished by abnormal lineage expression typically displayed potentiated 

basal phospho-protein signaling. For example, simultaneous phosphorylation of S6, STAT5, and 

STAT3 was commonly observed in glioblastoma cells that expressed S100B, but not in cells that 

expressed EGFR, GFAP, or CD44 (Supplemental Information). In summary, multiple 

biologically distinct glioblastoma cells, distinguished by combinations of cellular identity 

proteins and potentiated signaling features within individual tumor specimens were revealed by 

per patient analysis. 

 

RAPID identifies prognostic cell subsets in glioblastoma disease 

The second round of data analysis used an equal number of each patient’s glioblastoma 

cells to create a single, common t-SNE map of glioblastoma cell phenotypes across all patients 

(N = 131,880 cells; 4,710 cells x 28 patients).  Prior to creating this common map, mass 

cytometry standardization beads were used to remove batch effects and to set the variance 

stabilizing arcsinh scale transformation for each channel following field-standard protocols 
11, 38, 

41
.  This common t-SNE map was generated using 24 of 34 measured markers (Supplementary 

Table 2) and was used for automated analysis of risk stratifying cell subsets.   

Once a common, low-dimensional view of all patients was established, the RAPID 

algorithm used statistical analysis of cell density, feature variance, and population abundance to 

automatically set all computational analysis parameters.  Critically, RAPID was designed to set 

analysis parameters independent of clinical outcomes. To identify an appropriate number of 

stable clusters containing phenotypically homogenous cells, RAPID used iteratively executed 

unsupervised self-organizing maps from FlowSOM 
42

.  RAPID repeatedly tested a range of 

clusters (5-50) and identified the number of clusters that minimized intra-cluster variance for 

each feature while maintaining cluster stability (see Supplemental Methods). Within the 

glioblastoma patients examined here, RAPID identified 43 phenotypically distinct glioblastoma 

cell subsets (Figure 1).  RAPID assigned patients to high or low abundance for a given cluster 

based on a cut-point, set as the interquartile range of the population abundance across the 

samples (see Supplemental Methods).  For example, for cluster 24, the interquartile range was 
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0.67% to 3.36%, resulting in a cut point of 2.69% (Supplementary Table 4). Those patients with 

< 2.69% were designated ‘low’ for cluster 24 while those with > 2.69% were assigned to the 

‘high’ group.  Finally, RAPID applied a univariate Cox survival analysis to determine the 

correlation between the abundance of tumor cells in each cluster and patient survival outcome.   

The output of RAPID, when using t-SNE and FlowSOM, is a PDF containing a color-

coded, 2D t-SNE plot depicting all FlowSOM clusters, a 2D t-SNE plot colored by clusters 

which were significantly associated with patient outcome, and Kaplan-Meier survival estimates 

of patients for each subset (additional files described in Methods) (Figure 1b).  

 

Distinct glioblastoma cellular phenotypes associate with patient prognostic outcomes 

RAPID identified 43 phenotypically distinct glioblastoma cell clusters. Of these, 7 

clusters were considered “universal” because cells from every tumor were observed in these 

clusters (ranging from 0.02% to 28.05%, Supplemental Table 4). The abundance of the 43 

clusters varied extensively across patients.  Tumors contained a median of 14 clusters at >1% 

with a range from 5 cell clusters in LC06 to a maximum of 27 cell clusters LC25.  Overall, the 

presence of a greater number of GBM cell clusters at >1% abundance within a tumor was not 

observed to be associated with differential survival (ρ=0.047, p=0.812). 

In contrast, the abundance of 9 glioblastoma cell clusters was closely correlated with 

overall survival (Fig. 3,4).  Clusters were identified here as prognostic by assessing the hazard 

ratio (HR) of death in patients who were either high or low for the cell cluster.  Negative and 

positive prognostic clusters were colored red or blue in graphs if they were significantly 

associated (p<0.05) with an HR that was >1 or <1, respectively.   

Four Glioblastoma Negative Prognostic (GNP) clusters (red; clusters 33, 34, 37, and 42) 

and five Glioblastoma Positive Prognostic (GPP) clusters (blue; clusters 2,3,4,5, and 41) were 

identified (Figure 3, 4). The remaining 34 clusters were not associated with differential 

prognosis.  RAPID was also used to identify glioblastoma cell clusters with differential PFS, as 

opposed to OS.  Assessing PFS can be especially useful for cancers with longer median survival 

where progression-free survival is the most useful clinical assessment. Of the 43 subsets 

identified by RAPID, 4 subsets were significantly associated with PFS (subsets 20, 33, and 43 

with negative PFS and subset 3 with positive PFS, Supplemental Figure S1).  

To determine if the effect of cell subset abundance was continuous and independent of 

other features known to stratify glioblastoma survival, a multivariate Cox proportional-hazards 

model analysis was performed incorporating known features and GNP or GPP cell abundance. 

Known predictors included were age 
43, 44

, MGMT promoter methylation status 
45, 46

, and 

treatment variables including the extent of surgical resection 
47, 48

, therapy with temozolomide 
27

, 

and radiation 
49, 50

. Multivariate survival analysis of GNP cell abundance on a continuous scale, 

keeping the other predictors constant, indicated that each 1% increase in GNP cells was 

associated with an approximately 7% increase in mortality compared to baseline (OS 

HR=1.07 [95% CI 1.03-1.12], p=0.001). Similarly, a 1% increase in GPP cells was associated 

with an approximately 6.5% decrease in mortality rate (OS HR=0.935 [0.877-0.997], 
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p=0.04) and an approximately 3.6% decrease in time to tumor progression, as compared to 

baseline (PFS HR=0.964 [0.930-0.999], p=0.04). When GNP and GPP were assessed 

simultaneously, abundance of GNP cells was the primary predictor of mortality (OS HR=1.06 

[1.01-1.10], p=0.02), while abundance of GPP cells was the primary predictor of time to tumor 

progression (PFS HR =0.96 [0.93-1.00]; p=0.04).  Thus, the abundances of GNP and GPP cell 

subsets were associated with distinct and contrasting patient outcomes (Figure 3, 4, 

Supplemental Figure S1), and their predictive value was independent of each other and known 

prognostic factors of patient survival. 

 

Enrichment of divergent signaling effectors in prognostic glioblastoma cell subsets 

MEM was used in RAPID to quantify the enriched features of the 43 clusters identified 

by RAPID, including GNP and GPP clusters, in a compact label of cell identity.  Protein 

enrichment was reported on a +10 to -10 scale, where +10 indicates that protein’s expression was 

especially enriched and -10 indicated that the protein’s expression was excluded from those cells, 

relative to other glioblastoma cell clusters (Supplemental Figure S2, S3).  MEM labels were 

calculated for both total proteins (P), such as S100B and EGFR, and signaling effectors (S), such 

as p-STAT5, in the prognostic GNP (Figure 3a) and GPP (Figure 4a) clusters.  The MEM label 

of each cluster is thus an objective description of what makes that population distinct from the 

other 42 clusters identified by RAPID (Supplemental Figure S3). GNP cells aberrantly co-

expressed neural-lineage proteins (astrocytic S100B and stem-like SOX2). Additionally, GNP 

cells displayed phosphorylation of RTK signaling effectors known to promote cell survival, 

growth, and proliferation (e.g. p-STAT5, p-S6, p-STAT3, cyclin B1) (Figure 3b). The median 

and standard deviation of the MEM protein enrichment values for GNP cells included neural 

lineage determinants (▲S100B
+5±1.6

, SOX2
+4.3±1.7

) and phospho-proteins (▲p-STAT3
+2.8±1.4

, p-

STAT5
+2±1.4

) and identified proteins that were specifically lacking in GNP cells relative to other 

GBM cell clusters (▼EGFR
-2.3±0.1

, GFAP
-3.6±0.8

, CD44
-3.5±0

) (Figure 3).  In contrast, GPP cells 

were positively enriched for EGFR (▲EGFR
+3.7±3.4

) and consistently lacked proliferation 

(▼cyclin B1
-2.4±2.9

) and pro-survival phospho-proteins (▼p-S6
-3.8±3.2

, p-STAT5
-2±0

, p-STAT3
-

3±2
) (Figure 4).   

Immune cells were intentionally excluded from initial RAPID analyses and subsequent 

biaxial gating confirmed that the GNP and GPP subsets did not contain any unexpected residual 

CD45- or CD31-positive cells (99.50% and 98.64% non-immune, non-endothelial cells, 

respectively, Figure 3, 4). However, infiltrating immune cells can comprise a large proportion of 

non-cancer cells in glioblastomas and have highly variable overall abundance across patients 
51-

53
. Notably, GPP-high patients’ tumors all contained > 9% CD45

+
 cells, whereas GNP-high 

patients’ tumors were not observed to contain more than 9% CD45
+
 cells (p < 0.001, 

Supplementary Figure 4).  

 

Comparable identification of prognostic glioblastoma cells with different subsampling and 

dimensionality reduction tools 
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The cells input to RAPID should be equal in number from each patient in order to remove 

the possibility that a single patient would disproportionately impact the identification of cell 

clusters and risk assessment.  However, this limits the RAPID analysis to a number of cells equal 

to the smallest observed from any one patient and it creates the possibility that the cells randomly 

selected from tumors where many cells were measured might not be representative.  For the 

tumors studied here, the number of glioblastoma cells measured ranged from 4,710 to 330,000 

cells per patient.   

To test whether the cells sampled for RAPID were representative of the tumor from 

which they were selected, 9 additional t-SNE analyses were created, each with a different sample 

of 4,710 cells selected at random, with replacement, from each patient.  Each of these 9 t-SNE 

maps were then used in a new RAPID analysis, creating 10 total analyses (the original and 9 new 

tests).  In these analyses, RAPID identified different numbers of optimal clusters ranging from 

18 to 48.  Of these, a total of 48 clusters from the 9 new runs were considered prognostic.  

Because the 10 RAPID analyses ran on different subsampling of cells, the f-measure could not 

be calculated on a cell-by-cell basis. However, the average f-measure based on patient 

categorization (GNP high, GNP and GPP low, and GPP high) was 0.79 between t-SNE runs. 

Thus, to quantify the degree of similarity between the 48 newly identified clusters and the 

9 original GNP and GPP clusters, the root-mean-square deviation (RMSD) in the MEM 

enrichment values was calculated as a way of determining if the phenotype of the newly 

identified clusters was stable, even when different cells were sampled from the tumors.  GNP 

subsets from subsequent runs were highly similar to the GNP subsets identified by the initial 

analysis described above and the same was observed for GPP subsets (Supplemental Figure S5; 

GNP v GNP average RMSD = 92.5, GPP v GPP average RMSD = 88.2, and GNP v GPP 

average RMSD = 80.8).  

To test whether RAPID could use different types of dimensionality reduction values as 

input parameters, the algorithm was implemented replacing t-SNE with UMAP (Uniform 

Manifold Approximation and Projection), a tool that emphasizes both local and global data 

structure 
19

.  RAPID identified 31 populations using UMAP input; 4 of these were prognostic 

and significantly associated with OS (1 GNPUMAP and 3 GPPUMAP) (Figure 5). GNPUMAP MEM 

scores reflected the characteristic S100B and SOX2 expression observed in the GNP populations 

along with an active pro-survival basal signaling status. GPPUMAP subsets were similarly defined 

by co-expression of EGFR and CD44 and a general lack of the measured phosphorylated 

signaling effectors (Figure 5). When the cells identified using t-SNE were overlaid on the UMAP 

axes, they occupied similar phenotypic space as UMAP-identified clusters, and vice versa (f-

measure for cell assignment to GNP, GPP, or neither = 0.872, Figure 5). Thus, when UMAP was 

used in the RAPID algorithm, GNP and GPP populations were identified that had comparable 

phenotypes to those identified previously in t-SNE analyses, confirming that RAPID is not 

dependent upon a specific dimensionality reduction tool (Figure 5). 

 

Towards tracking clinically distinct glioblastoma cells in the clinic  
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After patterns are recognized by a machine learning approach, it can be valuable to 

determine whether the learned features can be identified using simpler models that can be 

applied by experts or machines to new datasets.  One approach is to create a decision tree using 

one- or two-dimensional gating 
23

, consistent with traditional strategies in immunology and 

hematopathology.  Such gates make the identification of cells computationally less intensive and 

more pragmatic for wide-spread clinical use and have been previously used in glioblastoma mass 

cytometry 
24

 . Therefore, a traditional, lower-dimensional strategy was developed to use a small 

number of simple gates to capture the GNP and GPP cell populations (Figure 6).   

A population that was consistent with both the phenotype and risk stratification of GNP 

cells was identifiable using 3 gates and 6 proteins (S100B, EGFR, SOX2, p-STAT5, GFAP, and 

CD44, Figure 6).  Similarly, GPP cells could be identified with 3 gates and 6 proteins (S100B, 

EGFR, cyclin B1, p-STAT5, GFAP, and CD44, Figure 6).  This gating scheme accurately 

captured both GNP and GPP cells (f-measure of 0.826 for categorizing cells as GNP, GPP, or 

neither using RAPID cell populations as truth and biaxial gating as test).  GNP and GPP cells 

identified by traditional gating were also mapped back onto the t-SNE axes and largely occupied 

the same regions of the biaxial t-SNE map as the cells identified by the RAPID algorithm (Figure 

6).  The cells identified by traditional gating were quantitatively comparable in their phenotype, 

as seen by a comparable MEM label for the gating identified GNP and GPP cell subsets (Figure 

6).  Thus, a simple gating model of GNP or GPP cell identity successfully recovered GNP and 

GPP cells by assessing only 7 total key features observed to be enriched following RAPID.  This 

indicated that, once revealed, GNP and GPP cell subsets were phenotypically cohesive in a 

traditional cell biological sense and could be reliably quantified by traditional approaches 

compatible with standard clinical flow cytometric profiling.  

 

Discussion 

RAPID is a novel automated workflow that identifies cell subpopulations associated with 

patient outcomes. The RAPID workflow automatically assigned single tumor cells from IDH 

wild-type glioblastomas into computational clusters based on phenotypic similarity, generated a 

quantitative phenotypic descriptor of each population, and determined the correlation between 

the abundance of populations and clinical outcomes. Two significant glioblastoma cell types 

were identified: Glioblastoma Negative Prognostic (GNP) cells, characterized by high expression 

of S100B, SOX2, p-STAT3, and p-STAT5, were associated with a decreased overall survival, 

while Glioblastoma Positive Prognostic (GPP) cells, characterized by high expression of EGFR 

and CD44, were associated with longer overall survival.  Critically, therapeutically targetable 

signaling events were identified as a signature of prognostic cell populations identified by 

RAPID, suggesting potentially novel therapeutic strategies for patients with these characteristics.  

High-dimensional cytometry was critical to revealing novel prognostic glioblastoma cells 

in two ways. First, assessment of a large number of cells per tumor enabled the use of an 

unsupervised approach in the identification of rare and novel cell subsets across patients. Second, 

per-cell quantification of phosphorylated signaling effector proteins revealed potential 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/632208doi: bioRxiv preprint 

https://doi.org/10.1101/632208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

mechanisms of tumor cell regulation that are not inherently apparent in bulk tumor data. 

Supervised analysis of single cell data has previously uncovered signaling events tied to patient 

survival in hematologic malignancies 
3, 4, 7

. To our knowledge, our findings are the first to reveal 

a similar connection in a solid malignancy using an automated, unsupervised approach, 

reinforcing the importance of cell signaling in multiple human malignancies 

Although other workflows and algorithms have been developed to identify cell 

populations of interest in cancer samples (CITRUS 
14

, DDPR 
6
, Phenograph 

4
, Cytofast 

54
), these 

largely require a level of prior knowledge which may not always be available, especially for 

solid tumors. For example, Levine et al. used Phenograph 
4
 and an understanding of the coupling 

of surface markers and signaling status in healthy bone marrow to classify negative prognostic 

leukemia cells. Similarly, a map of the healthy developmental lineage was instrumental in using 

DDPR to identify features of negative prognostic leukemia cells 
6
. Supervised methods, 

including CITRUS and Cytofast, require that samples to be grouped at the beginning of the 

analysis before generating an overview of cell cluster phenotypes in cytometry data 
54

. These 

methods, however, require that the data have already been clustered and that each sample be 

prospectively assigned to a group, whereas RAPID enables analysis with continuous, ungrouped 

data. In studies of diseased human tissue, it is difficult to anticipate the number of expected 

unique phenotypic subsets and once identified, these subsets can be challenging to manually 

annotate as they may reasonably be assigned to one or more cell-type categories (this study and 
29

). It is particularly valuable to be independent of prior knowledge of expected cell clusters in 

studies of diseases like primary glial tumors, where healthy samples are infrequently obtained 

and the developmental lineage is largely quiescent. RAPID is designed to be free from 

supervision in the identification of the number of clusters and also in the assessment of cluster 

abundance in tumors.  RAPID also employs MEM to automatically provide a quantitative 

description of the features which are most selectively enriched on each cell cluster.  Furthermore, 

RAPID is modular, such that different dimensionality reduction tools (t-SNE, UMAP) can be 

used with different clustering algorithms (dbSCAN, FlowSOM) within the workflow. A benefit 

of RAPID is the streamlined, unsupervised application of these tools such that a user can input 

raw data files (for example, FCS files from cytometry platforms) or equivalent data types in 

conjunction with patient survival data, and RAPID will output quantitatively described cell 

clusters and their significance with respect to patient outcome. For the data set used in this study 

(131,880 cells), RAPID ran in 15 minutes from start to finish. 

In this study, RAPID analysis of glioblastoma patient samples demonstrated a link 

between altered signaling and possible abnormal lineage programs in glioblastoma 
55

. The GNP 

signature was defined by abnormal neural development features and simultaneous high basal 

phosphorylation of multiple signaling effectors downstream of RTKs (Fig. 3). STAT5 signaling, 

a common feature of all GNP cell subsets, is required in development of many tissues to block 

apoptosis and drive cell cycle entry 
2
. For example, p-STAT5 is an essential feature of negative 

prognostic acute myeloid leukemia signaling profiles 
3, 4

. Here, RAPID identified the connection 

between p-STAT5 and glioblastoma outcome, previously unidentified in primary patient 
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samples.  STAT3 and S6 phosphorylation, identified here in GNP cells, agreed with prior studies 

indicating the importance of p-STAT3 in T cell suppression 
56

 and mTOR-dependent signaling in 

tumor formation 
57, 58

. These phosphorylation signaling events in GNP cells should be explored 

as a potential therapeutic target and a biomarker of therapy response.  

In contrast, the time-to-progression-prolonging GPP signature was defined by EGFR and 

CD44 co-enrichment, diminished evidence of proliferation, and specific lack of STAT5 

phosphorylation. Previous molecular subtyping predicts EGFR expression in the classical subset 

of tumors and CD44 expression in mesenchymal tumors 
32

. As these studies were based on bulk 

tumor data, cells co-expressing EGFR and CD44 (classified as GPP cells in this study) may have 

been missed; single glioma cells have been shown to co-express pro-tumor receptors 
29, 36

. 

Genetically, glioblastomas commonly have amplified EGFR 
31, 32

; however, we noted examples 

of tumors with robust EGFR amplification that contained both high and low percentages of GPP 

cells (data not shown), highlighting the importance of measuring protein expression in addition 

to genomic content. Although EGFR signaling through mTOR and EGFRvIII has been linked 

with increased p-S6 and p-STAT3/5 respectively, we did not observe these associations in the 

GNP or GPP subsets 
59, 60

. Instead, these cells showed enrichment of p-NFĸB (Fig. 3), a 

transcription factor that activates pro-apoptotic programs 
61, 62

. 

Recent studies have revealed significant variation in immune cell abundance and relative 

proportions of immune cell subsets across glioblastoma 
63, 64

. Here, unfavorable GNP cells were 

associated with diminished tumor-infiltrating immune cells and GPP cells were associated with 

higher proportions of immune cells in the tumor microenvironment. These results invite the 

question of whether an altered immune microenvironment precedes development of an 

aggressive glioblastoma or whether more aggressive tumors suppress anti-tumor immunity. 

These findings argue that immunotherapy is likely to be more efficacious in tumors containing 

GPP cells, but that additional research is needed to understand whether GNP cells directly 

suppress microglia or immigrant leukocytes.  

The GNP and GPP subsets correlated with survival independent of the effects of other 

widely accepted prognostic factors (age 
43, 44

, MGMT promoter methylation status 
45, 46

, and 

treatment including extent of surgical resection 
47, 48

, therapy with temozolomide 
27

, and radiation 
49, 50

). These cells were identified in pre-therapy, untreated patient samples, suggesting that these 

phenotypes are linked to biological mechanisms of therapy response or tumor detection by the 

immune system. Future studies of recurrent glioma samples would illuminate the persistence of 

these populations. If GNP subsets have the capacity to evade therapy and retain their active 

proliferation properties, recurrent tumors would be expected to contain higher proportions of 

GNP cells and have a more uniform phenotype. Although much has been made of loss or gain of 

genetic aberrations post-temozolomide and radiation therapies, little is known about signaling in 

recurrent tumor cells and thus it is unclear if clonal evolution and/or a shift in activated phospho-

proteins is necessary for tumor cell survival and repopulation.   Other factors have recently been 

shown to correlate with patient outcomes including the location of the tumor with respect to the 

largest neural stem cell niche in the adult brain, the ventricular-subventricular zone (V-SVZ) 
65

. 
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In the future, one fascinating question will be to determine whether V-SVZ contacting tumors, 

which correlate with worse outcomes, contain more cells with a GNP-like phenotype and fewer 

GPP-like cells.  

Critically, these discoveries using RAPID led to a development of a lower-dimensional 

pipeline which can be immediately adopted for clinical stratification. Moreover, the combination 

of single-cell snapshot proteomics and the automated RAPID algorithm can be immediately 

applied to the discovery of critical onco-signaling events in other types of intractable human 

malignancies, providing a needed complement to genomic classification. 
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Materials and Methods 

Patient samples 

 Surgical resection specimens of 28 IDH-wildtype glioblastomas collected at Vanderbilt 

University Medical Center between 2014 and 2016 were processed into single cell suspensions 

following an established protocol 
38

. Only samples that were confirmed to be IDH-wildtype 

glioblastomas by standard pathological diagnosis were used. All samples were collected with 

patient informed consent in compliance with the Vanderbilt Institutional Review Board (IRBs 

#030372, #131870, #181970), and in accordance with the declaration of Helsinki. 

 

Patient characteristics and collection of clinical data 

 All patients were adults ( 18 years of age) at the time of their maximal safe surgical 

resection of their cerebral (supratentorial) glioblastomas. Extent of surgical resection was 

independently classified as either gross total or subtotal resection by a neurosurgeon and a 

neuroradiologist. Gross total resection was defined as agreement by both viewers of no 

significant residual tumor enhancement on patients’ gadolinium-enhanced magnetic resonance 

imaging (MRI) of the brain obtained within 24 hours after surgery. All patients were considered 

for treatment with postoperative chemotherapy (temozolomide) and radiation according to the 

standard of care 
27

, after determination of MGMT promoter methylation status by 

pyrosequencing (Cancer Genetics, Inc., Los Angeles, CA, USA). Multiplex polymerase chain 

reaction (PCR) was used to determine IDH1/2 mutational status. Patients’ postoperative course 

was followed until February 2019, noting time to first, definitive radiographic progression or 

recurrence of glioblastoma as agreed upon by the treating neuro-oncologist and neuroradiologist, 

and the time to patients’ death. All deaths were deemed to be due to the natural course of 

patients’ glioblastoma.  Median overall survival of the analyzed 28 patients with IDH wild-type 

glioblastoma was 388.5 days (13 months) and median PFS was 187.5 days (6.3 months), which is typical 

for the disease
26, 27

. 

 

Mass cytometry analysis 

 Cells derived from patient samples were prepared as previously described 
38

. A multi-step 

staining protocol was used, which included 1) live surface stain, 2) 0.02% saponin 

permeabilization intracellular stain, and 3) intracellular stain after permeabilization with ice-cold 

methanol (Supplementary Table 2). After staining, cells were resuspended in deionized water 

containing standard normalization beads (Fluidigm)
53

, and collected on a CyTOF 1.0 instrument 

located in the Mass Cytometry Core Facility at Vanderbilt University. Rhodium viability stain 

and cleaved caspase-3 antibody were included in staining to exclude non-viable and apoptotic 

cells, respectively. Detection of total histone H3 was used to identify intact, nucleated cells 
24

. A 

32-dimensional mass cytometry antibody panel was used to analyze over 2 million viable cells 

from 28 tumors (ranging from 4,860 to 336,284 cells per tumor). Data were normalized with 

MATLAB-based normalization software 
53

, and were arcsinh transformed (cofactor 5), prior to 

analysis using the Cytobank platform 
66

. 
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Implementation of RAPID in R 

 FCS files for each patient sample (28) containing only cells of interest (non-immune, 

non-endothelial cells) were input in R. Cell subset identification was performed using the 

previously published FlowSOM R package
42

. t-SNE values (t-SNE1_glioblastoma and t-

SNE2_glioblastoma) from t-SNE (or UMAP) analysis of CD45
-
CD31

-
 glioblastoma cells from 

28 patients were used as parameters for cell subset clustering. Within the RAPID workflow, the 

optimal number of clusters was determined by first identifying, for each feature, the smallest 

number of clusters that minimizes the intra-cluster signal variance for that feature. Then, the 

optimal cluster number of the data set was determined by taking the median of the optimal 

numbers for each individual feature. Once the cluster number was determined, the abundance of 

cell subsets and their clinical significance was assessed using outcome-guided analysis. Patients 

were divided into Low and High groups, based on the distribution (interquartile variance) of the 

abundance of a given cell subset across the cohort. A univariate Cox regression analysis was then 

used to estimate the effect size (hazard ratio, HR, of death) on survival and quantify its statistical 

significance with a p-value. The RAPID program output included: 1) two t-SNE (or UMAP) 

plots (.png), one color coded by each FlowSOM cluster and one color coded by prognostic status 

and p-value; 2) Kaplan-Meier survival curves for cell subsets; 3) .txt files of MEM and Median 

values for each feature, enrichment scores, and IQR values; 4) a new FCS file with File ID, 

cluster ID, and prognostic status for each cell; and 5) an .rds file with survival statistics for each 

cluster. In this study, abundance of Glioblastoma Negative Prognostic (GNP) and Glioblastoma 

Positive Prognostic (GPP) cells in each tumor was quantified as percentages per total 

glioblastoma cells (i.e. immune and endothelial cells were already excluded). MEM analysis was 

performed in R, using the previously published R package 
21

. In short, MEM captured and 

quantified cell subset-specific feature enrichment by scaling the magnitude (median) differences 

between clusters, depending on the spread (interquartile variance, IQR) of the data. These values 

were then computed in comparison to the remaining cells in a given dataset. MEM values were 

interpreted as either being positively enriched (▲, UP positive values) or negatively enriched 

(▼, DN negative values). The variation of a given cellular feature across GNP or GPP cell 

subsets was quantified as ± standard deviations (SD).  

 

Survival and statistical analysis 

 Time from surgical resection to death (overall survival, OS) and time from surgical 

resection to the initial radiographic recurrence or death before radiographic assessment 

(progression free survival, PFS) were plotted and analyzed in R. Survival time points were 

censored if, at last follow up, the patient was known to be alive or had not had radiographic 

progression. Differences in the survival curves were compared using the Cox univariate 

regression model, reporting a hazard ratio (HR) between the survival curves.  

 A Cox proportional-hazards regression model was created to assess the influence of GNP 

and GPP cells on OS and PFS as continuous variables while accounting for other factors known 

to affect survival, including age at diagnosis, MGMT promoter methylation status, extent of 
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surgical resection (EOR), treatment with temozolomide (TMZ), and radiation (XRT). The hazard 

model can be written as: 

𝐻𝑅 =
ℎ(𝑡)

ℎ0(𝑡)
= 𝑒(𝑏𝐺𝑁𝑃𝐺𝑁𝑃+𝑏𝑎𝑔𝑒𝐴𝑔𝑒+𝑏𝑀𝐺𝑀𝑇𝑀𝐺𝑀𝑇+𝑏𝐸𝑂𝑅𝐸𝑂𝑅+𝑏𝑋𝑅𝑇𝑋𝑅𝑇+𝑏𝑇𝑀𝑍𝑇𝑀𝑍) 

where 
ℎ(𝑡)

ℎ0(𝑡)
 represents the ratio of hazard comparing the risk of death at time t to the baseline 

hazard (obtained when all variables are equal to zero) and 𝑒𝑏𝑥 represents the hazard ratio of 

variable 𝑥. The data were fit using R software, version 3.5 (R foundation for Statistical 

Computing, Vienna, Austria). The proportional-hazards assumption was tested in all multivariate 

models and supported by a non-significant relationship between Schoenfeld residuals and time 

for each covariate included in the model (p > 0.38; degree of freedom = 1) and the overall model 

(p = 0.96; degrees of freedom = 6 and 7). Statistical significance α was set at 0.05 for all 

statistical analyses, one- or two-tailed noted in figure legends. 

An f-measure was used to quantify the level of agreement between classifications 

of patients or cells between alternative analysis strategies as wells as multiple RAPID iterations. 

The f-measure is the harmonic mean of the precision and recall given by the equation F = 2 * 

(Precision * Recall) / (Precision + Recall) where Precision = True Positive / (True Positive + 

False Positive) and Recall = True Positive / (True Positive + False Negative). An f-measure of 1 

indicates perfect agreement between two different strategies or iterations as opposed to an f-

measure of 0 which would mean no agreement between classifications of patients or cells from 

two strategies or iterations. Patients could be classified as GNP high, GNP and GPP low, or GPP 

high, while cells were classified as GNP, GPP, or neither. To calculate the f-measure of patient 

categorization, the classification of the 28 patients into the three prognostic groups from the t-

SNE implementation of RAPID was used as the reference point from which to compare patient 

classification resulting from the UMAP implementation of RAPID or the biaxial gating strategy. 

Similarly, the stability of the RAPID workflow in assigning cells to GNP, GPP, or non-

significant clusters was tested by using the t-SNE implementation of RAPID (FlowSOM seed 

38) as the reference from which to compare 100 iterations of RAPID (random FlowSOM seed 

per iteration). Calculation of the f-measure was implemented using R software, version 3.5.  

 

Data availability 

Files will be made available in FlowRepository upon publication following peer review.  
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Figure 1: RAPID identifies single cell phenotypes and assesses clinical risk stratification as a 

continuous variable. (a) Graphic of tumor processing and computational workflow. (b) Glioblastoma 

cells were identified from 28 patients and computationally pooled for a t-SNE analysis. Cell subsets were 

automatically identified by FlowSOM and were systematically assessed for association with patient 

overall or progression-free survival. 43 glioblastoma cell subsets were identified and were color-coded 

based on hazard ratio of death and p-values (HR>1, red; HR<1, blue) Cell density, FlowSOM cluster, and 

cluster significance are depicted on t-SNE plots. 

 

Figure 2: Single-cell quantification of identity proteins and phospho-protein signaling in 

glioblastoma. (a) t-SNE plots of cell density (left) and major cell types in a patient tumor colored by 

expert gating (right) for antigen presenting cells (APC, blue), other immune cells (non-APC, orange), 

endothelial cells (Endo, red), and glioblastoma cells (green) using CD45, CD31, and HLA-DR to identify 

cells. Pink lines indicate where expert gates were drawn. (b) MEM protein enrichment scores for 

populations indicated by color in (a) (APC, blue; non-APC, orange; endothelial cells, red; glioblastoma 

cells, green). (c) Per-cell expression levels of 12 identity proteins, (d) 6 phosphorylated signaling 

effectors, and proliferation marker cyclin B1 are depicted. Heat indicates protein or phospho-protein 

expression per cell (scale is specific to each measured feature).   
 

Figure 3: Four cell populations identified by RAPID were negatively associated with patient 

outcome. (a) Enrichment (upwards arrowhead) or lack (downwards arrowhead) of identity proteins (P) 

and phosphorylated signaling effectors (S) on Glioblastoma Negative Prognostic cell subsets was 

quantified using MEM. (b) Histogram plots of each GNP cell subset (red) and all other glioblastoma cells 

(gray) illustrate the expression of identity proteins and phosphorylated signaling effectors. (c) Combined 

GNP cell subsets (red circles) were mapped over biaxial plots of all other tumor cells (black contours). (d) 

For each subset, overall survival was compared between patients with high vs low cell abundance (see 

Supplementary Methods).  (e) Overall survival of patients for high (> 3.1%) total GNP content compared 

to patients with low (< 3.1%) GNP content.  

 

Figure 4: Five cell populations identified by RAPID were positively associated with patient outcome. 

(a) Enrichment (upwards arrowhead) or lack (downwards arrowhead) of identity proteins (P) and 

phosphorylated signaling effectors (S) on Glioblastoma Positive Prognostic cell subsets was quantified 

using MEM. (b) Histogram plots of each GPP cell subset (blue) and all other glioblastoma cells (gray) 

illustrate the expression of proteins and phosphorylated signaling effectors. (c) Combined GPP cell 

subsets (blue circles) were mapped over biaxial plots of all other tumor cells (black contours). (d) For 

each subset, overall survival was compared between patients with high vs low cell abundance (see 

Supplementary Methods). (e) Overall survival of patients for high (> 8.58%) total GPP content compared 

to patients with low (< 8.58%) GPP content. 

 

Figure 5: GNP and GPP cells were also identified using dimensionality reduction tool UMAP in the 

RAPID algorithm. (a) UMAP analysis of 131,880 cells from 28 patients. Upper left plot - heat on cell 

density; lower left plot – colored by FlowSOM cluster; right plot – colored by GNP(red)/GPP(blue) 

designation and p-value.  (b) Per-cell expression levels of 5 identity proteins, 3 phosphorylated signaling 

effectors, and proliferation marker cyclin B1 are depicted. (c) Enrichment of identity proteins (P) and 

phosphorylated signaling effectors (S) of glioblastoma cell subsets was quantified using MEM. GNP and 

GPP cells are labeled in red and blue, respectively. (d) Histogram analysis depicts the expression of key 

identity proteins and phosphorylation signaling effectors of GNP (red) and GPP (blue) compared to all 

other cells (gray, top row).  (e) Overall survival curves for four UMAP-identified populations associated 

with survival. Cox-proportional hazard model was used to determine a hazard ratio (HR) of death. 
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Censored patients are indicated by vertical ticks.   (f) GNP (red) and GPP (blue) cells identified via t-SNE 

(“t-SNE GNP” or “t-SNE GPP”) and UMAP (“UMAP GNP” or “UMAP GPP”) are overlaid on either 

UMAP or t-SNE axes. Localization of GPP cell subsets identified by one tool in the same region as those 

identified by the other suggests similar phenotypes across dimensionality reduction methods. (g) 

Categorization of each patient (dots) based on GNP high (red), GPP high (blue), or neither (gray) 

according to abundance based on RAPID using t-SNE or RAPID using UMAP (f measure = 0.86). 

 

Figure 6: A biaxial gating workflow based on 7 protein markers derived from RAPID effectively 

identified clinically distinct glioblastoma cell subsets. (a) Biaxial plots demonstrating a sequential 

gating scheme compatible to a standard clinical flow cytometry workflow. Biaxial GNP and GPP cells 

were identified using red and blue gates respectively. (b) Biaxial GNP (red) and biaxial GPP (blue) are 

overlaid over contours of glioblastoma cells from 28 tumors on common t-SNE axes (as in Figure 1). (c) 

MEM analysis was used to quantify enriched identity proteins (P) and phosphorylated signaling effectors 

(S) of biaxial GNP and GPP cells. (d) Histogram analysis depicts the expression of key identity proteins 

and phosphorylated signaling effectors of biaxial GNP (red) and biaxial GPP (blue) compared to all 

glioblastoma cells (gray, top row). The transformed ratio of medians for each marker on GNP or GPP 

cells compared to all glioblastoma cells is shown in the upper right corner of each histogram. (e) 

Correlation between GNP (red, ρ = 0.81) and GPP (blue, ρ = 0.98) population abundance identified via 

biaxial gating and RAPID (left). Categorization of each patient (dots) based on GNP high (red), GPP high 

(blue), or GNP and GPP low status according to abundance based on biaxial gating or RAPID. Dots are 

colored by RAPID categorization (f measure = 0.71). (f) Overall survival of patients for high total GNP 

content (left) or GPP content (right) compared to patients with low GNP or GPP content based on biaxial 

gating.  

 

Supplemental Figure S1: RAPID identified four populations associated with time to patient 

progression.  (a) Enrichment of identity proteins (P) and phosphorylated signaling effectors (S) of PFS 

GNP cell subsets was quantified using MEM. (b) Histogram plots of each GNP cell subset (red) and all 

other glioblastoma cells (gray) illustrate the expression of proteins and phosphorylated signaling 

effectors. (c) Combined GNP cell subsets (red circles) were mapped over biaxial plots of all other tumor 

cells (black contours). (d) For each subset, progression free survival was compared between patients with 

high vs low cell abundance (see Supplementary Methods).  (e) Enrichment of identity proteins (P) and 

phosphorylated signaling effectors (S) of the PFS Glioblastoma Positive Prognostic cell subset was 

quantified using MEM. (f) Progression free survival was compared between patients with high vs low 

GPP cell abundance (g) Histogram plots of the GPP cell subset (blue) and all other glioblastoma cells 

(gray) illustrate the expression of proteins and phosphorylated signaling effectors. (h) The GPP cell subset 

(blue circles) was mapped over biaxial plots of all other tumor cells (black contours). 

 

Supplemental Figure S2: Glioblastoma cell subsets showed differential enrichment of identity 

proteins and phosphorylated signaling effectors. Forty-three glioblastoma cell subsets automatically 

identified by FlowSOM are arranged according to their associations with overall survival (HR>1, left; 

HR<1, right) and statistical significance of that association (p-values). A heatmap represents the MEM 

values of glioblastoma cell subsets (columns). GNP cells are labeled in red, while GPP cells are labeled in 

blue. Hierarchical clustering was performed based on MEM values and is depicted on the left of the 

heatmap for measured features. HR = hazard ratio of death. 

 

Supplemental Figure S3: Quantitative MEM labels of the enriched identity proteins and signaling 

features of all glioblastoma cell subsets identified by RAPID. Enrichment of identity proteins (P) and 

phosphorylated signaling effectors (S) of glioblastoma cell subsets identified by RAPID was quantified 
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using MEM. GNP and GPP cells are labeled in red and blue, respectively. Populations detected in every 

patient sample (abundances ranging from 0.02% to 28.05) are outlined in bold. 

 

Supplemental Figure S4: Abundance of immune cells correlated with the abundance of prognostic 

cell subsets. Box and whisker plot of immune abundance (%, log10 scale) on the y-axis and patients 

divided into three groups: GNP high (red, >3.1% GNP cells), GPP high (blue, >8.58% GPP), or GNP and 

GPP low (gray). Box encompasses the 25
th
 to 75

th
 percentile, gray horizontal line indicates the median, 

and whiskers extend to the minimum and maximum values.  *** p=0.0008, two-tailed t-test. 

 

Supplemental Figure S5: Subsampling of glioblastoma cells repeatedly resulted in GNP and GPP 

subsets with similar phenotypes. RMSD map comparing MEM scores for GNP and GPP subsets 

identified in the main figures and from nine additional t-SNE runs. GNP subsets are noted by red circles 

and GPP subsets are noted by blue circles. Colored boxes to the right of the red or blue circles indicate the 

t-SNE run from which the subset is derived. t-SNE runs are plotted around the heatmap with the 

corresponding colored box in the upper left of each plot. 

 

Supplemental Information: Patient specific view of population abundance and mass signal for all 

analyzed patients in this study. Each patient is shown on an individual page, with progression-free and 

overall survival data (also included in Supplementary Tables 1 and 3) shown at top right. At top left, the 

common t-SNE plot derived from analyzing an equal number of glioblastoma (non-immune, non-

endothelial) cells from each of 28 patients (as in Figure 1), with contours indicating event abundance, is 

shown. Second from left, the density of events of the individual patient’s tumor is shown. Second from 

right, the assignment of cells from the patient to FlowSOM clusters is shown, and furthest right indicates 

the distribution of these clusters on the map of all GBM patients’ cells. FlowSOM clusters and the 

abundance of these clusters in the individual patient’s sample are shown in column at right side (also 

included in Supplementary Table 3). Clusters identified as “high” based on the criteria detailed in 

Methods are indicated in bold. Below, t-SNE plots and “heat” for each measured channel on cells from 

the individual patient are shown. 
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