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Abstract:  

To characterize cell types, cellular functions and intracellular processes, an understanding of the 

differences between individual cells is required.  Although microscopy approaches have made 

tremendous progress in imaging cells in different contexts, the analysis of these imaging data sets is 

a long-standing, unsolved problem.  The few robust cell segmentation approaches that exist often rely 

on multiple cellular markers and complex time-consuming image analysis.  Recently developed deep 

learning approaches can address some of these challenges, but they require tremendous amounts of 

data and well-curated reference data sets for algorithm training.  We propose an alternative 

experimental and computational approach, called CellDissect, in which we first optimize specimen 
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preparation and data acquisition prior to image processing to generate high quality images that are 

easier to analyze computationally.  By focusing on fixed suspension and dissociated adherent cells, 

CellDissect relies only on widefield images to identify cell boundaries and nuclear staining to 

automatically segment cells in two dimensions and nuclei in three dimensions. This segmentation can 

be performed on a desktop computer or a computing cluster for higher throughput.  We compare and 

evaluate the accuracy of different nuclear segmentation approaches against manual expert cell 

segmentation for different cell lines acquired with different imaging modalities.  
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Introduction 

 Individual cells respond to their environment, make cell fate decisions, or cause diseases when 

mutated.  Understanding biological processes in detail at the molecular and cellular level in healthy 

and diseased tissue ultimately requires that cells be analyzed at single cell resolution.  Over the last 

few decades, microscopy techniques to image single cells have improved significantly, resulting in a 

wealth of imaging data sets1-4.  However, analyzing these data sets quantitatively in a high-throughput 

manner is still an immensely difficult and often unsolved task5.  The lack of quantitative analysis 

algorithms is the ultimate bottleneck in extracting more information from microscopy images, thus 

hindering mechanistic understanding of single cell behavior and its relevance to physiology and 

disease2,6.  

 To address these limitations, efforts have been undertaken to develop image processing platforms 

to analyze microscopy images and segment individual cells2,4,7.  These approaches require high-

contrast fluorescent cellular markers to distinguish between the inside of the cell and the cell 

boundary.  In many cases, cells are grown under low density adherent cell culture conditions, 

resulting in few cells that have very low contrast when imaged in widefield8,9.  Furthermore, because 

of low-contrast images, cell segmentation in mammalian cells requires fluorescent markers to stain 

the cell boundary homogenously10.  However, variability in protein expression levels, cell morphology 

or cell preparation for microscopy can cause heterogenous staining for an individual marker, making 

single-color stains insufficient for achieving homogenous staining and requiring human-assisted cell 

segmentation11. 

 Cell staining approaches utilizing multiple cell segmentation markers labeled with different 

fluorophores have been used to address this problem on the experimental side12,13.  While the effects 

of heterogeneous staining can be minimized by this approach, the use of additional cell segmentation 

markers in different fluorescent channels reduces the number of channels available to address 
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biological questions12,13.  Additionally, this methodology is time-consuming due to its requirement of 

significant optimization and long periods of imaging. Regardless of the staining strategy, most 

adherent cells are grown at low density to enable cell segmentation, resulting in few cells per field of 

view and limited single-cell statistics. Cells in suspension are easier to segment, but concentrating 

cells to ensure high density during imaging to increase cell statistics is challenging.  

 Computationally, attempts have been made to address image analysis challenges using machine 

learning and deep learning approaches3,9,14.  Such approaches rely on large and well-curated data 

sets to train a complex model describing features in images that identify single cells.  Studies report 

impressive results using these approaches in cell segmentation, but it is currently an open question 

how transferable models generated by these approaches are to new and much smaller data sets14.  

Implementing machine learning and deep learning approaches to generate new models requires 

substantial expertise, making such methods extremely difficult for less-experienced users to adopt15.   

We propose an alternative approach, called CellDissect, that overcomes these limitations both 

experimentally and computationally to improve image segmentation. The approach involves first 

optimizing sample preparation. By utilizing single-cell dissociation approaches alongside repurposed 

commercial “well-in-a-well” technology, CellDissect’s experimental workflow results in high-contrast 

widefield images with high cell density (Figure 1A). This is paired with nuclear staining, which allows 

for segmentation of the nucleus and assists cell boundary segmentation without the use of multiple 

markers or fluorescent channels. CellDissect’s nuclear and cellular segmentation algorithms then 

process these images with minimal user input through MATLAB or a graphical user interface (GUI) to 

generate highly accurate nuclear segmentation in 3D and cellular segmentation in 2D without the 

need for computational expertise or large, curated datasets. 
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Results 

 Since we observed low-contrast cell boundaries in adherent cells or cell aggregates, while 

boundaries of single-cell suspensions tended to be more distinct, we hypothesized that suspension 

and single-cell dissociation could improve data quality for cells not already in single-cell suspensions. 

This idea became the first step in our CellDissect approach, in which adherent cells (Figure 1B, top) 

and cell aggregates (Figure 1B, bottom) are trypsinized to dissociate into single-cell suspensions.  

Cells are subsequently fixed with formaldehyde and permeabilized with ethanol, the DNA is stained 

with DAPI, and the cells are mounted on commercial microwell plates to ensure high cell density for 

imaging (Figure 1B, right).  The CellDissect approach ensures that single fixed cells are in 

suspension and form round spheres that generate a strong refraction pattern from cell membranes 

upon widefield illumination (Figures 1B,3B).  This characteristic is critical to identify the cellular 

boundary with CellDissect if cells are not naturally in a single-cell suspension, and it eliminates the 

need for a fluorescent cell boundary marker.  Another advantage is that a standard widefield 

fluorescent microscope available in many cell biology facilities can be used without modifications.  

Our CellDissect approach is suitable if the scientific question does not require to know the exact cell 

shape in 3D or the cell-to-cell context in a cell culture plate or tissue.  After image acquisition, the 

computational workflow in CellDissect (Figure 1A) consists of defining minimum and maximum 

nucleus and cell sizes for a specific cell type that can be determined by using a GUI.  This step needs 

to be performed once for a specific cell type and microscope setup.  After these parameters have 

been determined in a small number of cells, correct nuclear segmentation in 3D (Figure 2) is followed 

by cell boundary segmentation in 2D (Figure 3).  
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Nuclear segmentation in three dimensions 

 Traditionally, cells are segmented by using a fixed intensity threshold16-19.  Although this has been 

sufficient to segment yeast cells, mammalian cells exhibit large variation in their nuclear DNA 

resulting in variable DAPI intensities (Figure 2A).  If the goal is to precisely segment the nucleus, then 

the intensity of each individual nucleus needs to be considered.  In order to ensure segmentation of 

cells with different DAPI intensities, in CellDissect we propose an adaptive thresholding approach 

(Figure 2B).  Here we generate binary images from maximum intensity projected DAPI images with 

increasing thresholds and filter objects based on size (Figure 2C).  This size filtering depends on the 

user-defined minimum and maximum nuclear size, which helps eliminate most instances of nuclei 

being blended together due to a low threshold (since it results in an abnormally large object) as well 

as noise or bright subsections of nuclei that are smaller than a complete nucleus (Figure 2D).  To 

separate connected nuclei, we investigate each object to determine if removing layers of the added 

binary image results in separate nuclei fitting the size requirements (Figure 2E).  This methodology 

allows one to identify the maximum number of individual nuclei in each image, and two different 

masks are generated during this process (Figure 2F).  The first is a mask that results from removing 

the greatest number of layers while retaining the greatest number of nuclei, which becomes an 

underestimate of the nuclear area (Figure 2F, top).  The second is a mask resulting from removing 

the least number of layers while still retaining the maximum number of nuclei, which results in a slight 

overestimate of the nuclear area for each nucleus (Figure 2F, bottom).  

 After the initial identification of the maximum number of nuclei, each nucleus is thresholded 

individually to determine the correct nuclear boundary (Figure 2G).  The individual threshold is 

identified by utilizing the overestimate of nuclear area in the previous step to identify a threshold in 

the cumulative distribution of the DAPI signal for each nucleus independently.  Although the slight 

overestimate of nuclear area often results in some noise being included in the initial nuclear 
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determination, this is largely corrected by a subsequent processing step that removes all but the 

largest connected volume in 3D.  Our CellDissect approach allows for automated and precise 3D 

nuclear segmentation (Figure 2H).  Finally, we compare the accuracy of three nuclear thresholding 

algorithms that we developed and tested, which are (1) the adaptive thresholding algorithm 

CellDissect (blue bar), (2) an algorithm that uses a fixed threshold that maximizes the number of 

segmented nuclei (orange bar) and (3) a manually chosen fixed threshold (yellow bar), to the original 

images using human experts (Figure 2I).  We scored false positive cells and nuclei as those that were 

detected computationally but not segmented correctly (>20% error).  False negatives were cells or 

nuclei that were not identified computationally but were identified by a human expert.  Applying the 

CellDissect approach to several cell types measured at different magnifications resulted in high 

accuracy (F1-score) in nuclear segmentation when compared to the ground truth of cell segmentation 

from several researchers (Figure 2I).  The F1-score is defined as the harmonic average of precision 

and sensitivity.  Precision shows how many of the computationally segmented objects are segmented 

correctly. Sensitivity shows how many of the total objects are segmented correctly.  Fixed thresholds 

yielded good results in determining the number of S. cerevisae (S.c.) and S. pombe (S.p.) yeast 

nuclei per image.  However, fixed thresholds performed extremely poor in identifying the correct 

number of nuclei in mammalian cells.  We overcame this problem with our adaptive thresholding 

approach CellDissect (Figure 2C-E).  In addition, defining an individual DAPI intensity threshold for 

each cell was essential to correctly segment the nuclear boundary in 3D (Figure 2G,H).  In summary, 

we have demonstrated with CellDissect, for a range of different cell types and imaging modalities, 

that using multiple thresholds increases the number of nuclei identified and is essential to correctly 

identifying the number of mammalian nuclei (Figure 2I).  In addition, individual thresholding of nuclei 

is essential to correctly identifying the nuclear boundary and ensuring 3D nuclear segmentation for all 

the different cell types. 
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Cell boundary segmentation 

 To segment individual cells in 2D, our CellDissect pipeline consists of maximum projection of 

widefield images, background correction, composite image generation, watershed cell segmentation 

and object removal based on size resulting in segmented single cells (Figure 3A).  First, we project 

several maximum contrast widefield images by maximum intensity to generate the cell outline as a 

white ring (Figure 3B).  Next, we generate a background image from the cell widefield image through 

disk smoothing (Figure 3C).  We then subtract this background image to enhance the contrast in the 

widefield image.  Next, we generate a composite image of the processed widefield image and the 

nuclear mask (Figure 3D).  This composite image is the input for a watershed algorithm (Figure 3E).  

Elements that are too big, too small or on the image boundary are removed (Figure 3F).  The overlay 

of the processed widefield image, the DAPI image, and the segmented nuclear and cytoplasmic 

boundary is shown in Figure 3G.  

 To demonstrate the robustness and throughput of our approach, we applied our CellDissect 

pipeline to S. cerevisae (S.c.), S. pombe (S.p.) yeast cells, mouse embryonic stem cells (mESCs) and 

human Jurkat cells with images taken at 100x magnification (Figure 4A).  We also applied our 

CellDissect approach to mESCs and Jurkat cells imaged at 20x magnification.  These results 

demonstrate qualitatively how our optimized experimental cell preparation protocol results in high 

quality and high cell density images at different cell magnifications, which is the basis for imaging 

large numbers of single cells. In addition, we quantified accuracy (F1-score) of our CellDissect 

approach in comparison to the ground truth that was independently generated from three human 

experts (Figure 3H). These results show quantitatively, that Cell Dissect outperforms the other 

approaches regardless of cell type and magnification.   Finally, we outline how our CellDissect can be 

utilized on a single desktop computer or on a computing cluster that processes images in parallel to 

increase throughput (Figure 4B).   
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Discussion 

 We present CellDissect, a combined experimental and computational workflow to identify 

individual cells and segment their nuclei in 3D at high accuracy, at high cell density and with high 

throughput.  In cases where cells are not already in a single-cell suspension and knowledge about 

cell morphology and nearest neighbor interaction is not required, dissociating cells into single-cell 

suspensions greatly improves data quality, uniformity and throughput (Figure 1)22.  This is because 

cells form spheres in suspension, generating a strong diffraction pattern and allowing these cells to 

be imaged in widefield with high contrast cell boundaries (Figure 1B).  Generating cell suspensions 

circumvents the problem of low contrast cell boundaries in adherent cells as well as the problems 

arising from three-dimensional cell aggregates.  In addition, cell segmentation is independent of the 

density of imaged cells.  With this optimized experimental workflow in CellDissect, that results in high 

contrast widefield images, we then improved nuclear segmentation by taking into consideration 

variable nuclear straining intensities due to differences in DNA content (Figure 2A, B).  In CellDissect, 

we developed an adaptive thresholding algorithm that consists of two steps.  In the first step, we 

apply a range of thresholds to identify all the nuclei in the image (Figure 2C-F).  In the second step, 

we threshold each nucleus independently to account for the DAPI intensity differences, resulting in 

3D segmented nuclei of high quality (Figure 2G, H).  A quantitative assessment by human experts of 

nuclear segmentation confirmed CellDissect’s high accuracy, outperforming manually or 

automatically-chosen single threshold approaches (Figure 2I).   CellDissect works very well for 

different types of cells imaged at different magnifications without the need for a large amount of 

training data or crowd source approaches20. 

 The nuclei that were initially determined are used as seeds to segment cell boundaries (Figure 3).  

Qualitative comparison between widefield images and the segmented images demonstrate the high 

accuracy of CellDissect’s image segmentation (Figure 3H).  We then applied our CellDissect 
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approach to other cell lines imaged at different magnifications (Figure 4A) and continued to observe a 

very high accuracy in nuclear and cell segmentation of all cell types using the F1-score metric in 

comparison to the ground truth generated by several humans (Figure 3H).  CellDissect is written in a 

modular manner that is amenable to processing images either on a desktop computer or in parallel on 

a computing cluster to increase throughput (Figure 4B)20.  The settings for both applications are 

generated through a GUI that can be adapted to different cell lines and microscope modalities23-25.  

These results show highly accurate nuclear and cell segmentation without the need for large training 

data sets.  In addition, high accuracy in nuclear and cell segmentation is achieved by only using 

widefield imaging and DAPI stained nuclei.  Recently developed cell segmentation approaches using 

deep learning indicate that cell segmentation is possible at high quality but most often requires very 

large data sets of images and significant hardware infrastructure to infer model parameters3,9,14. 

 In summary, by utilizing the experimental workflow in CellDissect, we prepare high quality single-

cell suspensions that are subsequently imaged at high density, resulting in high quality images. 

These images are then analyzed by the computational workflow in CellDissect, that consists of 

reliable segmentation of nuclei and cells at high accuracy for a range of cell types and magnification 

without the need for large training data sets. 
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Materials and Methods 

 

Experimental methods 

 

Cell culture 

The Saccharomyces cerevisiae (S. cerevisiae) strain BY4741 (MATa his3∆1 leu2∆0 met15∆0 

ura3∆0) was used and cultured as previously described26. 

 

The Saccharomyces pombe (S. pombe) strain 972h- was used.  Three days before the experiment, 

S. pombe cells were streaked out on a YES (0.0002% each of adenine, histidine, leucine, lysine, 

uracil (w/v), 0.25% yeast extract) + 3% glucose plate from a glycerol stock stored at -80°C.  The day 

before the experiment, a colony from the YES plate was inoculated in 5 ml YES + 3% glucose media 

(pre-culture) and grown at 32°C. After 6-12h, the optical density (OD) of the pre-culture was 

measured and the cells were diluted in new YES + 3% glucose media to reach an OD of 0.8 the next 

evening. 

 

For imaging at 20x, the mouse embryonic stem cell (mESC) cell line 16.7 (Lee and Lu 1999) was 

grown with 1 million seeded cells on 75 cm2 tissue culture flasks with vented caps (Falcon 353110) 

gelatinized with EmbryoMax 0.1% Gelatin Solution (Millipore ES-006-B) for 30 minutes at 37C and 

plated with 2 million C57Bl/6 mouse embryonic fibroblasts as feeder cells (Gibco A34960) and with 

serum+LIF media composing of: DMEM with high glucose (Life Technologies 11960-044), 15% ES 

Cell qualified FBS (Gibco 16141-061), 25 mM HEPES (Gibco 15630-030), 1x MEM NEAA (Life 

technologies 11140-050), 1x (100 U/mL) Penicillin-Streptomycin (Gibco 15140-122), 100 μM 2-

mercaptoethanol (Life Technologoies 21985-023), 500 U/mL LIF (EMD Millipore ESG1106), 1x 
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GlutaMAXTM (Gibco 35050-061), and 1x (1 mM) sodium pyruvate (Gibco 11360-070). Cells were 

grown at 37°C in a 5% CO2 humidity-controlled environment for two passages before experiments.  

 

For imaging at 100x, mESCs were thawed onto an MEF plate with conditioned media serum+LIF 

media as described for the 20x. The next day, media was changed with 2i media composed of: 

DMEM with high glucose (Life Technologies 11960-044), 25 mM HEPES (Gibco 15630-030), 0.5x 

MEM NEAA (Life technologies 11140-050), 1x (100 U/mL) Penicillin-Streptomycin (Gibco 15140122), 

100 μM 2-mercaptoethanol (Life Technologies 21985-023), 1000 U/mL LIF (EMD Millipore 

ESG1106), .25x GlutaMAXTM (Gibco, Catalog#: 35050-061), and 1x (1 mM) sodium pyruvate (Gibco 

11360-070), 20 μg/mL human insulin (Sigma I9278-5ML), 1 μM (Sigma PD0325901), 3 μM (Sigma 

CHIR99021), 1000 U/mL LIF (EMD Millipore ESG1107). After three days, the cells were passaged 

onto a plate gelatinized with 0.1% gelatin without feeders and grown for another passage. 

 

Jurkat, Clone E6-1 (ATCC® TIB-152™), cells were cultured at 0.5-1* 10^6 cells/ml in RPMI 1640 

media (Corning, Catalog#: 15-040-CV) containing 10% Heat inactivated FBS (Gibco 16140-071), 1x 

Penincillin-Streptomycin (Gibco, Catalog#: 15140-122) and 1x GlutaMAXTM (Gibco 35050-061) at 

37°C in a 5% CO2 humidity controlled environment. 

 

 

Cell Fixation 

S. cerevisiae were fixed in 4% formaldehyde as previously described26.  
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S. pombe cells were fixed with 1% formaldehyde for 15 minutes at room temperature, quenched with 

150 mM glycine for 5 minutes at room temperature and set on ice for 5 minutes afterwards. They 

were then washed twice with 2x SSC and then permeabilized with 70% ethanol overnight. 

 

mESCs were dissociated after washing with 1x PBS using accutase when cultured in 2i media and 

0.05% trypsin when in serum + LIF media. The cell suspension was centrifuged for 5 minutes at 200 

g, washed with 1x PBS, and then fixed for 8-10 minutes at room temperature with a 3.7% 

formaldehyde solution in 1x PBS. The cells were washed twice with 1x PBS and then permeabilized 

with 70% ethanol at 4°C for at least one hour. 

 

Jurkat cells were fixed in their media described above with 2% formaldehyde for 10 minutes at room 

temperature. They were centrifuged for 3 minutes at 1000xg and then permeabilized with 100% 

methanol on ice. 

 

DAPI staining 

The washing and staining procedure was the same for all cells and has been previously described21, 

though their centrifugation times and speeds were different and matched what was described above.  

 

Microscopy  

Cells were imaged with epifluorescence as previously described26. Yeast cells were on 75 x 25 mm 

Corning microslides (2947-75x25) with 22x22 glass coverslips (12-542-B). Mammalian cells were on 

the ibidi 15 μ-Slide Angiogenesis (81506) in wells coated with 0.01% poly-D-lysine (Cultrex 3439-100-

01) for 10 minutes. 
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Computational methods 

 

Size and slice determination (GUI).  

The directory and details of images to be analyzed were input into the GUI. The first image from the 

directory was loaded, and ellipses were drawn to approximate the maximum and minimum nuclear 

and cellular sizes within the image. Individual slices for the cell boundary were looked at by eye, and 

a range was determined for when there were bright boundaries in the image. 

 

Nuclear Determination 

For adaptive nuclear thresholding, 100 evenly-spaced thresholds between the minimum intensity and 

maximum intensity were calculated. For each threshold from the 10th to the 100th, a binary image of 

DAPI signal above the threshold was generated. MATLAB function “bwareaopen” filtered out objects 

that were too small or large based on the previously defined minimum and maximum nuclear sizes. 

All the binary images were added together, and each individual object was labeled using “bwlabeln”. 

It was determined for each individual object if more objects (within the size ranges) would result from 

removing layers from the binary images added together. Two new binary images resulted: 1) an 

image with a lower estimate of the nuclear area in the maximum intensity (dapi_label). For this, the 

maximum number of layers were removed that still had the maximum number of objects that fit the 

size restrictions. 2) An image with a higher estimate of the nuclear area in which the minimum 

number of layers were removed for maximum object number (dapi_label_low1). 

For comparison, a single threshold was automatically determined. Thresholds were calculated, binary 

images were generated, and objects were filtered by size as described above. The threshold resulting 
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in the maximum number of nuclei was applied, and this binary image was saved as both dapi_label 

and dapi_label_low1 for further processing steps. 

As another comparison, a manually determined DAPI threshold was also used. A DAPI intensity 

threshold was picked by eye to identify the maximum number of individual nuclei (not blended 

together) in the image. This threshold was applied, and the resulting binary image was saved as both 

dapi_label and dapi_label_low1. 

 

Nuclear Segmentation 

Each object in dapi_label_low1 was investigated individually by determining a circle around the center 

of the object with a radius 1.3 times what would be expected from a circle matching the maximum 

nucleus size. The maximum intensity projection from the DAPI channel was determined inside this 

circle. Other nuclei in dapi_label_low1 within the circle other than the nucleus in the center were 

ignored. The cumulative distribution function (cdf) of DAPI intensity inside the circle was determined, 

and the area of the nuclear object in dapi_label_low1 was divided by the area of the circle and 

subtracted from 1 to find a threshold for the nucleus for the cdf. The corresponding intensity value 

was determined and applied to the circle in 3D (now a cylinder) to determine the nucleus. The other 

nuclear objects in dapi_label_low1 within the cylinder were again ignored. The objects in each slice 

were filled in with the MATLAB function “imfill”, and only the largest connected volume in 3D was 

kept. Nuclei too close to the image border were removed. 

 

Cell segmentation 

A maximum intensity projection of the slices defined by the user was used to start. A background 

image was generated with a disk smoothing filter over this image based on the minimum cell size.  

The background image was then subtracted from the maximum projected image. This image was 
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then combined with processed DAPI image corresponding to the low estimate of nuclear area 

(dapi_label) using morphological reconstruction and cells were segmented with a watershed 

algorithm. After image segmentation, segmented elements that were too small or large elements 

were removed.  Cells too close to the borders were also removed. 

 

Quantification of Precision, Sensitivity, and Accuracy 

To quantify sensitivity and precision, images from the DAPI and transmitted light channels as well as 

the segmented nuclei and cells were loaded and displayed in one overlaid image. Experts in our lab 

labeled each image for false positives and false negatives for both the nuclear and cellular 

segmentation. A false negative was defined as a lack of segmentation for an object. A false positive 

was defined as a segmented object with greater than 20 percent error in its area (positive or 

negative). For instances where two objects were determined as one object, one false positive and 

one false negative was counted. Objects on the edge of the image were not counted. True positives 

(TP) were calculated by subtracting the number of false positives from the number of segmented 

objects determined by the program. Sensitivity was calculated by dividing the number of true positives 

by the number of false negatives (FN) plus true positives: TP/(FN+TP). Precision was calculated by 

dividing the number of true positives by the number of false positives (FP) plus true positives: 

TP/(FP+TP). The accuracy was calculated as the F1-score which is the harmonic average of the 

precision and sensitivity: 2(Precision x Sensitivity)/(Precision + Sensitivity). 
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Figures: 

 

Figure 1. Sample preparation and computational requirements for automated cell segmentation

Overview of experimental and computational workflow. Predefined minimum and maximum nuc

and cytoplasmic area for different cell types are selected and only need to be modified once for

specific cell type and imaging condition.  (B) Cells can be adherent, in suspension, or exist as c

aggregates before trypsin treatment. After trypsinization and dissociation, single cells are image

high density on a microscope regardless if they were previously adherent or in suspension.  Sca

at 10x is 17.53 µm and at 100x 5.07 µm. 
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Figure 2. Automated nuclear segmentation of 3D image stacks.  (A) Maximum projected cell nuclei 

with variable DAPI intensities (top). Distribution of integrated DAPI intensities within an image 

(bottom).  (B) Workflow of the nuclear segmentation code after providing cell type-specific definitions 

of minimal and maximum nuclear area.  (C) Increasing threshold result in an increase and then 

decrease in connected regions (top row). Binary images from the top are analyzed for connected 

regions within a cell type specific size range (bottom row).  (D) Threshold binary images in the top 

row are added resulting in a pseudo image of large and small connected regions (Added Images).  

(E) Separation of connected objects before and after Low and High estimate of nuclear area.  (F) Low 

and High estimate of nuclear area after watershed algorithm labels individual nuclei resulting in 

segmented nuclei.  (G) Boundary of the nucleus is determined individually by radially integrating the 

fluorescent intensity from the outside (top, green circle). For each cell a threshold of 60% of the 

maximum cumulative fluorescent intensity (blue line) was chosen to robustly identify the nuclear 

boundary in 3D across all cell types and imaging conditions (bottom).  (H) Nuclear segmentation in 

3D from the bottom to top presented as series of images.  (I)  Nuclear segmentation accuracy (F1-

score) quantification of 3D nuclear segmentation comparing fully automated adaptive threshold 

algorithm CellDissect (blue), maximum nuclei threshold algorithm (orange) and manual thresholding 

(yellow) in comparison to manual segmentation in four different cell lines and two different imaging 

magnifications. Mean and errors are computed from quantifying 3-4 images by three independent 

human experts. 
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Figure 3. Automated cell boundary segmentation. (A) Workflow of the automated cell boundary

segmentation. (B) Maximum projected widefield image using several images with clear cell 

boundaries is used to generate a (C) background image using disk smoothing. (D) After backgr

subtraction, the maximum projected widefield image is overlaid with the segmented nuclei. (E) 

watershed algorithm is applied resulting in segmented cells with cells on the image boundary 

removed (F). (G) Overlay of widefield (grey), DAPI (blue), nuclear (yellow) and cytoplasmic (ma

segmented mESC. Scalebar 13.3µm (H) Cell segmentation accuracy (F1-score) quantification 

cell segmentation comparing fully automated adaptive threshold algorithm CellDissect (blue), 

maximum nuclei threshold algorithm (orange) and manual thresholding (yellow) in comparison t

manual segmentation in four different cell lines and two different imaging magnifications. Mean 

errors are computed from quantifying the 3-4 images by three independent human experts. 
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Figure 4. Application, implementation and performance of cell segmentation for different cell typ

from different organism imaged at low and high resolution. (A) Overlay of widefield (grey), DAPI

(blue), nuclear (yellow) and cytoplasmic (magenta) segmented S. cerevisiae, S. pombe, mESC 

Jurkat cells imaged at 100x and mESC and Jurkat cells imaged at 20x. (B) Image processing ca

performed on a desktop computer or on a computing cluster for each individual image stack res

in significant throughput.   
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