1	Temporal Gut Microbial Changes Predict Recurrent <i>Clostridium difficile</i> in Patients with and
2	without Ulcerative Colitis
3	Running Title: Fecal microbiota predict recurrent CDI in UC
4	
5	Allen A. Lee, MD ^{1*} ; Krishna Rao, MD, MS ^{2*} ; Julajak Limsrivilai, MD, MSc ³ , Merritt Gillilland III,
6	PhD ¹ ; Benjamin Malamet ⁴ , Emily Briggs ¹ , Vincent B. Young, MD, PhD ^{2,5} , Peter DR Higgins, MD,
7	PhD, MSc ¹
8	*Author names in bold designate shared co-first authorship.
9	
10	1. Division of Gastroenterology, Department of Internal Medicine, University of Michigan
11	School of Medicine, Ann Arbor, Ml.
12	2. Division of Infectious Diseases, Department of Internal Medicine, University of Michigan
13	School of Medicine, Ann Arbor, Ml.
14	3. Division of Gastroenterology, Department of Internal Medicine, Siriraj Hospital, Mahidol
15	University, Bangkok, Thailand.
16	4. Oakland University William Beaumont School of Medicine, Rochester, MI
17	5. Department of Microbiology and Immunology; University of Michigan School of Medicine,
18	Ann Arbor, Ml.
19	
20	GRANT SUPPORT:
21	This study was funded by a research grant from the Crohn's and Colitis Foundation of America,
22	awarded to PH. PH also receives support from the NIH and the University of Michigan. AAL

23 re	ceives support from	the National Ce	enter for Advancing	Translational	Sciences of the NIH
-------	---------------------	-----------------	---------------------	---------------	---------------------

- 24 (KL2TR002241). VBY and KR receive support from the NIH (AI124255).
- 25

26 **ABBREVIATIONS:**

- 27 AuROC, area under the receiver operating characteristic curve; CDI, Clostridium difficile
- 28 infection; EOA, end of antibiotics; FMT, fecal microbiota transplantation; IBD, inflammatory
- 29 bowel disease; Lasso, least absolute shrinkage and selection operator; JSD, Jensen-Shannon
- 30 distance; MHI, microbiome health index; OTU, operational taxonomic unit; PERMANOVA,
- 31 permutational multivariate analysis of variance; rCDI, recurrent *Clostridium difficile* infection;
- 32 UC, ulcerative colitis.
- 33

34 **CORRESPONDENCE:**

- 35 Peter D. R. Higgins, MD, PhD, MSc
- 36 3906 Taubman Center
- 37 1500 E. Medical Center Dr., SPC 5352
- 38 Ann Arbor, MI 48109
- 39 Ph: (734) 647-5944
- 40 Email: phiggins@med.umich.edu
- 41
- 42 **DISCLOSURES:**
- 43 The authors have no disclosures.

44

45 **AUTHOR CONTRIBUTIONS:**

46	AL collected clinical data, participated in analysis and interpretation of the data, statistical
47	analysis, and drafted the manuscript. KR participated in analyzing the data, interpreting the
48	results, statistical analysis, and helped draft the manuscript. JL participated in acquisition of
49	clinical data and sample processing. MG participated in acquisition of data, sample processing
50	and data analysis. BM participated in acquisition of clinical data and sample processing. VBY
51	participated in study design, interpreting the results, helped draft the manuscript. PDRH
52	conceived the study, participated in subject recruitment, data acquisition, interpretation of the
53	results, and helped draft the manuscript. All authors were involved in critical revision of the
54	manuscript and approved the final manuscript.
55	
56	Word Count: 6,702
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

67 **ABSTRACT:**

68 Background:

69 Ulcerative colitis (UC) carries an increased risk of primary and recurrent *Clostridium difficile*

infection (rCDI) and CDI is associated with UC flares. We hypothesized that specific fecal

71 microbial changes associate with UC flare and rCDI.

72

73 Methods:

74 We conducted a prospective observational cohort study of 57 patients with UC and CDI, CDI

only, and UC flare only. Stool samples were collected at baseline, at the end of antibiotic

therapy, and after reconstitution for 16S rRNA sequencing. The primary outcomes were

recurrent UC flare and rCDI. Logistic regression and Lasso models were constructed for analysis.

78

79 Results:

80 There were 21 (45.7%) patients with rCDI, while 11 (34.4%) developed UC flare. Patients with

81 rCDI demonstrated significant inter-individual (P=.008) and intra-individual differences (P=.004

82 relative to baseline samples) in community structure by Jensen-Shannon distance (JSD)

83 compared with non-rCDI. Two cross-validated models identified by Lasso regression predicted

risk of rCDI: a baseline model with female gender, hospitalization for UC in the past year,

85 increased Ruminococcaceae and Verrucomicrobia, and decreased Eubacteriaceae,

86 Enterobacteriaceae, Lachnospiraceae, and Veillonellaceae (AuROC=0.94); and a model 14 days

87 after completion of antibiotics with female gender, increased Shannon diversity,

88 Ruminococcaceae and Enterobacteriaceae, and decreased community richness and

89	Faecalibacterium (AuROC=0.9). Adding JSD between baseline and post-treatment samples to
90	the latter model improved fit (AuROC=0.94). A baseline model including UC hospitalization in
91	the past year and increased Bacteroidetes showed good fit characteristics for predicting
92	increased risk of UC flare (AuROC=0.88).
93	
94	Conclusion:
95	Fecal microbial features at baseline and following therapy predict rCDI risk in patients with and
96	without UC. These results may help risk stratify patients to guide management.
97	
98	Keywords: Gut microbiota, predictive modeling, Clostridium difficile infection, ulcerative colitis,
99	Lasso regression
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	

111 **INTRODUCTION**:

112	Although the pathogenesis of ulcerative colitis (UC) is incompletely understood,
113	accumulating evidence suggests that disruptions of gut microbial structure and function
114	contribute to inflammatory bowel disease (IBD). Introduction of gut microbiota taken from IBD
115	patients and introduced into gnotobiotic mouse models of IBD can elicit proinflammatory
116	immune responses similar to those seen in IBD patients. ¹ Moreover, intestinal inflammation
117	may induce further derangements in the gut microbial community. ^{2,3} Thus, IBD may be seen as
118	a deleterious feedback cycle of disruptions to the gut microbiota and alterations in host
119	immune responses.
120	
121	Patients with IBD, particularly those with UC, are at higher risk for <i>Clostridium difficile</i>
122	(recently reclassified as <i>Clostridiodes difficile</i>) infection (CDI). ^{4–6} IBD patients have multiple risk
123	factors for CDI, including frequent antibiotic use, prior hospitalization, and/or a
124	immunocompromised state, but CDI occurs at increased rates even in IBD patients without
125	these traditional risk factors. ⁷ It is possible that alterations in the gut microbial community may
126	predispose IBD patients to CDI. Murine models suggest that shifts in microbial ecology are
127	associated with susceptibility to experimental CDI. ⁸ Notably, these changes in microbial
128	dynamics in CDI are similar to those consistently observed in IBD. IBD patients with CDI also
129	carry a 2-fold increased risk of hospitalization for subsequent exacerbation of IBD, increased
130	risk for colectomy, and almost 5-fold increased risk for mortality compared to those without
131	CDI. ^{5,9–11} IBD patients are also significantly more likely to have recurrent CDI (rCDI) compared
132	with non-IBD controls. ¹²

133	It is not clear how the microbiome disruptions seen in CDI and IBD relate to each other
134	and/or interact. Thus, we aimed to characterize the fecal microbiota in patients with UC \pm CDI
135	longitudinally and investigate possible relationships to rCDI and recurrent UC flare. We
136	hypothesized that poor reconstitution of the gut microbiome at the End of Antibiotics + 14 days
137	(EOA+14) would be associated with rCDI and/or subsequent UC flare.
138	
139	METHODS:
140	Study Design:
141	We conducted a prospective, observational cohort study at the University of Michigan.
142	We recruited subjects from the following three groups: symptomatic patients with UC who also
143	tested positive for CDI (cohort 1); non-IBD patients with symptomatic CDI (cohort 2); and
144	patients with UC flare without CDI (cohort 3) (Supplementary Figure 1).
145	
146	All subjects were 18 years or older and provided informed consent prior to enrollment
147	in the study. Subjects were excluded from the study if they had presence of an ostomy or
148	previous history of colectomy. Subjects in cohorts 1 and 3 had prior clinical, endoscopic and
149	histologic diagnosis of UC while subjects in cohort 2 had no documented history of UC or
150	autoimmune disease. ¹³ The study was approved by the institutional review board at the
151	University of Michigan (see Supplemental Methods for full details).
152	The primary outcomes were subsequent UC flare and rCDI. Secondary aims included
153	identifying any microbial features at baseline that may discriminate between patients with CDI
154	compared with UC. Subjects were contacted and their medical records were reviewed every 60

155	days for up to 180 days after enrollment to determine the recurrence of UC flare and rCDI. Due
156	to the small sample sizes in each cohort, patients in cohorts 1 and 2 were analyzed collectively
157	to determine the rate of rCDI while adjusting for UC status. Patients in cohort 1 were also
158	followed to determine the rate of UC flare. As patients in cohort 3 (UC flare only) were
159	experiencing an exacerbation of their UC on enrollment, it was not possible to differentiate
160	between an on-going vs. recurrent UC flare. As a result, patients in cohort 3 were excluded
161	from meeting the primary endpoint of UC flare but were used to adjust models for UC status.
162	Patients in cohort 3 were also analyzed to determine potential differences in microbial variables
163	between UC and CDI at baseline.
164	UC flare was defined by onset of typical symptoms occurring after enrollment in the
165	study along with 6-point Mayo score > 2.5 and a fecal calprotectin > 150 in the absence of
166	CDI. ¹⁴ CDI was diagnosed by presence of diarrhea (\geq 3 unformed stools in a 24-hour period) and
167	a positive stool test for toxigenic <i>C. difficile</i> (positive testing for both the glutamate
168	dehydrogenase [GDH] antigen and TcdA/TcdB by EIA [C. Diff Quik Chek Complete®, Alere,
169	Waltham, MA], or real-time PCR for the <i>tcdB</i> gene performed when GDH/toxin results were
170	discordant [Simplexa™ <i>C. difficile</i> Universal Direct, Diasorin Molecular LLC, Cypress, CA]). Initial
171	diagnostic tests were performed by the University of Michigan clinical microbiology laboratory.
172	rCDI was defined by recurrence of symptoms at least 14 days after initial treatment of CDI and
173	positive <i>C. difficile</i> testing. ¹⁵
174	

175 Stool Collection:

For cohorts 1 and 2, stool samples were collected from all subjects at baseline (day 0)
prior to initiation of antibiotics for CDI and/or medical therapy for UC flare (Supplemental
Figure 2). Stool samples were also collected at the end of antibiotics (EOA, approximately day
14) and EOA plus 14 days (approximately day 30). For cohort 3, stool samples were collected at
baseline and at day 30 after clinical remission was achieved.

181

197

182 **16S Sequence Analysis:**

DNA was extracted and libraries were prepared by the University of Michigan Host 183 184 Microbiome core, the 16S rRNA genes were sequenced, and the *mothur* computational pipeline¹⁶ was deployed for processing sequence data as previously described (see 185 Supplemental Methods).¹⁷ Following this, the following microbiome metrics were generated: 186 187 Shannon diversity, Jensen-Shannon distance (JSD) relative to baseline and subsequent samples, community type using unsupervised partition around medioid clustering based on JSD,¹⁸ 188 189 relative abundance of individual operational taxonomic units (OTUs), and other variables based on taxonomic class. One such constructed metric is the microbiome health index (MHI), defined 190 as the proportion of Bacteroidia and Clostridia compared to the proportion of 191 Gammaproteobacteria and Bacilli.¹⁹ 192 193 Statistical Analysis: 194 195 Continuous data were reported as mean and standard deviation (SD) if normally 196 distributed, and as median and range if not normally distributed. Categorical variables were

reported as frequencies and percentages. Continuous data were compared using one-way

ANOVA if data were parametric or Kruskal-Wallis test if non-parametric. Comparisons of
proportions were performed using Fisher's exact test. All data were analyzed using R version
3.5.2 (R Foundation for Statistical Computing, Vienna, Austria). A two-tailed *P*-value < 0.05 was
considered significant for all analyses.

202 Unadjusted and adjusted logistic regression analyses were performed to identify clinical 203 and microbial variables at baseline (time point 1) and at time point 3 (EOA plus 14 days) which 204 were associated with subsequent UC flare and rCDI. Corrections for multiple comparisons were performed using the Benjamini-Hochberg method.²⁰ Only OTUs that were present in at least 205 206 10% of samples were included in the analysis. The overall structure of microbial communities 207 among our primary outcomes was compared using redundancy analysis, an ordination 208 technique, followed by a permutational, multivariate ANOVA (PERMANOVA) for significance testing, as implemented by the R package *vegan* version 2.5-4.²¹ 209

210 Two predictive models using different techniques and aims were performed. The first 211 method included clinical and microbiota variables with P-values < .20 for the association with 212 either rCDI or subsequent UC flare based on logistic regression results. A backward stepwise 213 regression method was used to select predictors in the final multivariable model, and 214 interactions among the variables in the final model were assessed. This modeling strategy 215 helped quantify the magnitude, strength, and statistical significance of individual predictors 216 while accounting for confounding. However, it is not ideal for avoiding overfitting and 217 maximizing generalizability of models.

218 Due to the large number of possible predictor variables, and in order to generate 219 models that minimized overfitting, a second approach using Lasso (least absolute shrinkage and

220	selection operator) regression with cross validation was also employed. Models were built in a
221	stepwise regression fashion, and the optimal model was automatically selected using a 3-fold
222	cross-validation that minimized the penalty term (i.e. λ), as implemented in the glmnet package
223	version 2.0-16. ²² Since cross-validation includes a component of randomness, this stepwise
224	modeling strategy was simulated 1,000 times and those variables that appeared most
225	frequently were selected for inclusion in the final model. The area under the receiver operator
226	characteristic curve (AuROC) was calculated for each model using the R package pROC version
227	1.14.0. ²³
228	To assess longitudinal associations between clinical and microbial variables of interest
229	with the primary outcomes, generalized estimating equations (GEE) with an exchangeable or
230	auto-regressive correlation structure, generalized linear mixed-effects models (GLMER) and
231	generalized additive models (GAM) were utilized using the R packages geepack version 1.2-1, ²⁴
232	<i>Ime4</i> version 1.1-21, ²⁵ and <i>mgcv</i> version 1.8-28, ²⁶ respectively.
233	
234	RESULTS:
235	Baseline Clinical Variables:
236	A total of 57 subjects were enrolled in this study (32 with UC/CDI, 14 with CDI only, and
237	11 with UC only). Patients with CDI only were older compared to those with UC/CDI and UC
238	only (<i>P</i> =.001) (Table 1). Patients with UC only were significantly more likely to receive steroids
239	as their initial treatment for UC flare compared to those subjects with UC and CDI (90.9% vs.
240	31.2%, P=.001). Patients with UC only were also less likely to have received antibiotics in the
241	past year compared to patients with UC and CDI or patients with CDI only (<i>P</i> =.006). There were

242	no other clinical variables at baseline that differed significantly between the three groups. A
243	total of 21 subjects (45.7%) met the primary endpoint for rCDI while 11 subjects (34.4%)
244	developed a subsequent UC flare.
245	
246	Patients with CDI Show Reduced Microbial Diversity and Richness at Baseline Compared with
247	UC:
248	Microbial features at baseline were compared in patients with UC and CDI. Patients with
249	CDI showed decreased Shannon diversity (P<.05) and community richness (P=.002) at baseline
250	compared with UC even after controlling for UC status (Supplemental Table 1). There were also
251	several OTUs, including several Lachnospiraceae genera, that were depleted at baseline in
252	patients with CDI compared with UC.
253	
254	Patients with rCDI Exhibited a Distinct Community Structure Compared with Non-rCDI:
255	We next performed redundancy analysis to explore differences in microbial
256	communities across populations with rCDI and UC flare as variables (cohorts 1 and 2). There
257	were significant differences in the baseline community structure between patients who
258	subsequently developed rCDI vs. non-rCDI (<i>P</i> =.008 by PERMANOVA), Figure 1A). No significant
259	differences were seen between patients with subsequent UC flare vs. without a recurrent UC
260	flare (<i>P</i> =.44) (Figure 1B).
261	
262	Patients with rCDI Showed Greater Intra-Individual Variability of the Fecal Microbiota Over
263	Time:

264	We then evaluated intra-individual community changes in cohorts 1 and 2 by Jensen-
265	Shannon Distance (JSD, ranging from 0, indicating complete similarity relative to baseline
266	samples, to 1 or complete dissimilarity with baseline samples) over time. At the end of
267	antibiotics (EOA), there were no differences in JSD between patients who developed rCDI and
268	those who did not develop rCDI (P=.41) (Figure 2A). However, 14 days after completion of
269	antibiotics, those patients who subsequently developed rCDI demonstrated greater dissimilarity
270	to baseline samples in community structure compared with non-rCDI patients (<i>P</i> =.004) (Figure
271	2B). There were no differences in JSD at EOA (<i>P</i> =.75) or at EOA plus 14 days (<i>P</i> =.22) in patients
272	with and without subsequent UC flare.
273	
274	Baseline Clinical and Microbial Variables Are Predictive for rCDI:
274 275	Baseline Clinical and Microbial Variables Are Predictive for rCDI: Unadjusted Variables Associated with rCDI:
275	Unadjusted Variables Associated with rCDI:
275 276	Unadjusted Variables Associated with rCDI: We performed logistic regression models to determine baseline variables that were
275 276 277	Unadjusted Variables Associated with rCDI: We performed logistic regression models to determine baseline variables that were associated with risk for rCDI (cohorts 1 and 2) while controlling for UC status (cohorts 1 and 3)
275 276 277 278	Unadjusted Variables Associated with rCDI: We performed logistic regression models to determine baseline variables that were associated with risk for rCDI (cohorts 1 and 2) while controlling for UC status (cohorts 1 and 3) (Supplemental Table 2). Female gender was associated with an increased risk for rCDI (OR=2.5,
275 276 277 278 279	Unadjusted Variables Associated with rCDI: We performed logistic regression models to determine baseline variables that were associated with risk for rCDI (cohorts 1 and 2) while controlling for UC status (cohorts 1 and 3) (Supplemental Table 2). Female gender was associated with an increased risk for rCDI (OR=2.5, <i>P</i> =.05). In terms of microbial variables, an increase in the relative abundance of
275 276 277 278 279 280	Unadjusted Variables Associated with rCDI: We performed logistic regression models to determine baseline variables that were associated with risk for rCDI (cohorts 1 and 2) while controlling for UC status (cohorts 1 and 3) (Supplemental Table 2). Female gender was associated with an increased risk for rCDI (OR=2.5, <i>P</i> =.05). In terms of microbial variables, an increase in the relative abundance of Lachnospiraceae at baseline was protective against subsequent risk for rCDI (OR=0.52 for every
275 276 277 278 279 280 281	Unadjusted Variables Associated with rCDI: We performed logistic regression models to determine baseline variables that were associated with risk for rCDI (cohorts 1 and 2) while controlling for UC status (cohorts 1 and 3) (Supplemental Table 2). Female gender was associated with an increased risk for rCDI (OR=2.5, <i>P</i> =.05). In terms of microbial variables, an increase in the relative abundance of Lachnospiraceae at baseline was protective against subsequent risk for rCDI (OR=0.52 for every 10% increase, <i>P</i> =.02). There were no other clinical or microbial variables at baseline that were

284 Multivariable Model for rCDI:

285	Using backward stepwise regression analyses, in our final model we identified five
286	baseline variables that were significantly associated with rCDI even after adjusting for UC status
287	(Table 2). Female gender was associated with an increased risk for rCDI (OR=16.2, P=.005). In
288	contrast, increased OTU richness (OR=0.86 per every increase of 10 taxa, <i>P</i> =.02) as well as
289	increased relative abundance of Enterobacteriaceae (OR=0.29 per every 10% increase, <i>P</i> =.004);
290	Lachnospiraceae (OR=0.17 per every 10% increase, P=.002); and Veillonellaceae (OR=0.17 per
291	every 10% increase, P=.05) were protective against rCDI (Figure 3A-D). We assessed for
292	interactions among variables in the final model and none were found. This final model had
293	excellent fit characteristics (AuROC=0.91) (Figure 3E).
294	
295	Model selection using 3-fold cross-validated Lasso regression to minimize λ with 1000
296	simulations identified two clinical and six taxonomic variables at baseline that were associated
297	with rCDI in the largest number of simulations (Supplemental Table 3). Increased risk for rCDI
298	was associated with hospitalization for UC in the past year and female gender, as well as
299	increased relative abundances of Verrucomicrobia and Ruminococcaceae. Conversely, an
300	increase in Eubacteriaceae, Lachnospiraceae, Veillonellaceae, and Enterobacteriaceae at
301	baseline were protective against subsequent risk for rCDI. When these variables were included
302	in a Lasso regression model, this final model demonstrated excellent predictive capabilities for
303	rCDI (AuROC=0.94) (Figure 3F).
304	
305	Baseline Clinical and Microbial Variables Associated with Increased Risk for UC Flare:

306 Unadjusted Variables Associated with UC flare:

307	Prior hospitalization for UC in the past year (OR=16.0, <i>P</i> =.003) as well as steroid use as
308	initial treatment for UC exacerbation (OR=10.5, <i>P</i> =.008) were significantly associated with risk
309	for UC flare (cohort 1) (Supplemental Table 2). An increase in the relative abundance of
310	Bacteroidetes was associated with increased risk for UC flare (OR=2.06 for every 10% increase,
311	P=.01) (Supplemental Figure 3).
312	
313	Multivariable Modeling Associated with UC Flare:
314	Using backward stepwise regression, hospitalization for UC in the previous year
315	(OR=17.70, <i>P</i> =.008) and increased relative abundance of Bacteroidetes at baseline (OR=1.07,
316	P=.03) were associated with increased risk for UC flare (AuROC=0.88).
317	
318	Longitudinal Models Utilizing Microbial Variables Predict Increased Risk for rCDI:
319	We used microbial data from all timepoints in cohorts 1 and 2 to model rCDI by fitting
320	generalized estimating equations (GEE) and generalized linear mixed models (GLMM) while
321	adjusting for UC status (cohorts 1 and 3). However, models using both GEE and GLMM either
322	did not converge, resulted in singular fits, or gave nonsensical results. This was likely related to
323	excessive collinearity of variables, overdispersion/excessive variability over time, and/or
324	nonlinearity in the shape of the data. In terms of the latter, since the data did not follow a
325	linear pattern (Supplemental Figure 4A-D), we tried three different approaches to produce a

coherent model. First, in order to more accurately model the parabolic nature of the dataset, a

327 quadratic term was introduced but this still did not result in models that converged. Secondly,

328 we also modeled our data at two different time points, including at time points 1 (baseline) and

329	3 (EOA plus 14 days) and separately at time points 2 (EOA) and 3 (EOA plus 14 days). However,
330	modeling with only two time points did not produce a model that converged. Finally, we used
331	generalized additive models (GAM), which introduce a penalized regression spline in order to
332	model non-linear data. Here, we identified by GAM that female gender as well as decreasing
333	OTU richness and increasing Ruminococcaceae longitudinally were associated with future risk
334	for rCDI (AuROC=0.87).
335	
336	Clinical and Microbial Variables at Time Point 3 Also Predict Risk for rCDI:
337	Unadjusted Variables Associated with rCDI:
338	We next performed logistic regression modeling to determine whether microbial
339	features at time point 3 (microbial reconstitution, EOA plus 14 days) were associated with rCDI
340	(cohorts 1 and 2) while controlling for UC status (cohorts 1 and 3) (Supplemental Table 4). An
341	increased relative abundance of Gammaproteobacteria (OR=1.63 per every 10% increase,
342	P=.04), Enterobacteriaceae (OR=1.78 per every 10% increase, P=.03), and Jensen-Shannon
343	Distance (JSD) at time point 3 relative to baseline (OR=1.80 per every 0.1 increase, P=.01) were
344	associated with increased rCDI risk. Conversely, an increase in Shannon diversity (OR=0.34,
345	P=.04) and OTU richness (OR=0.85 per every increase of 10 taxa, P=.008) as well as increased
346	relative abundance of Ruminococcaceae (OR=0.40 per every 10% increase, <i>P</i> =.04) and
347	Faecalibacterium (OR=0.10 per every 10% increase, <i>P</i> =.04) were all protective against future
348	risk for rCDI. Additionally, at a lower level of significance, increased Bacteroidetes (OR=0.60 per
349	every 10% increase, P=.05), Lachnospiraceae (OR=0.62 per every 10% increase, P=.06) and MHI
350	(OR=0.78 per every 1% increase, P=.05) were also protective against rCDI.

352 Multivariable Model Selection for rCDI:

353	Model selection by backward stepwise regression identified four clinical and microbial
354	variables at time point 3 that were significantly associated with rCDI after adjusting for UC
355	status (Table 3). Female gender (OR=5.69, <i>P</i> =.03) and increased relative abundance of
356	Ruminococcaceae (OR=1.43 per every 1% increase, <i>P</i> =.03) were associated with increased risk
357	for future rCDI. In contrast, an increase in OTU richness (OR=0.83 per every increase of 10 taxa,
358	P=.03), and increased relative abundance of Faecalibacterium (OR=0.47 per every 1% increase,
359	P=.02) were protective against rCDI (Figure 4A-C). This model showed good fit characteristics
360	(AuROC=0.87) for predicting rCDI. When Jensen-Shannon Distance (JSD) at time point 3 relative
361	to baseline was added to the model, it had a statistically significant effect by likelihood ratio
362	testing (<i>P</i> =.007) and improved the model fit (AuROC=0.90).
363	Cross-validated Lasso regression simulations identified similar variables to the backward
363 364	Cross-validated Lasso regression simulations identified similar variables to the backward stepwise regression, including an increased relative abundance of Ruminococcaceae, decreased
364	stepwise regression, including an increased relative abundance of Ruminococcaceae, decreased
364 365	stepwise regression, including an increased relative abundance of Ruminococcaceae, decreased OTU richness, and decreased Faecalibacterium at time point 3 (EOA plus 14 days) as being
364 365 366	stepwise regression, including an increased relative abundance of Ruminococcaceae, decreased OTU richness, and decreased Faecalibacterium at time point 3 (EOA plus 14 days) as being associated with increased risk for rCDI (Supplemental Table 5). Lasso regression also identified
364 365 366 367	stepwise regression, including an increased relative abundance of Ruminococcaceae, decreased OTU richness, and decreased Faecalibacterium at time point 3 (EOA plus 14 days) as being associated with increased risk for rCDI (Supplemental Table 5). Lasso regression also identified additional variables associated with increased rCDI, including female gender, increased
364 365 366 367 368	stepwise regression, including an increased relative abundance of Ruminococcaceae, decreased OTU richness, and decreased Faecalibacterium at time point 3 (EOA plus 14 days) as being associated with increased risk for rCDI (Supplemental Table 5). Lasso regression also identified additional variables associated with increased rCDI, including female gender, increased Enterobacteriaceae (Figure 4D), and increased Shannon diversity (Figure 4E). When these
364 365 366 367 368 369	stepwise regression, including an increased relative abundance of Ruminococcaceae, decreased OTU richness, and decreased Faecalibacterium at time point 3 (EOA plus 14 days) as being associated with increased risk for rCDI (Supplemental Table 5). Lasso regression also identified additional variables associated with increased rCDI, including female gender, increased Enterobacteriaceae (Figure 4D), and increased Shannon diversity (Figure 4E). When these variables selected by the greatest number of simulations were included in a final Lasso

374 Clinical and Microbial Variables Did Not Associate with UC Flare at Time Point 3:

We did not identify any microbial variables at time point 3 in cohort 1 that were associated with risk for UC flare. Similarly, model selection by Lasso regression did not identify any variables that were significantly associated with UC flare (data not shown).

378

379 **DISCUSSION:**

We have conducted a prospective, longitudinal cohort study examining whether gut 380 381 microbial changes can predict future risk for rCDI and recurrent flare of UC in a cohort of 382 patients with CDI, with and without UC. In this study, we have shown that specific microbial 383 characteristics, either at baseline or upon reconstitution of the microbiome, can detect those patients at high risk for future episodes of rCDI and UC flare. Specifically, we demonstrated that 384 385 (1) patients with CDI \pm UC who subsequently develop rCDI possess a distinct microbial 386 community structure compared with non-rCDI patients; (2) there are unique microbial 387 characteristics at baseline which can identify patients at risk for rCDI with 94% accuracy; (3) 388 those patients with on-going perturbations of their fecal microbiota two weeks after 389 completion of antibiotics are at increased risk for rCDI; and (4) patients with history of 390 hospitalization for UC in the previous year and increased Bacteroidetes at baseline had 391 increased risk for subsequent UC flare.

392

Patients with UC and CDI represent a high-risk patient population with significant risk for
 rCDI and poor outcomes. Identifying those patients with higher risk for recurrence of disease

395 would represent a major advance in the field. Our results have identified several key variables 396 at baseline that are associated with rCDI even after adjusting for UC status. Specifically, female 397 gender, hospitalization for UC in the prior year, increased Ruminococcaceae and 398 Verrucomicrobia were associated with increased risk for rCDI while increased abundances of 399 Eubacteriaceae, Enterobacteriaceae, Lachnospiraceae, and Veillonellaceae were protective 400 against risk for future rCDI. This model demonstrated excellent discriminative ability with 94% 401 accuracy to predict future occurrences of rCDI. Notably, these variables were identified in baseline samples, which suggests that high-risk patients can be identified at the time of CDI 402 403 diagnosis. These patients might benefit from more aggressive therapy, such as prolonged antibiotic tapers, an antibiotic with lower risk of rCDI such as fidaxomicin,²⁷ use of a monoclonal 404 antibody to reduce risk of rCDI,²⁸ fecal microbiota transplantation (FMT), or even a rationally 405 406 designed probiotic (based on data from the current study) containing Eubacteriaceae, Lachnospiraceae, Enterobacteriaceae, and Veillonellaceae. 407 Female gender has previously been identified as an independent risk factor for CDI,²⁹ 408 which may be related to differences in sex hormone levels resulting in differences in gut 409 microbial composition.³⁰ Widespread changes in the gut microbiota, including lower diversity 410 411 and decreased abundance of putatively beneficial bacteria, such as Lachnospiraceae, have been demonstrated in both UC and CDI.^{31,32} Lachnospiraceae is a primary producer of butyrate, 412 which is known to inhibit *C. difficile in vitro*³³ and enhances intestinal epithelial barrier 413 function.³⁴ Furthermore, both *C. difficile* and Lachnospiraceae are taxonomically classified 414 415 within the Clostridiales order. Thus, Lachnospiraceae may be protective against CDI by occupying a similar ecological niche within the gastrointestinal tract competing for similar 416

417 resources as *C. difficile*. In addition, a probiotic containing 33 different bacterial species,

418 including Lachnospiraceae, Ruminococcaceae, and Eubacteriaceae, was protective against rCDI

419 for up to 6 months posttreatment.³⁵

420 Although there is a paucity of data regarding association between microbial characteristics and rCDI, the available data show some differences from our results. Studies 421 422 prior to FMT in CDI patients have demonstrated widespread changes in the gut microbiota, 423 including decreased abundances of Lachnospiraceae and Ruminococcaceae as well as enrichment of Enterococcaceae and Veillonellaceae.³⁶ Khanna, et al. reported increased 424 425 abundance of Veillonella, Enterobacteriaceae, and Lachnospiraceae in pre-treatment fecal samples were associated with rCDI,³⁷ while our results show the opposite directionality for 426 these taxa. However, in this prior study, rCDI was determined retrospectively by review of the 427 428 electronic medical record. Furthermore, all of these studies were limited by their cross-429 sectional study design and lack of longitudinal sampling. This is particularly limiting when 430 considering the effects of antibiotic treatment for CDI on the gut microbiota. There are only two published studies examining longitudinal changes in the gut 431 microbiota in rCDI. Seekatz, et al. demonstrated significant differences at baseline in 432 community structure in rCDI vs. non-rCDI patients.¹⁷ Notably, patients with rCDI were more 433 434 likely to show greater intra-individual similarity in their gut microbiota longitudinally compared

with non-rCDI patients, which is discordant with our results. However, similar to the study

436 design by Khanna, *et al.*, patients were retrospectively designated as having rCDI vs. recovery

437 by chart review. Additionally, the number of and interval between samples collected was highly

438 variable with samples collected up to 800 days after initial CDI diagnosis. Thus, our respective

studies may have captured different trajectories in gut microbial changes between perturbation 439 440 and reconstitution resulting in rCDI or recovery. Furthermore, our results may provide a more 441 clinically useful model given the ability to determine risk for rCDI at baseline, or shortly after 442 completion of antibiotics rather than weeks or months after collection of the index sample. In the first prospective longitudinal study regarding fecal microbial changes in rCDI, 443 444 Pakpour, et al. identified decreased Shannon diversity, depletion of Bacteroidetes and reduced abundance of *Veillonella dispar* by random forest models as being predictive of rCDI.³⁸ 445 446 However, the predictive capability of their model was poor (AuROC=0.68). Although there were 447 differences in the microbial characteristics identified, this was likely related to differences in 448 patient populations between our studies. The majority of patients enrolled by Pakpour, et al. identified as being of Afro-Caribbean descent and IBD patients were specifically excluded. 449 450 Interestingly, these authors identified only baseline microbial characteristics as being 451 associated with rCDI while their longitudinal samples could not discriminate between rCDI and 452 non-rCDI. It is important to note two key methodologic differences between our respective studies. Pakpour, et al. collected three stool samples shortly after initiating antibiotic 453 454 administration while a final sample was collected 4 days after completion of antibiotic 455 treatment. It is possible that the gut microbiota may have been significantly disturbed by on-456 going antibiotic administration at this time point, which precluded discrimination between 457 patients who recurred vs. those who recovered. Furthermore, subjects were only followed for 458 2-4 weeks, which is likely insufficient follow-up time to adequately determine rCDI. In contrast, we identified distinct temporal changes in the gut microbiota that were 459 associated with rCDI. We identified specific microbial changes 14 days after completion of 460

461 antibiotics which were predictive for risk of future rCDI. Specifically, those patients whose fecal 462 microbiota showed greater dissimilarity to their baseline samples were at highest risk for rCDI. 463 This suggests that patients with on-going disruptions in the gut microbial ecosystem have a 464 permissive state for recurrence of CDI. Additionally, we identified increased Ruminococcaceae and increased Enterobacteriaceae were associated with increased risk for rCDI while an 465 466 increase in community richness and Faecalibacteria were protective against rCDI even after 467 adjusting for UC status. Similar to Lachnospiraceae, Faecalibacteria are in the Clostridiales order, produce butyrate, and are associated with decreased risk for CDI.³⁹ Expansion of 468 469 Enterobacteriaceae, which normally occupy only a small fraction of the distal gut microbiota in healthy subjects, can be seen during periods of gut inflammation, such as in IBD or CDI.^{3,40} 470 Interestingly, examining the fecal microbiota at baseline or at reconstitution (14 days after 471 472 completion of antibiotics) separately produced more robust models compared with longitudinal 473 associations by generalized estimating equations, mixed models or generalized additive models 474 in this cohort. This suggests that studying the fecal microbiota separately at baseline or after reconstitution of the microbiome, rather than the trajectory of the gut microbiota 475 476 longitudinally, will be most useful in identifying those patients at highest risk for rCDI. 477 Prior IBD studies have identified different microbial features that are associated with worse outcomes. Using a random forest classifier, Shaw, et al. identified two genera, including 478 479 Coprococcus and Adlercreutzia, which showed fair predictive ability to identify responders to therapy in IBD (AuROC=0.75).⁴¹ We identified prior hospitalization for UC in the previous year 480 and increased Bacteroidetes at baseline as showing good predictive ability to identify patients 481 at higher risk for subsequent UC flare in the next 180 days (AuROC=0.88). Previously, studies 482

have demonstrated increased Bacteroidetes from mucosal biopsies of UC patients compared 483 with controls.⁴² Some members of the Bacteroidetes phyla, such as certain *Bacteroides* species, 484 485 can impair epithelial barrier function by producing mucin-degrading sulfatases or may lead to immune activation via Toll-like receptor 4.^{43,44} It is notable that we were not able to develop a 486 model identifying microbial characteristics longitudinally with risk for UC flare. This may reflect 487 488 differences in the pathogenesis of these two different diseases, where UC may be driven more 489 by host factors, while CDI is dependent on disruptions to the microbial ecological network. In addition, this study could have been underpowered for microbial differences in UC, and a larger 490 491 cohort with increased frequency and/or longer duration of sampling could be required to develop more robust microbial-driven models of UC exacerbation given the wide variability of 492 the IBD microbiome.⁴⁵ 493

494 It is difficult to clinically differentiate between an exacerbation of UC vs. CDI in UC
495 patients.⁴⁶ Our results suggest that patients with CDI have significant reductions in Shannon
496 diversity and community richness at baseline even after controlling for UC status. Similarly, CDI
497 patients have depletion of several OTUs at baseline, particularly in the genera Lachnospiraceae.
498 These results suggest that baseline microbial features may be of help in differentiating between
499 a flare and CDI in symptomatic UC patients while modulation of the microbiome in high-risk
500 patients to increase abundance of Lachnospiraceae may be considered in future studies.

501 There are several notable strengths of our study, including the longitudinal study design 502 with clinical outcome data for up to 6 months, repeated sample collection, robust demographic 503 and clinical data, and well-defined study endpoints. However, there are limitations to our 504 study. First, there were a small number of patients who developed UC flare, which likely 505 limited our ability to develop a predictive model for exacerbation of UC. Secondly, we only 506 sampled the fecal microbiota, while the mucosal-associated microbiota may provide more 507 relevant information regarding host-microbial interactions in UC and CDI. Finally, a longer 508 follow-up time may be required for other important adverse clinical outcomes, such as those 509 requiring colectomy.

510 In conclusion, we have identified characteristic temporal changes in the gut microbiota 511 associated with increased risk for subsequent rCDI in a cohort of patients with UC and/or CDI. 512 Although our findings require validation, these results could have important clinical 513 implications. The novel ability to identify patients at high risk for rCDI with over 90% accuracy 514 using a single stool sample, either at baseline prior to initiation of antibiotics or 14 days after 515 completion of antibiotics, could affect future clinical decision making. Inclusion of changes in 516 microbial diversity over time adds accuracy to the model but may be less clinically useful as this 517 requires sampling at two different time points. Clinicians could utilize this microbial-derived 518 information to escalate preventive therapy in higher-risk patients if prospective studies validate 519 a risk-stratified strategy of preventive therapy. Future work will focus on the mechanisms of 520 how shifts in the gut microbiota predispose patients to rCDI, and rational design of preventive 521 probiotics to reduce recurrence of *Clostridioides difficile* infection in high risk patients.

- 522
- 523
- 524
- 525
- 526

527 **REFERENCES:**

- 528 1. Nagao-Kitamoto H, Shreiner AB, Gillilland MG, et al. Functional Characterization of
- 529 Inflammatory Bowel Disease-Associated Gut Dysbiosis in Gnotobiotic Mice. Cell Mol
- 530 Gastroenterol Hepatol 2016;2:468–481.
- 531 2. Lupp C, Robertson ML, Wickham ME, et al. Host-Mediated Inflammation Disrupts the
- 532 Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host
- 533 Microbe 2007;2:119–129.
- 3. Gevers D, Kugathasan S, Denson LA, et al. The Treatment-Naive Microbiome in New-Onset
- 535 Crohn's Disease. Cell Host Microbe 2014;15:382–392.
- 536 4. Rodemann JF, Dubberke ER, Reske KA, et al. Incidence of *Clostridium difficile* infection in
- inflammatory bowel disease. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol
 Assoc 2007;5:339–344.
- 539 5. Nguyen GC, Kaplan GG, Harris ML, et al. A national survey of the prevalence and impact of
- 540 *Clostridium difficile* infection among hospitalized inflammatory bowel disease patients. Am
- 541 J Gastroenterol 2008;103:1443–1450.
- 542 6. Lawson PA, Citron DM, Tyrrell KL, et al. Reclassification of *Clostridium difficile* as
- 543 Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 2016;40:95–99.
- 544 7. Rao K, Higgins PDR. Epidemiology, Diagnosis, and Management of *Clostridium difficile*
- 545 Infection in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2016;22:1744–
- 546 1754.

547	8.	Reeves AE, Theriot CM, Bergin IL, et al. The interplay between microbiome dynamics and
548		pathogen dynamics in a murine model of <i>Clostridium difficile</i> Infection. Gut Microbes
549		2011;2:145–158.
550	9.	Ananthakrishnan AN, McGinley EL, Binion DG. Excess hospitalisation burden associated
551		with <i>Clostridium difficile</i> in patients with inflammatory bowel disease. Gut 2008;57:205–
552		210.
553	10.	Ananthakrishnan AN, McGinley EL, Saeian K, et al. Temporal trends in disease outcomes
554		related to <i>Clostridium difficile</i> infection in patients with inflammatory bowel disease.
555		Inflamm Bowel Dis 2011;17:976–983.
556	11.	Kelsen JR, Kim J, Latta D, et al. Recurrence rate of <i>Clostridium difficile</i> infection in
557		hospitalized pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis
558		2011;17:50–55.
559	12.	Razik R, Rumman A, Bahreini Z, et al. Recurrence of Clostridium difficile Infection in
560		Patients with Inflammatory Bowel Disease: The RECIDIVISM Study. Am J Gastroenterol
561		2016;111:1141–1146.
562	13.	Kornbluth A, Sachar DB, Practice Parameters Committee of the American College of
563		Gastroenterology. Ulcerative colitis practice guidelines in adults: American College Of
564		Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 2010;105:501–
565		523; quiz 524.
566	14.	Lewis JD, Chuai S, Nessel L, et al. Use of the Non-invasive Components of the Mayo Score
567		to Assess Clinical Response in Ulcerative Colitis. Inflamm Bowel Dis 2008;14:1660–1666.

568	15.	McDonald LC, Gerding DN, Johnson S, et al. Clinical Practice Guidelines for Clostridium
569		difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of
570		America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis
571		2018;66:e1–e48.
572	16.	Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: Open-Source, Platform-
573		Independent, Community-Supported Software for Describing and Comparing Microbial
574		Communities. Appl Environ Microbiol 2009;75:7537–7541.
575	17.	Seekatz AM, Rao K, Santhosh K, et al. Dynamics of the fecal microbiome in patients with
576		recurrent and nonrecurrent Clostridium difficile infection. Genome Med 2016;8. Available
577		at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847246/ [Accessed January 24,
578		2019].
579	18.	Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature
580		2011;473:174–180.
581	19.	Blount K, Jones C, Deych E, et al. 1966. Evaluating a Prototype Microbiome Health Index
582		(MHI) as a Measure of Microbiome Restoration Using Data Derived From a Published
583		Study of Fecal Microbiota Transplant (FMT) to Treat Recurrent Clostridium difficile
584		Infections (rCDI). Open Forum Infect Dis 2018;5:S570.
585	20.	Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful
586		Approach to Multiple Testing. J R Stat Soc Ser B Methodol 1995;57:289–300.
587	21.	Oksanen J, Blanchet G, Friendly M, et al. vegan: Community ecology package. R package
588		version 2.5-4. 2019. Available at: https://CRAN.R-project.org/package=vegan.

- 589 22. Friedman JH, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via
- 590 Coordinate Descent. J Stat Softw 2010;33:1–22.
- 591 23. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze
- and compare ROC curves. BMC Bioinformatics 2011;12:77.
- 593 24. Højsgaard S, Halekoh U, Yan J. The R Package geepack for Generalized Estimating
- 594 Equations. J Stat Softw 2005;15:1–11.
- 595 25. Bates D, Mächler M, Bolker B, et al. Fitting Linear Mixed-Effects Models Using Ime4. J Stat
- 596 Softw 2015;67:1–48.
- 597 26. Wood SN. Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized
- 598 Additive Models. J Am Stat Assoc 2004;99:673–686.
- 599 27. Crook DW, Walker AS, Kean Y, et al. Fidaxomicin Versus Vancomycin for *Clostridium*
- 600 *difficile* Infection: Meta-analysis of Pivotal Randomized Controlled Trials. Clin Infect Dis
- 601 2012;55:S93–S103.
- 602 28. Wilcox MH, Gerding DN, Poxton IR, et al. Bezlotoxumab for Prevention of Recurrent
- 603 *Clostridium difficile* Infection. N Engl J Med 2017;376:305–317.
- Lessa FC, Mu Y, Bamberg WM, et al. Burden of *Clostridium difficile* Infection in the United
 States. N Engl J Med 2015;372:825–834.
- 606 30. Markle JGM, Frank DN, Mortin-Toth S, et al. Sex Differences in the Gut Microbiome Drive
- 607 Hormone-Dependent Regulation of Autoimmunity. Science 2013;339:1084–1088.
- 608 31. Schirmer M, Denson L, Vlamakis H, et al. Compositional and Temporal Changes in the Gut
- 609 Microbiome of Pediatric Ulcerative Colitis Patients Are Linked to Disease Course. Cell Host
- 610 Microbe 2018;24:600-610.e4.

611	32.	Schubert AM, Rogers MAM, Ring C, et al. Microbiome Data Distinguish Patients with
612		Clostridium difficile Infection and Non-C. difficile-Associated Diarrhea from Healthy
613		Controls. mBio 2014;5.
614	33.	Rolfe RD. Role of volatile fatty acids in colonization resistance to <i>Clostridium difficile</i> . Infect
615		lmmun 1984;45:185–191.
616	34.	Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic
617		function. Aliment Pharmacol Ther 2008;27:104–119.
618	35.	Petrof EO, Gloor GB, Vanner SJ, et al. Stool substitute transplant therapy for the
619		eradication of <i>Clostridium difficile</i> infection: "RePOOPulating" the gut. Microbiome
620		2013;1:3.
621	36.	Ross CL, Spinler JK, Savidge TC. Structural and functional changes within the gut microbiota
622		and susceptibility to <i>Clostridium difficile</i> infection. Anaerobe 2016;41:37–43.
623	37.	Khanna S, Montassier E, Schmidt B, et al. Gut microbiome predictors of treatment
624		response and recurrence in primary Clostridium difficile infection. Aliment Pharmacol Ther
625		2016;44:715–727.
626	38.	Pakpour S, Bhanvadia A, Zhu R, et al. Identifying predictive features of <i>Clostridium difficile</i>
627		infection recurrence before, during, and after primary antibiotic treatment. Microbiome
628		2017;5:148.
629	39.	Milani C, Ticinesi A, Gerritsen J, et al. Gut microbiota composition and Clostridium difficile
630		infection in hospitalized elderly individuals: a metagenomic study. Sci Rep 2016;6:25945.
631	40.	Seekatz AM, Young VB. Clostridium difficile and the microbiota. J Clin Invest
632		2014;124:4182–4189.

- 633 41. Shaw KA, Bertha M, Hofmekler T, et al. Dysbiosis, inflammation, and response to
- 634 treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory
- 635 bowel disease. Genome Med 2016;8:75.
- 636 42. Swidsinski A, Ladhoff A, Pernthaler A, et al. Mucosal flora in inflammatory bowel disease.
- 637 Gastroenterology 2002;122:44–54.
- 638 43. Lucke K, Miehlke S, Jacobs E, et al. Prevalence of *Bacteroides* and *Prevotella* spp. in
- 639 ulcerative colitis. J Med Microbiol 2006;55:617–624.
- 640 44. Erridge C, Pridmore A, Eley A, et al. Lipopolysaccharides of *Bacteroides fragilis*, *Chlamydia*
- *trachomatis* and *Pseudomonas aeruginosa* signal via Toll-like receptor 2. J Med Microbiol
 2004;53:735–740.
- 45. Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in
 inflammatory bowel disease. Nat Microbiol 2017;2:17004.
- 645 46. Reinink AR, Limsrivilai J, Reutemann BA, et al. Differentiating *Clostridium difficile* Colitis
- 646 from *Clostridium difficile* Colonization in Ulcerative Colitis: A Role for Procalcitonin?
- 647 Digestion 2017;96:207–212.
- 648 47. Kozich JJ, Westcott SL, Baxter NT, et al. Development of a Dual-Index Sequencing Strategy
- 649 and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina
- 650 Sequencing Platform. Appl Environ Microbiol 2013;79:5112–5120.
- 48. Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource for quality
- 652 checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids
- 653 Res 2007;35:7188–7196.

- 49. Wang Q, Garrity GM, Tiedje JM, et al. Naïve Bayesian Classifier for Rapid Assignment of
- 655 rRNA Sequences into the New Bacterial Taxonomy. Appl Environ Microbiol 2007;73:5261–
- 656 5267.

- ---

676 **TABLE LEGEND**:

Table 1. Baseline Demographic Variables for Patients with Ulcerative Colitis (UC) with or

678 without *Clostridium difficile* Infection (CDI).

UC/CDI	CDI only	UC only	<i>P</i> -value
(n = 32)	(n = 14)	(n = 11)	
40.4 (18.1-	66.5 (21.2-	45.0 (21.5-	.001
85.7)	83.2)	71.1)	
11 (34.4)	7 (50.0)	5 (45.5)	.58
21(65.6)	7 (50.0)	6 (54.5)	
29 (90.6)	13 (92.9)	10 (90.9)	>.99
26 (81.2)	NA	7 (63.6)	.37
13 (40.6)	6 (42.9)	5 (50.0)	.93
	NA		
24 (75.0)		8 (72.7)	>.99
15 (46.9)		5 (45.5)	>.99
15 (46.9)		3 (27.3)	.67
7 (21.9)	5 (38.5)	4 (44.4)	.26
7 (22.6)	6 (42.9)	2 (20.0)	.67
15 (46.9)	8 (57.1)	NA	>.99
25 (80.6)	12 (85.7)	3 (30.0)	.006
11 (34.4)	NA	NA	
7.0 (2.3-21.4)	•	9.5 (6.0-15.1)	.39
3.9 (2.8-5.1)		4.0 (2.8-4.9)	.44
13.0 (5.0-	3.8 (2.6-4.4)	10.0 (6.0-	.06
21.0)	12.0 (4.0-	25.0)	.27
0.8 (0.6-1.5)	57.0)	0.8 (0.7-1.2)	
	0.7 (0.5-2.4)		
	(n = 32) 40.4 (18.1- 85.7) 11 (34.4) 21 (65.6) 29 (90.6) 26 (81.2) 13 (40.6) 26 (81.2) 13 (40.6) 24 (75.0) 15 (46.9) 15 (46.9) 7 (21.9) 7 (22.6) 15 (46.9) 25 (80.6) 11 (34.4) 7.0 (2.3-21.4) 3.9 (2.8-5.1) 13.0 (5.0-	(n = 32) $(n = 14)$ $40.4 (18.1-$ $85.7)$ $66.5 (21.2-$ $83.2)$ $11 (34.4)$ $7 (50.0)$ $21 (65.6)$ $7 (50.0)$ $29 (90.6)$ $13 (92.9)$ $26 (81.2)$ NA $13 (40.6)$ $6 (42.9)$ $24 (75.0)$ $6 (42.9)$ $15 (46.9)$ $ 15 (46.9)$ $ 7 (22.6)$ $6 (42.9)$ $15 (46.9)$ $ 15 (46.9)$ $ 25 (80.6)$ $12 (85.7)$ $11 (34.4)$ NA $7.0 (2.3-21.4)$ $10.6 (3.6-$ $18.7)$ $3.9 (2.8-5.1)$ $ 13.0 (5.0-$ $21.0)$ $ 20 (4.0-$ $57.0)$ $-$	(n = 32) $(n = 14)$ $(n = 11)$ $40.4 (18.1 66.5 (21.2 45.0 (21.5 85.7$) 83.2) 71.1 $11 (34.4)$ $7 (50.0)$ $5 (45.5)$ $21 (65.6)$ $7 (50.0)$ $6 (54.5)$ $29 (90.6)$ $13 (92.9)$ $10 (90.9)$ $26 (81.2)$ NA $7 (63.6)$ $13 (40.6)$ $6 (42.9)$ $5 (50.0)$ $24 (75.0)$ NA $7 (63.6)$ $15 (46.9)$ $5 (45.5)$ $15 (46.9)$ $5 (38.5)$ $4 (44.4)$ $7 (22.6)$ $6 (42.9)$ $2 (20.0)$ $15 (46.9)$ $8 (57.1)$ NA $25 (80.6)$ $12 (85.7)$ $3 (30.0)$ $11 (34.4)$ NANA $7.0 (2.3-21.4)$ $10.6 (3.6 9.5 (6.0-15.1)$ $3.9 (2.8-5.1)$ 18.7) $4.0 (2.8-4.9)$ $13.0 (5.0 3.8 (2.6-4.4)$ $10.0 (6.0 21.0)$ $2.0 (4.0 25.0$) $0.8 (0.6-1.5)$ 57.0) $0.8 (0.7-1.2)$

Steroid Administered	10 (31.2)	NA	10 (90.9)	.001
for Treatment of UC				
flare <i>,</i> n (%)				
CDI Recurrence, n (%)	14 (43.8)	7 (50.0)	NA	.66
Initial Antibiotic				
Treatment for CDI				
Recurrence				
Vancomycin, n (%)	23 (71.9)	8 (57.1)	NA	.63

681 Table 2. Multivariable Logistic Regression Models of Clinical and Microbial Variables at

Baseline Associated with Recurrent *Clostridium difficile* Infection (rCDI).

	OR	95% CI	<i>P</i> -value
Clinical Variables Ass	ociated with Increased	Risk for rCDI	,
Female gender	16.2	2.77 – 155.62	.005
Microbial Variables P	Protective Against rCDI	1	
OTU Richness (per	0.86	0.73 – 0.96	.02
every increase of 10			
taxa)			
Enterobacteriaceae	0.29	0.09 – 0.56	.004
(per every 10%			
increase)			
Lachnospiraceae	0.17	0.04 – 0.44	.002
(per every 10%			
increase)			
Veillonellaceae (per	0.17	0.02 – 0.75	.05
every 10% increase)			

683 Effect sizes are presented after adjustment for UC status.

Table 3. Multivariable Logistic Regression Models of Clinical and Microbial Variables at Time

687 Point 3 (14 days after Completion of Antibiotics) Associated with Recurrent *Clostridium*

688 *difficile* Infection (rCDI).

OR	95% CI	<i>P</i> -value
Variables Associated	with Increased Risk f	or rCDI
5.69	1.36 – 29.71	.03
1.43	1.08 - 2.07	.03
2.59	1.28 - 6.15	.01
otective Against Risk	for rCDI	
0.83	0.66 – 0.96	.03
0.47	0.23 – 0.75	.02
	Variables Associated 5.69 1.43 2.59 rotective Against Risk 0.83 0.47	Variables Associated with Increased Risk for 5.69 1.36 - 29.71 1.43 1.08 - 2.07 2.59 1.28 - 6.15 rotective Against Risk for rCDI 0.83 0.66 - 0.96 0.47 0.23 - 0.75

⁶⁸⁹ Effect sizes are presented after adjustment for UC status.

690

691 **FIGURE LEGEND**:

- 692 Figure 1. Patients with Recurrent *Clostridium difficile* Infection (rCDI) Show Broad Differences
- 693 in Microbial Community Structure Compared with non-rCDI.
- 694 (A) Principal coordinates analysis (PCoA) based on redundancy analysis demonstrated
- 695 significant differences in the community structure between patients who subsequently
- 696 developed rCDI (red) compared with patients without rCDI (blue) (*P*=.008 by PERMANOVA). (B)
- 697 PCoA plot showing no differences between community structures in patients who subsequently
- 698 developed UC flare (red) vs. non-UC flare (blue) (*P*=.44).
- 699

700	Figure 2. Patients with Recurrent <i>Clostridium difficile</i> Infection (rCDI) Show Significant
701	Perturbations of the Fecal Microbiota Longitudinally Compared with Non-rCDI Patients.
702	Jensen-Shannon distance (JSD), a measure of intra-individual microbial community dissimilarity
703	compared to baseline samples, was calculated over time. (A) At the end of antibiotics, there
704	were no differences in JSD between patients who subsequently developed rCDI (red) and non-
705	rCDI (blue) (P=.41). (B) However, 14 days after completion of antibiotics, patients who
706	subsequently developed rCDI (red) demonstrated a significantly elevated JSD (greater
707	community dissimilarity relative to baseline samples) compared with non-rCDI patients (blue)
708	(P=.004). These results suggest that patients with on-going perturbations of the fecal
709	microbiota 2 weeks after completion of antibiotics were at higher risk for rCDI.
710	
711	Figure 3. Identification of Microbial Variables at Baseline Associated with Increased or
711 712	Figure 3. Identification of Microbial Variables at Baseline Associated with Increased or Decreased Risk for Recurrent <i>Clostridium difficile</i> Infection (rCDI). Three bacterial taxa and
712	Decreased Risk for Recurrent Clostridium difficile Infection (rCDI). Three bacterial taxa and
712 713	Decreased Risk for Recurrent <i>Clostridium difficile</i> Infection (rCDI). Three bacterial taxa and community richness were identified by backward stepwise regression as being associated with
712 713 714	Decreased Risk for Recurrent <i>Clostridium difficile</i> Infection (rCDI). Three bacterial taxa and community richness were identified by backward stepwise regression as being associated with subsequent rCDI. The relative abundances for these three taxa as well as community richness
712 713 714 715	Decreased Risk for Recurrent <i>Clostridium difficile</i> Infection (rCDI). Three bacterial taxa and community richness were identified by backward stepwise regression as being associated with subsequent rCDI. The relative abundances for these three taxa as well as community richness are shown grouped by whether or not rCDI occurred. Data are shown as violin plots with
712 713 714 715 716	Decreased Risk for Recurrent <i>Clostridium difficile</i> Infection (rCDI). Three bacterial taxa and community richness were identified by backward stepwise regression as being associated with subsequent rCDI. The relative abundances for these three taxa as well as community richness are shown grouped by whether or not rCDI occurred. Data are shown as violin plots with accompanying boxplot and whiskers indicating median, interquartile range (IQR) and 1.5 x IQR
712 713 714 715 716 717	Decreased Risk for Recurrent <i>Clostridium difficile</i> Infection (rCDI). Three bacterial taxa and community richness were identified by backward stepwise regression as being associated with subsequent rCDI. The relative abundances for these three taxa as well as community richness are shown grouped by whether or not rCDI occurred. Data are shown as violin plots with accompanying boxplot and whiskers indicating median, interquartile range (IQR) and 1.5 x IQR of the median for the following variables: (A) OTU richness, (B) Enterobacteriaceae, (C)
712 713 714 715 716 717 718	Decreased Risk for Recurrent <i>Clostridium difficile</i> Infection (rCDI). Three bacterial taxa and community richness were identified by backward stepwise regression as being associated with subsequent rCDI. The relative abundances for these three taxa as well as community richness are shown grouped by whether or not rCDI occurred. Data are shown as violin plots with accompanying boxplot and whiskers indicating median, interquartile range (IQR) and 1.5 x IQR of the median for the following variables: (A) OTU richness, (B) Enterobacteriaceae, (C) Lachnospiraceae, and (D) Veillonellaceae. Note that OTU richness, Enterobacteriaceae, and

- hospitalization for UC in the previous year, and increased relative abundances of
- 723 Ruminococcaceae and Verrucomicrobia, and decreased Eubacteriaceae, Enterobacteriaceae,
- 724 Veillonellaceae, and Lachnospiraceae (AuROC=0.94).
- 725
- 726 Figure 4. Fecal Microbial Characteristics at End of Antibiotics Plus 14 Days are Associated with
- 727 Future Risk for Recurrent CDI.
- 728 Several microbial variables 14 days after completion of antibiotics were identified as being
- associated with risk for future rCDI. The relative abundances for representative taxa as well as
- 730 Shannon diversity and community richness are shown grouped by whether or not rCDI
- 731 occurred. Data are shown as violin plots with accompanying boxplot and whiskers indicating
- 732 median, interquartile range (IQR) and 1.5 x IQR of the median for the following variables: (A)
- 733 OTU richness, (B) Ruminococcaceae, (C) Faecalibacterium, (D) Enterobacteriaceae, and (E)
- 734 Shannon diversity over time, including at baseline, end of antibiotics (EOA), and end of
- 735 antibiotics plus 14 days (EOA+14d). Note that OTU richness, Ruminococcaceae,
- 736 Faecalibacterium, and Enterobacteriaceae are shown in logarithmic scale. (F) ROC curve
- 737 displaying good fit characteristics of model identified by Lasso regression containing variables
- of female gender, increased Shannon diversity, increased relative abundances of
- 739 Ruminococcaceae and Enterobacteriaceae, decreased OTU richness and Faecalibacterium, and
- 740 Jensen Shannon Distance (relative to baseline) at end of antibiotics plus 14 days for risk of
- 741 future rCDI (AuROC=0.94).
- 742
- 743

744 SUPPLEMENTAL METHODS:

745 *Clinical Data Extraction*:

746	Clinical data were collected from patient interviews and manual chart review. Clinical
747	and demographic variables included age, gender, ethnicity, current/prior smoking history,
748	current therapy for UC, laboratory results, current/prior use of acid suppressive medications,
749	current/prior use of probiotics, prior history of CDI, prior use of antibiotics within the past year,
750	and hospitalization for UC in the past year.
751	
752	DNA Extraction and 16S rRNA Sequencing:
753	All stool samples were collected and immediately stored in a -80°C freezer. Total fecal
754	DNA was extracted using the MoBio PowerMag soil isolation kit (MoBio Laboratories). DNA
755	libraries were prepped by the University of Michigan Host Microbiome core as previously
756	described. ¹⁷ Briefly, dual-index primers specific to the V4 region of the 16S rRNA gene were

employed for DNA amplification.⁴⁷ PCR mixtures contained 5 μ l of primer set at 4 μ M

758 concentration, 0.15 μl Accuprime High-Fidelity *Taq*, 2 μl of 10x Accuprime PCR II buffer (Life

Technologies), 11.85 μ l sterile water, and 1 μ l of DNA template. Cycling conditions consisted of

initial denaturation at 95°C for 2 min, followed by 30 cycles of 95°C for 20 s, 55°C for 15 s, 72°C

761 for 5 min, and then 72°C for 10 min. Samples were normalized to the lowest concentration of

the pooled plates by a Sequel Prep normalization plate kit (Life Technologies). Amplicons were

- pooled and quantified by the Kapa Biosystems Library Quantification kit (Kapa Biosystems)
- while amplicon size was determined by the Agilent Bioanalyzer high-sensitivity DNA analysis kit.

765	Libraries were then spiked with 10% PhiX to add diversity and sequenced on the Illumina MiSeq
766	platform according to the manufacturer's specification for 500 cycles.
767	
768	Raw Sequence Processing and Analysis:
769	Raw sequence files were analyzed using the software package mothur (version 1.35.1). ¹⁶
770	Sequences were then aligned to the V4 region using the SILVA rRNA database project (release
771	132). ⁴⁸ Sequences were taxonomically classified at 80% bootstrap minimum using the RDP
772	database (release 11). ⁴⁹ Operational taxonomic units (OTUs) were clustered at 97% similarity
773	and used for downstream community analyses. The number of OTUs (richness), Shannon
774	index, and Jensen-Shannon distance metrics were calculated in mothur using OTU abundance.
775	Principal coordinates analysis (PCoA) plots based on redundancy analysis were then analyzed
776	using the R package <i>vegan</i> (version 2.5-4). ²¹ Differences in community structure for each group
777	were compared using permutational multivariate ANOVA (PERMANOVA).
778	
779	
780	
781	
782	
783	
784	
785	
786	

787 SUPPLEMENTAL TABLES:

788 Supplemental Table 1. Changes in Microbial Variables at Baseline in Patients with *Clostridium*

789 *difficile* Infection (CDI) Compared with Ulcerative Colitis.

Variable	β-estimate (SE)	<i>P</i> -value*
Shannon diversity	-0.44 (0.2)	<.05
OTU richness	-83.03 (25.6)	.002
Veillonella (OTU0074)	-1.65 (0.3)	.006
Lachnospiraceae (OTU0110)	-0.20 (0.1)	.02
Listeria (OTU0122)	-0.61 (0.2)	.02
Lachnospiraceae (OTU0317)	-0.05 (0.02)	.04
Lachnospiraceae (OTU0487)	-0.002 (0.0004)	.02
Lachnospiraceae (OTU0639)	-0.005 (0.001)	.02
Clostridiales (OTU0766)	-0.004 (0.001)	.007

*Note *P*-values are shown after correction by Benjamini-Hochberg method.

- 791 All estimates are adjusted to account for UC status.
- 792

793 Supplemental Table 2. Unadjusted Odds Ratios for Baseline Clinical and Microbial Variables

794 Associated with Recurrent *Clostridium Difficile* Infection (rCDI) and Ulcerative Colitis (UC)

795 Flare.

	UC Flare, OR (95% CI)	Unadjusted <i>P</i> -value	CDI Recurrence, OR (95% CI)	Unadjusted <i>P</i> -value
Clinical Variables			j ()	
Age, (for every increase of 10 years)	0.85 (0.53-1.30)	.47	0.93 (0.7-1.3)	.63
Caucasian race	>1000 (<0.001 - >1000)	.99	2.5 (0.3-50.8)	.79
Female gender	0.61 (0.11-2.85)	.54	3.0 (1.0-9.6)	.05
Pan colitis	0.44 (0.07-2.86)	.38	2.3 (0.5-16.8)	.34
Maintenance medications for UC				
Other Immunomodulator	0.83 (0.16-4.89)	.83	1.1 (0.4-3.2)	.91

Biologics	2 94 (0 20 2 79)	.18	1 2 (0 4 2 8)	.72
BIOIOGICS	2.84 (0.39-3.78)		1.2 (0.4-3.8)	
	1.6 (0.37-7.25)	.53	0.8 (0.2-2.5)	.71
Current Use of Acid	1.82 (0.30-	.50	1.8 (0.5-6.2)	.33
Suppressive	10.56)			
Medications				
Current use of	1.59 (0.26-9.02)	.60	1.0 (0.3-3.4)	.96
Probiotics				
Biochemical				
Parameters	1.08 (0.89-1.32)	.44	1.1 (1.0-13)	.12
WBC	0.79 (0.18-3.22)	.74	1.1 (0.3-3.3)	.91
Albumin	0.93 (0.72-1.18)	.57	1.0 (0.9-1.0)	.42
BUN				
	0.57 (0.008-	.76	0.06 (0.001-1.0)	.11
Creatinine	22.1)			
Hospitalization for UC	16.0 (2.97-	.003	3.7 (0.9-15.4)	.07
in the Past Year	117.76)			
Prior history of CDI	0.92 (0.21-4.0)	.91	2.1 (0.7-6.5)	.19
Antibiotic Use in the	3.32 (0.45-	.30	3.3 (0.88-16.0)	.10
Past Year	68.98)			
Steroid Use as Rescue	10.5 (2.03-	.008	0.4 (0.1-1.4)	.18
Med for Treatment of	69.67)			
UC Flare				
Vancomycin as Initial	0.55 (0.11-2.78)	.46	0.6 (0.2-2.2)	.47
Antibiotic for				
Treatment of CDI				
Microbial Variables at				
Shannon diversity	1.37 (0.44 –	.61	0.58 (0.21 – 1.31)	.19
	5.90)	50		47
OTU Richness (per	1.0 (0.99 – 1.02)	.53	0.56 (0.22 – 1.20)	.17
every 100% increase)	0.12 (0.002	27	1 02 /0 10	60
Firmicutes (per every	0.12 (0.002 –	.27	1.83 (0.10 –	.68
100% increase)	4.54)	01	35.71)	60
Bacteroidetes (per	2.06 (1.22 –	.01	1.09 (0.79 – 1.49)	.60
every 10% increase) Enterobacteriaceae	3.94) 0.51 (0.15 –	15		12
(per every 10%	1.01)	.15	0.69 (0.39 – 1.03)	.12
increase)	1.01)			
Lachnospiraceae (per	0.84 (0.46 –	.55	0.52 (0.29 – 0.85)	.02
every 10% increase)	1.46)			.02
Veillonellaceae (per	0.63 (0.18 –	.42	0.53 (0.18 – 1.25)	.18
every 10% increase)	1.75)			
2701, 2 070 moreuse;	,	ļ		ļ

796

797

798 Supplemental Table 3. Lasso Regression Model of Clinical and Microbial Variables Associated

799 with Risk for Recurrent *Clostridium difficile* Infection (rCDI) at Baseline

	β-Estimate	
Clinical and Microbial Variables Associated with Increased Risk for rCDI		
Hospitalization for UC in prior year	1.72	
Female gender	1.26	
Verrucomicrobia	0.07	
Ruminococcaceae	0.06	
Microbial Variables Protective Against rCDI		
Eubacteriaceae	-12.32	
Lachnospiraceae	-0.07	
Veillonellaceae	-0.06	
Enterobacteriaceae	-0.04	

- 800 β -estimates for all microbial variables are represented per every 1% increase in relative
- 801 abundance.

802

803 Supplemental Table 4. Unadjusted Odds Ratios for Microbial Variables Associated with

804 Recurrent *Clostridium difficile* Infection (rCDI) 14 days After Completion of Antibiotics.

	OR	95% CI	<i>P-</i> value	
Microbial Variables Ass	Microbial Variables Associated with Increased Risk for rCDI			
Gammaproteobacteria	1.63	1.07 – 2.72	.04	
(per every 10%				
increase)				
Enterobacteriaceae	1.78	1.12 – 3.16	.03	
(per every 10%				
increase)				
Jensen-Shannon	1.77	1.17 – 2.91	.01	
Divergence (per every				
0.1 increase)				
Microbial Variables Pro	tective Against Risk for	rCDI		
Shannon diversity	0.34	0.11-0.91	.04	
OTU Richness (per	0.85	0.74 – 0.94	.008	

every increase in 10 taxa)			
Bacteroidetes (per every 10% increase)	0.60	0.32 – 0.96	.05
MHI (per every 1% increase)	0.78	0.59 – 0.95	.05
Lachnospiraceae (per every 10% increase)	0.62	0.37 – 1.01	.06
Ruminococcaceae (per every 10% increase)	0.40	0.15 – 0.87	.04
Faecalibacterium (per every 10% increase)	0.10	0.005 – 0.50	.04

805

806 CI, confidence interval; MHI, Microbiome health index; OR, odds ratio; OTU, operational

- 807 taxonomic unit
- 808

809 Supplemental Table 5. Lasso Regression Model of Clinical and Microbial Variables Associated

- 810 with Risk for Recurrent *Clostridium difficile* Infection (rCDI) 14 Days After Completion of
- 811 Antibiotics

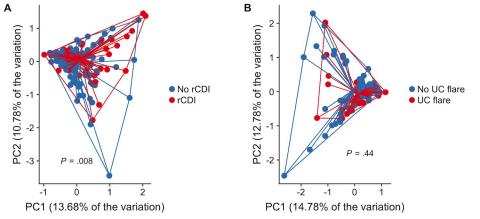
	β-Estimate		
Clinical and Microbial Variables Associated w	Clinical and Microbial Variables Associated with Increased Risk for rCDI		
Jensen Shannon Diversity (relative to	5.84		
baseline sample)			
Female gender	1.53		
Shannon diversity	1.39		
Ruminococcaceae	0.20		
Enterobacteriaceae	0.04		
Microbial Variables Protective Against rCDI			
Faecalibacterium	-0.29		
OTU richness	-0.02		

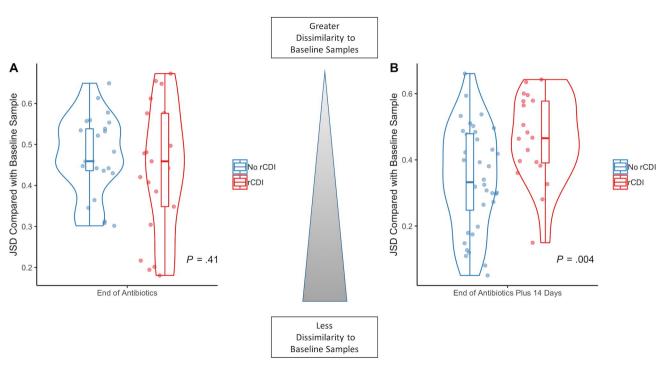
812 β-estimates for OTU richness is represented for every increase in 1 taxa while microbial

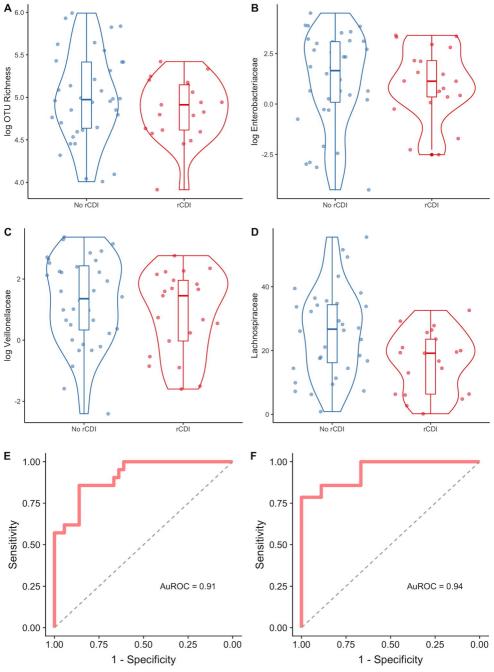
813 variables are represented per every 1% increase in relative abundance.

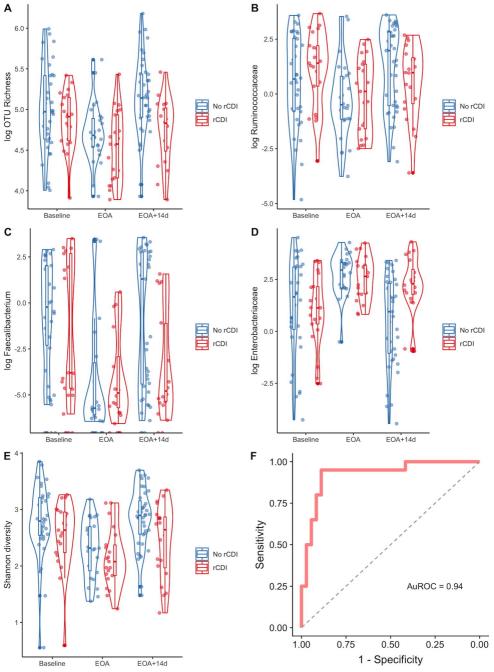
814

8	1	5


SUPPLEMENTAL FIGURES:


Supplemental Figure 1. Consort Flow Diagram.


819	Supplemental Figure 2. Study Design and Fecal Sample Collection Timeline.
820	Subjects with ulcerative colitis (UC) and <i>Clostridium difficile</i> infection (CDI) as well as non-
821	inflammatory bowel disease (IBD) controls with CDI provided stool sample 1 (SS1) at day 0
822	when they had positive CDI testing but prior to initiation of antibiotics. Additional samples
823	were provided at the end of antibiotic therapy (SS2) and at the end of antibiotic therapy plus 14
824	days (SS3). Subjects were then contacted at 60, 120, and 180 days to assess for recurrent UC
825	flare and/or recurrent CDI. A third cohort of patients with UC flare without CDI provided stool
826	samples at baseline (SS1) and again at day 30 (SS2) when their disease was in remission.
827	
828	Supplemental Figure 3. Baseline Microbial Variables Associated with Ulcerative Colitis (UC)
829	Flare.
830	Increased relative abundance of Bacteroidetes (presented on a logarithmic scale) (OR=2.06 for
831	every 10% increase, <i>P</i> =.01) was significantly associated with risk for ulcerative colitis (UC) flare.
832	Data are shown as violin plot with accompanying boxplot and whiskers indicating median,
833	interquartile range (IQR) and 1.5 x IQR of the median.


835	Supplemental Figure 4. Patients with Recurrent <i>Clostridium difficile</i> Infection (rCDI) and
836	Ulcerative Colitis (UC) Flare Demonstrate Non-Linear Dynamic Changes in the Fecal
837	Microbiota.
838	Longitudinal modeling of the fecal microbiota demonstrated a non-linear pattern in this patient
839	cohort. Representative examples include (A) Shannon diversity for patients with and without
840	recurrent <i>Clostridium difficile</i> infection (rCDI) as well as (B) patients with and without ulcerative
841	colitis (UC) flare are shown at baseline, end of antibiotics (EOA) and end of antibiotics plus 14
842	days (EOA+14d). Individual subjects are represented by different colored lines. (C) Operational
843	taxonomic unit (OTU) richness in patients with and without rCDI as well as (D) in patients with
844	and without UC flare is also shown longitudinally. A locally estimated scatterplot smoothing
845	(LOESS) curve has been fitted to the data and depicted by the black line with error bars in gray.
0.4.0	

846

