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Abstract 
 
While it is well established that genetics can be a major contributor to population variation of complex traits, 
the relative contributions of rare and common variants to phenotypic variation remains a matter of consid-
erable debate. Here, we simulate rare variant association studies across different case/control panel 
sampling strategies, sequencing methods, and genetic architecture models based on evolutionary forces 
to determine the statistical performance of RVATs widely in use. We find that the highest statistical power 
of RVATs is achieved by sampling case/control individuals from the extremes of an underlying quantitative 
trait distribution. We also demonstrate that the use of genotyping arrays, in conjunction with imputation from 
a whole genome sequenced (WGS) reference panel, recovers the vast majority (90%) of the power that 
could be achieved by sequencing the case/control panel using current tools. Finally, we show that for 
dichotomous traits, the statistical performance of RVATs decreases as rare variants become more important 
in the trait architecture. Our results extend previous work to show that RVATs are insufficiently powered to 
make generalizable conclusions about the role of rare variants in dichotomous complex traits. 
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Introduction 

Genome-wide association studies (GWAS) have detected many common variants associated with 
hundreds of complex heritable phenotypes, but for many traits, much of that heritability remains 
unexplained. One proposed source of this so-called “missing heritability” are rare variants, which are hotly 
debated but have been implicated as a non-negligible source of genetic variance in prostate cancer 
(Mancuso et al., 2016), gene expression (Hernandez et al., 2017), height and BMI (Wainschtein et al., 
2019). Unfortunately, power to detect rare variant associations is low in single-marker statistical tests at the 
genome-wide scale. Researchers have proposed many rare variant association tests (RVATs), statistical 
methods to pool rare variants within a putatively causal locus and test for association with the phenotype. 
These RVATs are broadly classified into three categories: burden tests (Liu & Leal, 2010), variance-
component tests (Neale et al., 2011; Wu et al., 2011), and combined tests (Lee et al., 2012; Sun, Zheng, & 
Hsu, 2013). Though each test is published with its own validation simulations, these simulations are 
generally not comparable, and have their own flaws. (Moutsianas et al., 2015) systematically characterized 
the performance of commonly used gene-based rare variant association tests under a range of genetic 
architectures, sample sizes, variant effect sizes, and significance thresholds, and found that MiST, SKAT-
O, and KBAC have the highest mean power across simulated data, but that these tests had overall low 
power even in the cases of loci with relatively large effect sizes. 

It is well-known in the population genetics literature that population expansions and contractions (i.e. 
demography) can dramatically affect genome-wide patterns of genetic variation in a population (Auton et 
al., 2009; Bhaskar, Wang, & Song, 2015; Gravel et al., 2011; Uricchio, Zaitlen, Ye, Witte, & Hernandez, 
2016), and that the action of natural selection can amplify or inhibit the frequency of functional alleles (Boyko 
et al., 2008; Eyre-Walker, Woolfit, & Phelps, 2006; Lohmueller et al., 2011). Together, these evolutionary 
forces shape the genetic architecture of complex traits (Lohmueller, 2014; Uricchio et al., 2016), and are 
critical components to understand in the pursuit of identifying the genetic basis for the bevy of human 
phenotypes understudy. Inferred demographic models of non-African human populations show a serial 
bottleneck model as populations migrated in waves across the globe, followed by explosive exponential 
growth since the dawn of agriculture. Moreover, studies of selection have found that most amino acid 
changes in proteins and changes in conserved non-coding loci are weakly deleterious (Boyko et al., 2008; 
Torgerson et al., 2009). Together, growth and selection has resulted in a preponderance of ultra-rare 
mutations (MAF<0.1%), which contribute a plurality of heritability in gene expression (Hernandez et al., 
2017), BMI (Wainschtein et al., 2019), and possibly other traits. Accounting for demographic and selective 
effects on the frequency spectrum of causal variation is therefore crucial in characterizing the statistical 
power of RVATs. However, while previous evaluations of RVAT power have attempted to mimic the 
frequency spectrum of observed variants, they typically use phenotype models (or genetic architectures) 
that do not directly account for evolutionary forces like demography and natural selection and are often 
biologically unrealistic [e.g. effect sizes that are simple functions of the minor allele frequency (Wu et al., 
2011)], limited to specific relative risks (Wray & Goddard, 2010), or lack pleiotropy (Moutsianas et al., 2015). 

Another vital component of designing genetic association studies is the method of acquiring genetic data. 
Although the gold standard for capturing rare variation remains deep whole genome sequencing (WGS), 
the $1000 per genome cost still means performing WGS on any sizeable group of individuals remains 
prohibitively expensive for all but the largest consortia. Genotyping arrays make acquiring genetic data for 
a large number of individuals significantly less expensive, but lack coverage of rare variation. With larger 
WGS reference panels like the Haplotype Reference Consortium (HRC; McCarthy et al., 2016), large 
numbers of genotyped samples can be imputed to gain some insight into rare variation. With such large 
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reference panels, imputation accuracy of genetic variation down to MAF≅0.1% is near perfect in European 
individuals (Quick et al., 2019). As more diverse reference panels become available [e.g. TOPMed (Taliun 
et al., 2019)], imputation in non-European and admixed populations will also improve, particularly for rare 
variants. Capturing these rare variants using genotyping arrays and imputation is more cost-effective and 
can lead to many more individuals in a study. However, imputation is limited by the variants that are carried 
by the individuals in the reference panel, and by the accuracy of the algorithm being used. Imputation 
accuracy falls off at lower minor allele frequencies (MAF), but the use of large WGS reference panels 
reduces the threshold of acceptable imputation quality (r2>0.3) to ~0.004-0.006% (Taliun et al., 2019) in 
European and African populations. Despite these limitations, imputation has been used to identify rare 
variant associations in acute macular degeneration (Helgason et al., 2013), lipid levels in type 2 diabetes 
patients (Marvel et al., 2017), systemic lupus erythematosus (Martínez-Bueno & Alarcón-Riquelme, 2019), 
among others. It is possible that additional rare variant association signals can be found in imputed data as 
imputation quality improves, but it is unclear what the statistical properties of RVATs in this setting are.  

Here, we evaluate the statistical power of rare variant association tests in a simulation study under different 
genetic architectures, methods of acquiring genetic data, and methods of selecting individuals to be a part 
of the case-control cohort. We demonstrate how statistical power of RVATs is dependent on genetic 
architecture as well as sampling strategy for the case/control cohort. In particular, we find that sampling the 
extremes of a quantitative phenotype has the highest RVAT power, but power erodes quickly for all 
sampling strategies as the amount of genetic variance explained by rare variants increases.  

Materials and Methods          
Simulating genomic sequence data  
 
We simulate neutral genetic sequence data under a coalescent model using msprime (Kelleher, Etheridge, 
& McVean, 2016) with a European and African demographic history (Tennessen et al., 2012). Under this 
demographic model, the European population experienced a series of bottlenecks as they moved out of 
Africa and into Europe. These bottlenecks were followed by super exponential growth in the European 
population and recent exponential growth in the African population, along with bi-directional migration. 
Using this neutral demographic model, we generate a 5Mb region with a mutation rate of 1e-8 and with 
genetic map arbitrarily chosen to mimic chr22:17000000-22000000 in hg19.  
 
Simulating genotype data  
Some analyses are based on genotype array data. To simulate a genotyping array, we downsample the 
simulated neutral sequence data above to match the allele frequency spectrum and the average distance 
between variants of the Illumina OmniExpress2.5 genotyping chip, used in the GoT2D study (Fuchsberger 
et al., 2016).  
 
Simulating quantitative phenotypes 
 
We transform our simulated neutral genetic data into quantitative phenotypes using a three-step procedure, 
following Uricchio et al (Uricchio et al., 2016). First, we simulate functional variants using the forward 
simulator SFS_CODE (Hernandez, 2008) under the same demographic model as above, but with purifying 
selection. Specifically, we generate 2000 independent loci of length 100kbp (for a total of 200Mb) with 
100,000 individuals, where new mutations receive a fitness effect drawn from a gamma distribution [as 
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inferred for non-synonymous sites (Boyko et al., 2008)]. This procedure generates a large table of functional 
variants, with corresponding derived allele counts and fitness effects.  
 
The second step is to project the allele frequencies of our list of functional variants down to the desired 
sample size (using a binomial model), and transform fitness effects to phenotypic effect sizes using the 
Uricchio et al. model (Uricchio et al., 2016). This model parameterized the correlation between fitness 
effects and phenotypic effect sizes (through ⍴) and the functional relationship between fitness effects and 
phenotypic effect sizes (through 𝜏 and 𝛿). In particular, a causal variant with fitness effect 𝑠 will have effect 
size 𝑧& as follows:  
 

𝑧& =
𝛿𝑠(	with	probability	𝜌
𝛿𝑠6(	otherwise															

 

 
Under this model, with probability 𝜌, the effect size 𝑧& of a site is a direct function of the site’s fitness effect 
(𝑠), otherwise the effect size 𝑧& is a function of a randomly sampled fitness effect (𝑠6) drawn from the entire 
list of functional variants generated by the first step above. In this model, 𝛿 is +1 or -1 with equal probability 
to enable trait-increasing and trait-decreasing effects.  
 
The third step for generating quantitative phenotypes is to identify the desired number of causal loci in our 
5mb simulated sequence. For each variant within the causal loci, we sample a random variant from our list 
of functional variants generated in step two with the exact same allele frequency, and assign derived alleles 
at this causal site the effect size of the sampled functional variant. The quantitative phenotype of each 
individual (𝑌:, for the ith individual) is then generated under an additive model by summing the effect sizes 
of all causal alleles that they carry: 
 

𝑌:	 = 𝑋:<𝑧< + 𝜖
<

 

 
Where 𝑧< is the effect size of causal variant 𝑗, 𝑋:< is the number of causal alleles carried by individual 𝑖 at 
site 𝑗, and 𝜖 is a Normal random variable with mean 0 and variance 𝜎CDE:6FDGCDHI  (which ensures the desired 
level of heritability of the trait). See Table 1 for the specific values of ⍴ , 𝜏, and heritability that are evaluated 
in this study. In contrast to previous work with this phenotypic model (Uricchio et al., 2016), we will focus 
on dichotomous traits, and describe our sampling strategy for such traits below. 
 
Selecting sampling strategies for association tests 
The quantitative phenotypes can be dichotomized to simulate three different sampling strategies: random, 
50/50, and extremes. In the extreme sampling strategy, we sample the desired number of individuals from 
the top and bottom of the quantitative phenotype distribution. For the random and 50/50 sampling strategy, 
we first define the individuals with quantitative phenotypes in the top P% to be our population of cases 
(where P represents the prevalence of our trait of interest), and the remaining individuals to be our 
population of controls. We then sample cases and controls from their respective populations. For the 
random sampling strategy, we sample cases in proportion to the prevalence of the trait, while for the 50/50 
sampling strategy we sample equal numbers of cases and controls. The random sampling strategy is used 
as a worst case scenario to establish the worst possible power under that sampling strategy. 
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Imputing genotyped data 
In some analyses, we evaluate the effectiveness of genotype imputation. Such analyses require two data 
sets: the phenotype sample (e.g. case/control or continuous phenotype), and an imputation reference panel. 
The dichotomized phenotype individuals are generated as above, with their genetic data down-sampled to 
mimic a genotype array platform. We then sample an additional set of individuals from the total population 
to form the imputation panel. The down-sampled genotype data is then pre-phased using SHAPEIT2 
(Delaneau, Marchini, & Zagury, 2012) and imputed using IMPUTE4 (Bycroft et al., 2017). 
 
Running tests of association on simulated data 
We ran rare variant association tests (RVATs) using the rvtests software (Zhan, Hu, Li, Abecasis, & Liu, 
2016). We focus on SKAT (Wu et al., 2011), SKAT-O (Lee et al., 2012), and KBAC (Liu & Leal, 2010), which 
were found to be most powerful in detecting disease-associated variation in a previous study (Moutsianas 
et al., 2015). We applied each RVAT to non-overlapping analysis blocks of 10kbp across the simulated 
region, and computed power and false-positive rates for each test as the proportion of simulations with p-
values below 2.5e-6. We ran logistic regression on each variant above MAF=1% to determine associations 
with the phenotype using PLINK. The detection threshold was set at 5e-8. To compare GWAS to RVAT 
power, we evaluate if there is a variant under the GWAS p-value threshold within the 10kb analysis block. 
If there is such a variant, we deem the GWAS to have found that analysis block to be causal for comparisons 
with RVAT.  
 
Calculating cumulative genetic variance 
We follow (Uricchio et al., 2016) in calculating 𝑉K, the genetic variance due to variants at or below allele 
frequency 𝑥, which is given by: 

𝑉K = 0.5 𝐸(𝑧I|𝑦)	𝑓(𝑦)(1 − 𝑦)(𝑦)𝑑𝑦
K	

XYZ
	 

Where 𝑓(𝑦)is the site frequency spectra (SFS), i.e. the proportion of sampled alleles at frequency 𝑦, and 
𝐸(𝑧I|𝑦) is the mean-squared effect size of variants at frequency 𝑦. We pool 20 simulations of 300kbp in 
50k African individuals using msprime to obtain an accurate measure of the SFS and the expected effect 
size of variants at frequency 𝑥. To normalize across genetic architectures, we divide by 𝑉[, which is the total 
additive genetic variance. The 𝑉Z.Z[/𝑉[ values (denoted as just 𝑉Z.Z[ below) are used to denote the degree 
to which rare variants (variants with MAF ≤ 1%) matter under a particular pair of parameters under the 
Uricchio genetic architectures. 
 
Dataset and software availability 
All scripts and datasets generated in this study, along with the results of single variant and gene-based 
association tests, are available on the website github.com/dmctong/rv_imp. 

Results 
 
Rare variants explain a majority of heritability only under restrictive scenarios 
 
To determine whether there is genetic variance explained by rare variants, we calculated the expected 
genetic variance analytically under different (⍴,t) combinations of the Uricchio model being studied here 
(see Methods and Table 1). In Figure 1, we show that the proportion of genetic variance explained as a 
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function of MAF. We focus on the genetic variance explained by variants with MAF < 1% (V0.01), which 
varies dramatically between 99% when ⍴=1, t=1, to less than 1% when ⍴=0, t=0.5. We note that when t=1 
and ⍴≠0, rare variants constitute a substantial fraction of the genetic variance (V0.01 > 40%), and the majority 
of the rare variant contribution is explained by singletons in this simulated sample of 50,000 individuals. In 
contrast, when t=0.5 and ⍴≠0, V0.01 ranges from ~20%-60% but singletons are expected to make a more 
subtle contribution to the genetic architecture of the trait.  
 
 
Statistical power varies dramatically across different study designs, genetic architectures, and 
polygenicity, but not across RVATs 
 
Figure 1 shows that rare variants can contribute substantial heritability to a trait under certain genetic 
architectures. Now we ask if we can detect the loci that harbor the causal rare variants using existing 

 
Figure 1. The cumulative proportion of the genetic variance 
explained by variants under minor allele frequency x (Vx/V1) for 
a sample of 5000 individuals drawn from an African population 
demographic model under different values of ⍴ and 𝜏 in the 
Uricchio model. Top: 𝜏 = 0.5; bottom: 𝜏 = 1. Dotted lines 
indicate the proportion of genetic variance explained by alleles 
under 1% MAF (referred to as 𝑉Z.Z[). 

 
Figure 2. A global overview of the statistical power of a burden 
test (KBAC), a variance-component test (SKAT), and a 
combined test (SKAT-O) for all parameters shown in Table 1 
using 50,000 African individuals simulated under an Out-of-
Africa demographic model. Each point represents a genetic 
architecture tested with 10 independent simulations under the 
RVAT indicated; lines connect the same simulated parameters 
across RVATs to show that, generally speaking, the rank of 
statistical power is preserved across RVATs.  
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RVATs. To quantify the effects of genetic architecture and study design on the statistical power of RVATs, 
we focus on KBAC, SKAT, and SKAT-O, which represent each of the three major categories of RVATs and 
have been shown to be among the most powerful (Moutsianas et al., 2015). For the 5Mb region we 
simulated (see Methods), we raster over parameters in genetic architecture (heritability, number of causal 
loci, and the relationship between selection and phenotypic effect sizes; Table 1) and in study design 
(sequencing vs genotype imputation and selection of individuals in the case/control vs extreme phenotype 

 
Figure 3. The statistical power of SKAT-O across different sampling strategies (columns) and across different sequencing methods 
(rows), as a function of the proportion of genetic variance explained by that genetic architecture at MAF=1%. Each point represents 
20 independent simulations of 100 causal loci of 10kb each across a 5Mb simulated region for a given genetic architecture for a 
50,000 individual African population.  
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panels). In Figure 2, we show the global overview of statistical power across all simulations. We find that 
the statistical power of all three RVATs is similar regardless of simulated parameters, but tend to be highest 
with SKAT and SKAT-O [pMWU(SKAT, SKAT-O)=0.795; pMWU(KBAC, SKAT-O)=0.002304]. As expected, 
power is higher when the causal signal is more concentrated (e.g. when heritability is high or the effect 
sizes are large due to few causal loci). Given the correspondence among tests, we will focus on SKAT-O 
in further analyses.  
 
As rare variants explain more genetic variance of the trait, SKAT-O power decreases 
 
We then ask how SKAT-O power changes as a function of genetic architecture. In Figure 3, we show that 
as V0.01 increases (i.e., as rare variants explain increasing amounts of the genetic variance of the trait), the 
power of SKAT-O decreases. This pattern holds across all sampling strategies and for different levels of 
polygenicity (Figure S3). These results show patterns that will repeat in future sections: the extremes study 
design demonstrates the best overall power, followed by 50/50 and then random. Further, a more 
concentrated signal (higher heritability and/or lower number of causal loci, see Supplemental Figures) 
improves power. We found that as the functional form relating effect size to selection coefficient changes 
from 𝜏=0.5 to 𝜏=1, power increases slightly again, suggesting that V0.01 may be an overly simplistic 
characterization of the genetic architecture. Finally, applying SKAT-O to imputed data (bottom facet) 
reproduces all of the patterns we see when RVATs are applied to sequencing data (top facet), albeit with 
slightly worse power.  
 
Using extreme cases and controls as a sampling 
strategy improves statistical power of SKAT-O 
 
The number of individuals sequenced as part of a study is 
a key design parameter of that study. To understand how 
increasing the number of individuals improves the 
statistical power of SKAT-O, we simulate across genetic 
architectures and study designs to find the increase in 
power per individual using SKAT-O from 2,500 to 20,000 
individuals (Figure 4). In the extremes study design, where 
half of the individuals in the panel are selected from the 
extreme cases and half of the individuals are selected from 
the extreme controls (from a total population of 50,000 
individuals), we find that mean power gain is zero. 
Increasing the number of individuals in this design means 
more individuals are drawn from closer to the mean of the 
distribution, so power is already maximized with a smaller 
sample of 2,500 individuals (and may actually decrease 
under some scenarios). In the random and 50/50 study 
designs, increasing the size of the case/control panel 
increases the number of relevant individuals, and so mean 
power gain is approximately 2e-5 per individual added. 

 
Figure 4. Increase in SKAT-O power as a function of 
sample size. SKAT-O power increases when increasing 
the sample size in non-extreme sampling strategies. Each 
point represents the slope from increasing the number of 
individuals in the case/control panel under a simulated 
genetic architecture. 
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This increase is highly dependent on the genetic 
architecture underlying the trait of interest.  
 
RVATs perform nearly as well on imputed data as 
they do on sequence data 
 
Most genetic association studies have started with 
genotyping arrays to collect genomic data, followed by 
imputation against WGS reference panels to maximize 
discovery potential with single variant analyses. As WGS 
cost falls, more studies will conduct large-scale WGS, but 
here we ask if there is a potential opportunity to discover 
rare variant associations with imputed data. In Figure 5, 
we compare the mean power of SKAT-O when applied to 
genotyped-then-imputed samples to the mean power of 
SKAT-O applied to sequencing data from the same 
samples. We find that the decrease in power is minimal. 
Indeed, we find a robust linear relationship between 
RVAT power with sequencing vs imputed data, 
suggesting that for all scenarios evaluated here, 
imputation loses 10% power, on average, compared to 
sequencing data.  
 
 
 
 
RVATs under a GWAS peak 
 
The general process of discovering genetic associations 
typically begins with genotyping and imputing a sample of individuals, followed by GWAS. The (typically 
unknown) genetic architecture of the trait determines the likelihood that a common variant will be detected 
with GWAS, and whether a rare variant association signal should be expected. Rastering over parameters 
of our phenotype model, a genome-wide significant single marker association (GWAS) was identified at 
44.4% of causal loci. Figure 6 shows the power of SKAT-O using sequencing or imputed data conditional 
on seeing (circles) or not seeing (x’s) a statistically significant GWAS hit at a causal locus. We find that 
under all phenotype model parameters and sampling strategies evaluated, when a GWAS hit is identified, 
SKAT-O has at least 70% power to detect a rare variant signal with sequence data (and slightly less power 
with imputed data). If no GWAS peak is identified, there is considerably less power to identify a rare variant 
signal (and power further erodes as the genetic variance explained by rare variants increases).  
 
We then mimic the process of first doing locus discovery on a sample of imputed individuals followed by 
sequencing for different sampling strategies. In Figure 7, we show that sequencing data has at least 75% 
power to replicate causal loci identified with imputed data (regardless of the genetic architecture and case-
control sampling strategy). However, when no association is found with imputed data, power to identify 

 
Figure 5. The mean power of SKAT-O across different 
genetic architectures using imputed data, compared to 
using sequence data. Each point represents a different 
simulated genetic architecture where we vary the number 
of causal bins (10 or 100), heritability (0.2 or 0.8), 
sampling strategy, (⍴, 𝜏) for the underlying phenotype 
distribution, and the number of simulated case/control 
individuals in the study. 
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causal loci with sequencing data is highly dependent on the case-control sampling strategy, and the overall 
heritability and genetic architecture of the trait (with power generally decreasing as V0.01 increases).  
 
 
 
 

 
Figure 6. The statistical power of GWAS given the results of SKAT-O, across different sequencing methods (rows) and across 
different sampling strategies (columns), as a function of the cumulative genetic variance explained by variants under 1% minor 
allele frequency. The shape shows the prediction of SKAT-O; the colours show the underlying number of causal loci and heritability 
of the trait.  
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Window of discovery around causal loci 
 
In Figure 8, we plot the probability of SKAT-O detecting an association signal as a function of the distance 
from a causal locus. To benchmark the width of this discovery window, we use the full-width half-maximum 
statistic, which is the distance at which the probability of a significant association crosses below 50% of its 

 
Figure 7. SKAT-O power using sequencing data, given the results of SKAT-O applied to imputed data. The shape indicates 
whether SKAT-O applied to imputed data correctly identified the causal locus (circles) or missed it (x). The colours show the 
underlying causal number of loci and heritability of the trait.  
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maximum value (i.e. falls below 50% of the power estimated at the causal locus). Consistent with previous 
results, the full-width half-maximum is largest when there is a large amount of heritability concentrated in 
few causal loci and under the extremes study design. The larger points in Figure 8 represent this window 
of discovery, which is, on average, 34.3kb (sd 18.4kb) in the random study design, 42.8kb (sd 19.3kb) in 
the 50/50 design, and 64.3kb (sd 34.2kb) in the extremes design.    

 

 
Figure 8. The window of discovery around causal loci, shown as the fraction of simulations that result in a statistically significant 
RVAT p-value as a function of distance from the nearest causal locus. Different sampling strategies are shown in columns, and 
V0.01 thresholds  are shown in rows. Error bars are binomial standard errors of the mean. Bigger points represent full-width half-
maximum points.  
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Discussion 
Genome-wide association studies (GWAS) so far have produced thousands of SNP associations for 
hundreds of traits (Witte, 2010). However, in these GWAS, the associated SNPs do not recapitulate the 
estimated heritability of the trait, leading to the problem of “missing heritability”. Though there are many 
proposed sources of this missing heritability, one popular hypothesis is that this missing heritability resides 
in rare variants. This has led to the development of rare variant association tests and massive investment 
in large whole genome sequencing studies. With these tests and this data becoming more and more 
prevalent, we look at how to optimize the design of a rare variant association study to maximize power. 
 
It is clear that RVATs can be very powerful for detecting associations under simple genetic architectures 
[like when the effect size is proportional to log10(MAF) as proposed by (Wu et al., 2011)]. Such phenotype 
models do not take into account evolutionary forces like natural selection and demography, and it is well 
appreciated that genetic architectures are sensitive to these non-equilibrium evolutionary forces (Gazave, 
Chang, Clark, & Keinan, 2013; Simons, Turchin, Pritchard, & Sella, 2014). Uricchio et al presented a 
phenotype model that accounts for selection and pleiotropy and showed that existing RVATs struggle at 
realistic variance explained in genes across different human demographic histories (Uricchio et al., 2016). 
The Uricchio model captures modularity through the parameter ⍴  and the relationship between selection 
and effect size through 𝜏, which enables a thorough exploration of different genetic architectures a trait 
could have (Figure 1).  
 
We showed analytically that there is a significant amount of genetic variance explained in rare variants 
across different (⍴ , 𝜏) parameterizations under the Uricchio model (Figure 1), particularly when 𝜏 is equal 
to 1. These results are not surprising, as it has been shown that a substantial amount of heritability derives 
from rare variants in real traits like gene expression (Hernandez et al., 2017), height and BMI (Wainschtein 
et al., 2019). Taken together, the significant amount of heritability explained by rare variants under different 
parameterizations of the Uricchio model shows that RVATs have the potential to associate much of the 
causal variation underlying a complex trait. However, this model has only been studied in the context of 
continuous traits. We extend this model to study dichotomous traits (with case/control and extreme 
phenotype sampling strategies). 
 
Many existing rare variant association tests were thoroughly characterized by (Moutsianas et al., 2015). We 
chose the most powerful representatives of the three classes of RVATs to use in our study: a variance-
component test (SKAT), a burden method (KBAC), and a combined method (SKAT-O). Across all genetic 
architectures and study designs, we found that SKAT-O is the best performer, so we used SKAT-O in all 
further analyses on RVAT power in a case/control association study. 
 
To run a case/control association study, the first step is to determine which individuals to select for your 
study, and how to acquire their genetic data. We simulated three different sampling strategies: randomly 
sampling cases and controls proportional to the trait prevalence; sampling half of your study size from cases 
and half from your controls; and sampling individuals from the extreme tails of a quantitative distribution [or 
a proxy underlying the trait such as bronchodilator response (Spear et al., 2018), for example]. Our results 
show that choosing from the tails of an underlying quantitative distribution produces the best power. This 
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means for any case/control association study, spending some time to find the extreme tails of an underlying 
quantitative distribution for a trait will likely produce the best possible RVAT power. 
 
We considered two ways of acquiring genetic data: using a genotyping array followed by imputation against 
a large reference panel, and direct sequencing of your study sample. Although a $1,000 whole genome is 
now possible, over the sample sizes required for an effective rare variant association study, the cost is 
prohibitive except for the largest consortia. Using genotyping arrays then imputing is still much less 
expensive than WGS (Quick et al., 2019), which could enable more than 5x more genotyped samples than 
WGS samples.  
 
Applying SKAT-O to imputed data is expected to have lower power for several reasons. First, imputation 
accuracy decreases as MAF decreases (Howie, Marchini, Stephens, & Chakravarti, 2011; Quick et al., 
2019), meaning fewer rare variants will be accurately imputed and correctly identified in the study sample. 
Second, imputation accuracy is highest when the study sample population and the reference panel 
population match, and this is not guaranteed to be the case, particularly when the study sample is from a 
minority population or an admixed population. Third, a majority of rare variants carried by the imputed 
samples are unlikely to be carried by the reference panel.  
 
Comparing SKAT-O power across genetic architectures and study designs, we show that genotyping then 
imputing is about 90% as powerful as WGS using the same number of individuals. This implies that using 
genotyping then imputing with a larger sample size could produce as much if not more power than a smaller 
WGS sample. For most current rare variant association studies, our results suggest that using genotyping 
then imputing is the best way to start. We also looked at the increase in SKAT-O power using WGS after 
running a genotyping and imputation study; there is a boost in SKAT-O power when using WGS data 
following imputed data, but the trade-off between cost and power is something to be considered on an 
individual study basis. 
 
The next step in characterizing RVAT power is to consider the genetic architecture of the trait of interest. 
Though complex trait architectures are not thoroughly understood, we used the Uricchio model to simulate 
different architectures and label these architectures using the amount of cumulative genetic variance 
explained by all variants under 1% minor allele frequency (V0.01). We show that SKAT-O power decreases 
as V0.01 increases, meaning SKAT-O performance is worst when rare alleles make the largest contributions 
to trait variance. Although counterintuitive, as one would expect RVATs are best tuned for the scenarios 
where rare variants matter most in the genetic architecture, our result mirrors the findings of Uricchio et al, 
2016. One explanation is that as V0.01 goes up, the proportion of V0.01 due to singletons and other ultra-rare 
alleles increases as well, and statistically associating these ultra-rare alleles is difficult in the RVAT 
frameworks we evaluated here. We also note that the explosive exponential growth of the Tennessen 
demographic model used to simulate genetic data leads to an excess of ultra-rare alleles compared to the 
neutral expectation, such that both cases and controls harbor many ultra-rare variants (thereby confounding 
RVAT power). 
 
With the decrease in power as rare variants mattered more, we wondered whether nearby regions in rare 
variant-dominated architectures would provide additional information. We looked at how the probability of 
SKAT-O detecting a causal region decreases as a function of distance from a causal region. The results 
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suggest that in an unbiased window-based approach to scanning the genome with SKAT-O, positive hits 
that are not in causal regions may be useful in helping identify true causal regions, although again only in 
genetic architectures where rare variants do not contribute the majority of genetic variance. Interestingly, 
the power ranking of study designs is inverse of the ranking of precision, meaning that with higher power 
comes a larger window of discovery. 
 
We also looked at the statistical properties of a common analytical path from GWAS to RVATs, and from 
imputed data to sequence data. We found that GWAS and SKAT-O are generally concordant, with causal 
regions identified by GWAS being identified by SKAT-O, while a smaller proportion (~15%) of causal regions 
are identified by SKAT-O and not by GWAS. We see little downside in testing for causal regions using 
SKAT-O following GWAS, with the ability to pick up additional causal regions on the same data. We caution 
that this effect declines significantly as rare variants explain more of the genetic variance.  
 
Finally, the number of loci contributing to a trait (or its polygenicity) may be another important component 
of the trait’s architecture. It is not surprising that we found that for a fixed heritability of a trait, RVAT 
discovery power is higher when there are fewer true causal loci (as effect sizes are concentrated into fewer 
variants). However, it is possible that the polygenicity of a trait could be constraining the possible range of 
genetic architectures. 
 
This study has a few limitations. It is based on simulated data that matches inferred human evolutionary 
history (including selection, and demographic history) but these models and simulations are incomplete 
representations of nature. We do not explore the effects of gene size, mutation rate, haplotype length, or 
degree of linkage disequilibrium between causal regions. We do not consider the differences between 
coding and non-coding regions, which have different selection coefficient distributions and potentially 
different contributions to the genetic architectures for a trait. Future work should consider a phenotype 
model where the function of a region is taken into account, as ENCODE (The ENCODE Project Consortium, 
2012) and other consortia are rapidly adding more dimensions to genomic data. One major shortcoming is 
that we analyze only African and European populations in this study. With significant growth in admixed 
populations already happening - the US Census in 2014-15 predicts that the US will be a “majority-minority” 
country by 2050 (Projections of the Size and Composition of the U.S. Population: 2014 to 2060, 2014), 
meaning significant growth in African-American and Latino populations - it will be important to study 
association testing power in admixed populations. We also believe that incorporating functional annotations, 
evolutionary forces, and admixture into rare variant association tests would significantly improve statistical 
power. 
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Tables 
 
Table 1. Genetic architectures examined in this study 
 

Parameter Values 

Number of causal loci 10, 100 

Heritability 0.2, 0.8 

⍴ 0.5, 0.8, 0.9, 1.0 

𝜏 0.5, 1.0 

Prevalence 25% 

 
Table 2. Genetic architecture parameters under the Uricchio model and the genetic variance explained by 
variants under MAF=1% 

𝜏 ⍴ V0.01 

0.5 0.5 0.23191008598492735 

 0.8 0.35820017698651052 

 0.9 0.40029687398703817 

 1.0 0.44239357098756588 

1.0 0.5 0.50718348211637121 

 0.8 0.79549982205815639 

 0.9 0.89160526870541801 

 1.0 0.98771071535267974 

 
Table 3. Study design parameters in this study 
 

Parameter Value 

Sampling strategy Random, 50/50, extremes 

Number of case/control individuals 5000, 10000 

Number of reference panel individuals for 
imputing 

10000, 20000 
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