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Abstract 1 

Successful navigation in complex acoustic scenes requires focusing on relevant 2 

sounds while ignoring irrelevant distractors. It has been argued that the ability to 3 

track stimulus statistics and generate predictions supports the choice what to 4 

attend and what to ignore. However, the role of these predictions about future 5 

auditory events in drafting decisions remains elusive. While most psychophysical 6 

studies in humans indicate that expected stimuli serve as implicit cues attracting 7 

attention, most work studying physiological auditory processing in animals 8 

highlights the detection of unexpected, surprising stimuli. Here, we tested whether 9 

in the mouse, target probability is used as an implicit cue attracting attention or 10 

whether detection is biased towards low-probability deviants using an auditory 11 

detection task. We implemented a probabilistic choice model to investigate 12 

whether a possible dependence on stimulus statistics arises from short term serial 13 

correlations or from integration over longer periods. Our results demonstrate that 14 
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target detectability in mice decreases with increasing probability, contrary to 15 

humans. We suggest that mice indeed track probability over a time scale of at least 16 

several minutes but do not use this information in the same way as humans do: 17 

instead of maximizing reward by focusing on high-probability targets, the saliency 18 

of a target is determined by surprise. 19 

Introduction 20 

An individual that uses acoustical information for behavioral choices is confronted 21 

nearly continuously with numerous sounds from different sources. To 22 

differentiate between non-associated sounds that are present simultaneously, 23 

relevant stimuli need to be detected while irrelevant ones should be ignored. 24 

During this process of differentiation, the ability of tracking stimulus statistics (if 25 

a stimulus occurs with high or low probability) is essential, sets expectations, and 26 

creates predictions about future auditory events (Malmierca et al., 2015; Skerritt-27 

Davis and Elhilali, 2018). While there is general agreement on the principal 28 

importance of expectation in auditory perception, there are different ways in 29 

which these predictions may be used to guide decisions.  30 

One the one hand, high-probability, expected and relevant signals may attract 31 

selective listening, thus the ability to group and separate sounds from different 32 

sources and selectively pick and monitor one in the presence of others. This ability 33 

forms an important part of selective attention and supports the analysis of complex 34 

auditory scenes (Bregman, 1994; Sussman et al., 2007; Woods and McDermott, 35 

2015). It has already been demonstrated that adult humans listen selectively for an 36 

expected auditory stimulus in reward-based auditory listening tasks (Scharf et al., 37 

1987). More generally, humans internally monitor the probability of a stimulus and 38 
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adapt their behavior according to the stimulus statistics (Bargones and Werner, 39 

1994a; Gordon Z. Greenberg and Larkin, 1968). This form of selective auditory 40 

attention does not require awareness of the subject and is driven by unconscious 41 

expectations (Wolmetz and Elhilali, 2016). Within this framework, the 42 

improvement of detectability is based on the expectation as an implicit cue and 43 

serves as an internal reward-maximizing strategy that drives the attention towards 44 

the expectation (Girshick et al., 2011).  45 

While most psychophysical studies indicate that expected stimuli serve as implicit 46 

cues attracting attention, most work studying the physiology of auditory 47 

processing highlights the detection of unexpected, surprising stimuli. Stimuli are 48 

more salient when presented rarely to the auditory system and thus might be 49 

easier to detect due to pre-attentive mechanisms (Malmierca et al., 2015; Pérez-50 

González et al., 2005; Tiitinen et al., 1994). Within this framework, the evaluation 51 

of stimulus statistics serves to detect novelty, emphasizing changes in the auditory 52 

scene rather than enabling tracking of task relevant information.  53 

Thus, tracking of stimulus probability influences auditory processing in two 54 

contrary ways: on the physiological level, low-probability sounds elicit maximal 55 

responses, but during listening tasks, relevant high-probability sounds appear to 56 

attract attention, improving their detectability. While physiological evidence for 57 

deviant detection spans all the way from animal models to humans (Heilbron and 58 

Chait, 2017; Khouri and Nelken, 2015), behavioral assessment of the effects of 59 

target probability is largely restricted to humans. In order to understand the neural 60 

mechanisms underlying predictive coding, animal models such as rodents in 61 

which both physiology and behavior can be studied are needed.  62 
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Although rodents serve as widely used animal models to study auditory 63 

phenomena, little is known about their ability to monitor stimulus probability and 64 

its involvement in selective auditory attention. One study using chinchillas could 65 

not reproduce human results for auditory selective attention (Yost and Shofner, 66 

2009). However, it remains unclear whether this generalizes to other rodents. Also, 67 

it is unknown if the animals simply do not adapt their behavior according to 68 

stimulus statistics, or if they rather respond towards unexpected, surprising 69 

stimuli instead of high-probability stimuli, as suggest by physiological data. 70 

Here, we asked how target probability influences auditory perception in mice, as 71 

revealed in detection paradigms. More specifically, we tested whether target 72 

probability is used as an implicit cue attracting attention or whether detection is 73 

biased towards low-probability deviants. To this end, we employed three different 74 

tasks. First, we used faint tones in noise of different frequencies and varied the 75 

probability of a given tone frequency between different sessions. This paradigm 76 

resembles those used to test for the ‘listening band phenomenon', the most 77 

prominent example of probability-guided attention in the human literature (Scharf 78 

et al., 1987). Subsequently, we tested whether the probability-dependence 79 

generalizes to other detection tasks, namely streaming paradigms, in which a 80 

target has to be detected in one out of multiple streams. Here we separately tested 81 

for effects on the detection of both spectral and temporal stimulus dimensions. 82 

Finally, we present a probabilistic choice model to investigate whether the 83 

dependence on stimulus statistics arises from short term serial correlations or from 84 

integration over longer periods. 85 

86 

  87 
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Results 88 

Experiment 1: Tone in noise detection 89 

When humans are asked to detect faint tones in a noise background, performance 90 

for high-probability targets is better than for those played with low probability, 91 

even if listeners are not consciously aware of the probabilities (Greenberg and 92 

Larkin, 1968). This is usually explained by focused attention on specific auditory 93 

filters, thereby listing selectively to a certain frequency range (Bargones and 94 

Werner, 1994). In our first experiment, we aimed to test whether mice are able to 95 

track target probabilities from session to session and display a preference for either 96 

high- or low-probability targets. We devised a behavioral paradigm (Fig. 1), in 97 

which mice were trained to indicate the detection of faint tones embedded in a 98 

noise background by leaving a small pedestal after the presentation of a target (Fig. 99 

1A). A typical single session contained 60 targets and lasted ~30 minutes. In order 100 

to test the animals near their individual thresholds, we first tested a single 101 

frequency in each session, varying the level of the tones to determine the threshold 102 

(Fig. 1C, upper panel). In the next step, we presented tones with varying 103 

probability as targets in mixed sessions (lower panel in (Fig. 1C). We hypothesized 104 

that if mice displayed selective listening to high-probability tones they should (1) 105 

be better at tone detection in the single frequency session compared to the mixed 106 

session and (2) show better performance for the high-probability compared to the 107 

low probability stimulus within the mixed session.  108 

Contrary to our hypothesis, all animals tested showed higher sensitivity in the 109 

mixed than in the single frequency session tested before (example data in Fig. 2A; 110 

repeated measures ANOVA, F(1;20)=32.2, p<0.001). Within the mixed session, the 111 

impact of stimulus probability on the preference of the mice for low-probability 112 

tones was confirmed. Sensitivity was positively influenced by surprise, quantified 113 
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as the prediction error (log of the stimulus probability, Fig. 2B). This relation was 114 

highly significant, both when taking the single frequency sessions into account and 115 

for mixed sessions only, and independent of the frequency that was played.  116 

We concluded that mice are able to track target probabilities over a time frame of 117 

minutes to hours, but instead of the high-probability sound the low-probability 118 

sounds were detected more reliably.  119 
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Fig. 1 - Behavioral paradigm and stimulus protocol used in Experiment 1
(A) Go/No Go paradigm used in this study. Mice initiated a trial by climbing on a small pedestal on the 
circular platform. After a variable waiting interval, a target was presented. Animals received a reward  
if they left the platform within 1s after target presentation. The next trial could be initiated immediately.
(B) Timeline of one experimental session. Throughout the entire session, a broad band noise stimulus 
was presented. Once a trial was initiated, a 500ms pure tone was presented after a random stimulus 
delay. In a single session, an animal had to complete 73 or 78 trials,  which typically lasted 30-45 
minutes.
(C)  Different  probabilities  of  single  frequency  pure  tone  targets  in  differents  sessions.  In  single 
frequency sessions, the level of the tones was varied, but only pure tones of either frequency f1 (10kHz) 
or f2 (21kHz) were presented. In mixed session, level was held constant near the behavioral threshold, 
but three different frequencies were presented. In any one session, either f1 or f2 was presented with 
48% probability and the respective other with only 26%. In addition, a tone of the frequency close to 
the high-probability targets was presented in 26% of the trials. 
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Figure 2 - Results for Experiment 1 - tone in noise detecion
(A) Example performance of two different animals for the tone-in-noise stimuli at a single tone 
frequency,  presented  with  different  probabilities.  Before  the  mixed-frequency  experiments, 
animals were tested individually for their thresholds at each tone frequency by presenting tones 
of a single frequency (probability 100%) at different levels to construct psychometrics functions 
(black circles, grey line). In the mixed experiments, tones with a level corresponding to a d' of 1 
(dashed line) were presented with probabilities of 48% (red circle) or 26% (blue circle). 
(B) Population data for all four animals at the two different frequencies used (red: 21kHz, black: 
10kHz).  The values  for  a  probability  of  100% were taken from the  psychometric  function 
obtained after the mixed experiments. Histograms above the graph visualize the probability of 
the tone in the respective sessions, the x-axis shows the surprise quantified as the prediction 
error.  Note  that  larger  numbers  indicate  more  surprising  stimuli.  Total  number  of  sessions 
included: 208 (152 for the mixed session, 56 for the psychometric functions).
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Experiment 2: Frequency change detection in streams 122 

Contrary to the behavior displayed in experiment 1, a strategy to focus on high-123 

probability sounds would have maximized rewards. A possible explanation for 124 

mice not taking advantage of tracking probabilities is that they are not able to focus 125 

on a single frequency band in a continuous noise background with very sparse 126 

tones appearing at random times. We reasoned that a more natural situation could 127 

be the presence of multiple streams of tones that allow to attach selective attention 128 

to one of these streams (Lakatos et al., 2013; Schwartz and David, 2018). We 129 

therefore designed an experiment in which the animals had to detect a frequency 130 

change in either one of two continuous streams of tone pips (Fig. 3A). The 131 

repetition rate was rapid (5 Hz for either stream) and the tone streams were more 132 

than an octave apart in frequency, a parameter range that results in a clear two-133 

stream percept in most animals, including rodents (Itatani and Klump, 2017; Noda 134 

et al., 2013). Again, we varied the probability that a target could appear in either 135 

of the two streams. In one set of sessions, frequency changes would be inserted in 136 

either one of the two streams only. In a second set, targets appeared in both streams 137 

with equal probability. Sessions were randomized in order to avoid sequence 138 

effects. 139 

When we compared the mean sensitivity for the two different probability levels, 140 

we observed a higher mean sensitivity for the mixed sessions for all tested 141 

frequency changes (Fig. 3C). As in Experiment 1 (Fig. 2), targets were more salient 142 

to the mice if they were distributed between the two streams than if they were 143 

played in one of the two streams only. This was confirmed when we compared all 144 

animals for both streams (Fig. 3E; rmANOVA, F(1;88) =( 6.0, p=0.0171). Experiment 145 

2 confirmed that the animals are able to track probabilities from session to session, 146 

but saliency is determined by surprise, or prediction violation rather than by 147 

expectation, despite the latter being the better strategy to maximize rewards in a 148 

given session.  149 
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Experiment 3: Gap detection in streams 150 

Since the two streams were separated by frequency and target changes were along 151 

the same dimension, we aimed to test whether our results would generalize to 152 

other stimulus dimensions. Therefore, we trained a new set of animals to detect 153 

temporal irregularities in the form of short gaps introduced into one of the two 154 

streams (Fig. 3B). Here, we used three probabilities for each condition: targets in 155 

only one of the two streams (100%), or 66.7% and 33.3% probability in sessions 156 

with targets in both streams. As already observed for the frequency changes, 157 

sensitivity for detection of gaps strongly depended on target probability, with the 158 

best detectability for low probability targets in the mixed sessions, and lowest 159 

detection performance for targets in only one out of two streams (Fig. 3D). We 160 

observed this effect for both possible target streams in all animals (Fig. 3F, 161 

rmANOVA, F(1,118) = 10.4, p=0.0016). Experiment 3 confirmed our results from 162 

the previous experiments and generalizes the saliency of surprising targets to 163 

temporal features as well.  164 
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Figure 3 - Stimulus paradigms and results for Experiments 2 and 3
(A) Paradigm for Experiment 2: Two continuous, interleaved streams of tone pips with different 
frequencies were presented. f1 = 10kHz, f2 = 21kHz. Animals had to detect a change of the 
frequency in either of the two streams. 
(B) Paradigm for Experiment 3: A short gap was inserted into one of the the two narrowband 
noise streams (center frequency same as f1 and f2 in A) as a target for detection.
(C)  Mean  performance  of  all  animals  (n=6)  in  Experiment  2  tested  at  different  values  of 
frequency change at either 50% (red) or 100% (blue) probability. Errorbars show standard error 
of the mean (SEM).
(D) Mean performance of all animals (n=4) in Experiment 3 tested at different gap durations at 
33.3% (yellow), 66.7% (red) or 100% (blue) probability. Errorbars deptic SEM.
(E) Sensitivity as a function of prediction error for Experiment 2 - tone change detection - for all 
animals tested in both frequency streams (black: 10 kHz, red: 21kHz). Each line joins data from 
an individual mouse for targets with a frequency change of 16%.
(F) Sensitivity as a function of prediction error for Experiment 3 -gap detection - for all animals 
tested in both frequency streams (black: 10kHz, red: 21kHz) fir targets with a gap duration of 
30ms.
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Probabilistic choice model 166 

We observed higher detection performance for low-probability stimuli in three 167 

different behavioral experiments. However, this does not necessarily mean that 168 

the animals were tracking long-term probability. When manipulating probability, 169 

the structure of the randomized trial sequences is changed as well: In sessions in 170 

which one type of target is presented with low probability, stimuli are more often 171 

preceded by a different target than if presented in high-probability sessions. A 172 

simple attentional switch after each trial could explain our results just as well as 173 

tracking probability over a time course of minutes to hours. In order to test 174 

whether the animals were tracking probability over longer time-scales or simply 175 

displaying short-term trial-history effects, we devised a probabilistic choice model 176 

(Fig. 4A). The model included the factors stimulus intensity, stimulus probability 177 

within the session, and recent history of stimuli presented in the immediately 178 

preceding trials. The model was fit separately for each mouse and experiment, in 179 

versions including or excluding probability and history terms. If the probability-180 

dependence was due to recent history effects, a model including only the 181 

respective term should perform equally well as one including both probability and 182 

history, and better than one that takes only probability into account. Inclusion of 183 

the probability term significantly improved model performance (Fig. 4B). In 184 

contrast, inclusion of the recent-history term (up to four preceding trials) improved 185 

the model only marginally (Fig. 4B). 186 

The average interval between two trials was 30.2±10.3s (mean ± standard 187 

deviation, n=528 sessions from all three experiments). Since there was little effect 188 

of recent trial history up to at least 4 trials, perception in the mice was apparently 189 

shaped by long term probability on the time-scale of several minutes at least. In 190 

line with this, we could not find a difference between hit rates after a switch of the 191 

stimulus class between two trials or a repetition of stimuli from the same class (Fig. 192 

4D). We also did not find a change of overall strategy between mixed and pure 193 
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Figure 4 - Probabalistic choice model
(A) Schematic illustration of the probabilistic choice model. The full model includes stimulus 
intensity, stimulus probability within the session for each stimulus, and recent history of stimuli 
presented in the immediately preceding trial steps t-i.  Stimulus values were different in each 
experiment:  signal-to-noise  ratio  in  Experiment  1,  frequency shift  in  Experiment  2  and gap 
duration in Experiment 3. The model was fit for each mouse and experiment, in four different 
versions, including either all three factors, stimulus values only, values + history, or values + 
probability.
(B) Performance of the four model versions, plotted as deviance of model output to the data, 
relative to the model including stimulus values only. Note that smaller numbers mean better 
model performance. Bars represent mean deviances from all animals in the three experiments  
±SEM
(C) False alarm rate depending on whether  stimuli  of  one class  were presented as the only 
stimuli in the session ('pure') or whether they were combined with other stimuli ('mixed'). Each 
line represents mean false alarm rates from a single animal.
(D) Influence of immediate trial history on hit rate. x-axis: hit rate when the stimulus in the trial 
before was drawn from the same class as the current stimulus ('repetition'), y-axis: hit rate to 
stimuli that were preceded by a stimulus from another class ('switch').
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Discussion 196 

Stimulus statistics in auditory scenes have been suggested to shape auditory 197 

perception in two contrary ways: (1) A focus on novelty detection, favouring low-198 

probability sounds (Khouri and Nelken, 2015) and (2) focusing attention on 199 

expected, high-probability sounds, thereby maximizing overall detection rate 200 

(Scharf et al., 1987; Wolmetz and Elhilali, 2016). Here we tested whether attention 201 

in mice is drawn rather towards low- or high-probability target sounds. To this 202 

end we conducted three different experiments varying the probability of targets. 203 

While humans direct their attention to the most probable target out of several 204 

acoustic channels or streams, target detectability in mice decreased with increasing 205 

probability. Thus, the more surprising a stimulus was, the more reliably it was 206 

detected. This was confirmed in three independent experiments, one with 207 

changing probability of target frequency in noise (Fig. 2) and two using a 208 

streaming paradigm (Fig. 3) with either a spectral or temporal variation to be 209 

detected. Finally, our probabilistic choice model best predicted animal behavior 210 

for all three tasks if it took overall probability into account, but not if we considered 211 

recent trial history (Fig. 4B). These results suggest that mice indeed track 212 

probability over a time scale of at least several minutes, but do not use this 213 

information in the same way as humans do: instead of maximizing reward by 214 

focusing on high-probability targets, the saliency of a target is determined by 215 

surprise. Such a strategy obviously fails to maximize reward, since successful 216 

detection of higher-probability targets directly results in a higher reward rate. 217 
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Different strategy or mouse-specific auditory processing? 218 

It seems that mice are very good at something that humans find hard and vice 219 

versa. Are our results in mice really caused by a different strategy with respect to 220 

target probability or can it be explained by more basic differences in their auditory 221 

system? Mice have much wider auditory filters (Lina and Lauer, 2013), so our 222 

stimuli could have been merged into one perceptual category, such that no 223 

separate streams would have built up. However, in all three experiments, we used 224 

targets that were more than an octave apart, far above the frequency 225 

discrimination threshold of mice (de Hoz and Nelken, 2014). It was not assessed 226 

whether the two sequences used in experiments 2 and 3 resulted in a streaming 227 

percept, as this was not the focus of our study and our results do not critically 228 

depend on the sequences being perceived as streams. However, all animal species 229 

that have been tested so far showed evidence for streaming for stimuli separated 230 

by one octave and upwards (Itatani and Klump, 2017), including rats (Noda et al., 231 

2013), which have similar auditory filters to mice. Furthermore, our positive results 232 

on the effect of target probability and its generalization across paradigms provide 233 

evidence for perceptual separation rather than merging. 234 

Deviance detection in the auditory system 235 

We found clear evidence for mice to favor unexpected stimuli. This finding 236 

suggests that saliency of a target is determined by it deviating from previous 237 

acquired prior probabilities. One explanation for such a behavior is the dominance 238 

of deviance detection over expectancy-attracted attention. There is a large body of 239 

work on enhanced neural representation of deviant stimuli in the auditory system 240 

in both animal models and humans. At the single cell level, stimulus specific 241 

adaptation (SSA) describes the enhancement of the neural representation of low-242 
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probability sounds (Khouri and Nelken, 2015; Malmierca et al., 2015). A typical 243 

paradigm is the presentation of a sequence of tones of two different frequencies, 244 

with varying relative probability (Ulanovsky et al., 2003). Experiment 1 of this 245 

study is such a paradigm, but the ratio of stimulus duration (0.5s) and the very 246 

long inter-stimulus interval (mean of all sessions: 30.2s) has not been reported 247 

before. However, time scales up to several minutes are reasonable based on the 248 

measurement of adaptation time constants in cat auditory cortex (Ulanovsky et al., 249 

2004).  250 

The stimuli in our Experiments 2 and 3 extended this to two synchronously 251 

presented sequences of standard and deviants - experiment 2 with frequency shifts 252 

and experiment 2 with temporal deviants. SSA is likely to shape responses to the 253 

deviant targets in both of the streams in either experiment. Deviants are very rare 254 

with respect to each background stream: ~30s inter-trial intervals with a 255 

background pulse repetition rate results in a deviant probability of ~1% in session 256 

with target in one stream and ~0.5% in sessions with equal distribution between 257 

the two streams. Different performance for these sessions would imply that SSA 258 

has to reflect differences in probability as small as ∆0.5%. Neural sensitivity for 259 

such small changes has not been reported yet, but there is no principle reason why 260 

they cannot exist. Alternatively, SSA could work on a higher structural level, 261 

reflecting the task and the auditory scene as a whole. SSA has been shown to 262 

extend beyond simple pure tone patterns (Nelken et al., 2013) and to more complex 263 

statistical structure of the sensory context (Yaron et al., 2012). Similar to the 264 

findings presented here (Fig. 4), SSA is sensitive to average statistics rather than 265 

recent history (Rubin et al., 2016).  266 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/633388doi: bioRxiv preprint 

https://doi.org/10.1101/633388
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

Not only in animal models, but also in humans, deviant detection represents one 267 

of the main principles of auditory processing. It is reflected by the mismatch 268 

negativity (MMN) component of the EEG and is present for a large range of stimuli 269 

and time scales (Näätänen et al., 2007, 1978). Both SSA and MMN are discussed as 270 

a response to the violation of expectation (Heilbron and Chait, 2017; Khouri and 271 

Nelken, 2015; Malmierca et al., 2015) within the framework of predictive coding 272 

(Friston, 2005). 273 

Despite the pervasive presence of neural signatures of deviance detection in 274 

auditory systems, it is very difficult to directly observe a correlate at the behavioral 275 

level. This is probably due to its pre-attentive nature - deviance detection is 276 

observable in passively listening subjects (Tiitinen et al., 1994) as well as in 277 

anaesthetized animals (Antunes et al., 2010). In active listening tasks, implicit 278 

cueing could then use the predictive signal to channel selective attention to high-279 

probability sounds (Wolmetz and Elhilali, 2016) by inverting the sign. The 280 

interplay of MMN and top-down attention is still an open and debated topic 281 

(Bendixen, 2014; Sussman, 2007). 282 

Sensory ecology  283 

From the perspective of reward maximization, selective attention to low-284 

probability targets in an auditory scene is undesirable. This raises the question 285 

whether the strategy employed by mice is rather the result of the animals lacking 286 

an appropriate mechanism for selective attention or whether it provides an 287 

ecological benefit for the animals. Evidence for an ability to selectively attend one 288 

out of several concurrently present objects or processes is surprisingly sparse for 289 

rodents. Recent work suggests that mice are able to attend to explicitly cued visual 290 

patterns (Wang and Krauzlis, 2018) or auditory streams (Chapuis and 291 
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Chadderton, 2018), indicating that mice may not lack a mechanism for top-down 292 

attentional control. Both humans and carnivores (Schwartz and David, 2018) can 293 

be cued implicitly using target probability - providing further evidence that the 294 

effect of stimulus probability on perception may be due to sensory ecology rather 295 

than taxonomy. While both primates and carnivores might use their auditory 296 

senses to tune in and follow potential prey or conspecific communication signals, 297 

tracking of the statistics in mice – a prey species - may predominantly serve to 298 

detect sudden, potentially dangerous changes in the environment. Interestingly 299 

and consistent with that hypothesis, while implicit cueing in humans usually 300 

enhances perception of high-probability signals (Girshick et al., 2011; Scharf et al., 301 

1987; Wolmetz and Elhilali, 2016), threatening stimuli are best perceived if they 302 

occur with relative low-probability (McFadyen et al., 2019). If mice use contextual 303 

auditory information mainly for the detection of threats, this rule may be hard-304 

wired and not under the control of top-down signals. In this case, expectation is 305 

computed along the sensory pathway, but mostly used to suppress ongoing input, 306 

similar to sensory adaptation on shorter time scales. The development of 307 

predictive coding and expectation-driven perception in mammals may have 308 

tapped into this first step of probabilistic analysis of sensory scenes. Since the 309 

representation was already available, this required merely a sign switch. 310 

Perspective 311 

In summary, our study provides the first evidence for animal detection behavior 312 

being shaped directly by prediction error. This finding could be very helpful for 313 

future work on prediction-guided attention, since we may be able to study the 314 

neural mechanisms underlying extraction of complex contextual sensory 315 

information without the confounding of the interplay with (top-down) reward 316 

maximization. The mouse model offers unrivaled possibilities to record and 317 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/633388doi: bioRxiv preprint 

https://doi.org/10.1101/633388
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

manipulate neural activity in the behaving animal. In future studies this may not 318 

only enable measurements of neural deviance detection during relevant behavior. 319 

It also offers the perspective of direct manipulation of potential mechanisms, with 320 

the observed behavior as readout to infer causal relationships 321 

  322 
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Methods 323 

Animals 324 

In total 14 adult male mice bred at the University of Oldenburg animal facilities 325 

were used in the experiments. All mice had a C57BL/6.CAST-Cdh23Ahl+ background 326 

(the Jackson laboratory, #002756) and were between 3 and 9 month old. We used 327 

this line because it does not display the age-dependent hearing loss which is 328 

present in other C57BL/6 lines (Johnson et al., 1997; Kane et al., 2012). Animals 329 

were kept at a reversed 12/12 hour dark-light cycle, all experiments were 330 

performed during the dark period. Animals had unlimited access to water but 331 

were food-deprived to a moderate extent (85-90% of their ad libitum weight) and 332 

single-housed in standardized cages but with visual and olfactory contact to 333 

neighboring animals. Cages were equipped with cage enrichment. All experiments 334 

were approved by the responsible authorities (Lower Saxony State Office for 335 

Consumer Protection and Food Safety, license number 33.9-42502-04-13/1271). 336 

 337 

Behavioral paradigm 338 

All three experiments were performed using the following reward-based go/no-go 339 

paradigm. Animals were placed one an annular platform made from wire mesh 340 

(Fig. 1A). The raised platform was placed in a custom sound-proof chamber that 341 

was lined with pyramid foam. On one side of the platform, a small pedestal was 342 

installed. Once the animals ascended the pedestal, a random, variable waiting time 343 

started, ranging from 1.25 to 5.25s. After this random interval, a target was 344 

presented.  345 

The onset of the target triggered a 1s response window. If the animals descended 346 
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within the window (‚go‘), a food pellet (0.02g, Dustless precision pellets rodent, 347 

grain based, Bio-Serv, #F0163) was delivered at the opposite side of the annular 348 

platform. If the animals stayed on the pedestal, a new trial was presented after a 349 

newly drawn waiting time. In order to estimate how many of hits were awarded 350 

by chance, about one third of trials (depending on experiment) were unrewarded 351 

sham trials, with the same distribution of waiting times as the target trails. Neither 352 

false alarms nor misses were punished or rewarded. A typical session contained 353 

60 targeted trials and 25 sham trials and lasted 30-40 minutes. Animals were tested 354 

once per day. All experiments were controlled by custom Software (Github 355 

Repository, https://github.com/Spunc/PsychDetect ) written in MATLAB (The 356 

Mathworks). Pellet dispenser and light barriers were custom build (University of 357 

Oldenburg workshop) and controlled by a microcontroller (Arduino UNO, 358 

Arduino AG, Italy) connected to a Windows PC. 359 

Stimuli 360 

For sound presentation a speaker (Vifa XT 300/K4, Denmark) was mounted in the 361 

sound-proof chamber approximately 0.5m above the pedestal. Sound was 362 

generated using a high-fidelity sound card (Fireface UC, RME, Germany) 363 

connected to the PC. Sound was played back at either 192kHz (experiment 1) or 364 

96kHz (experiments 2 & 3) sampling rate. The speaker was calibrated at the 365 

approximate position of the head of the animals using a measurement microphone 366 

(model 40BF, G.R.A.S, Denmark).  367 

 368 

Experiment 1 - Tone in noise detection 369 

Tones in noise served as a target in Experiment 1. Once a session started, broad-370 

band noise (4-64kHz, 60dB) was constantly played until the end of the session. 371 

Pure tone of either 10 or 21kHz served as targets (2ms cosine ramps, 500ms 372 

duration). In the sessions containing only one target frequency, the level for that 373 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/633388doi: bioRxiv preprint 

https://doi.org/10.1101/633388
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

frequency was varied between 20 and 80dB in steps of 10dB in order to obtain a 374 

psychometric function. Psychometric functions were fit with a logistic function 375 

and an individual signal-to noise ratio (SNR) threshold was estimated. In the 376 

mixed sessions, we used the level corresponding to the individual SNR thresholds, 377 

estimated as the point on the psychometric curve with a d’ value of 1. During the 378 

mixed session, the first 10 trials were taken from either of the two frequencies 379 

(priming frequency). For the rest of the sessions, both frequencies were played 380 

back with equal probability. In addition, target tones of a third frequency close to 381 

the priming frequency were played with equal probability. These stimuli were not 382 

used for further analysis.  Only the later part of the session was used for analysis 383 

of the animal’s performance. Each animal performed at least 10 session for both 384 

priming frequencies. Measurement of psychometric function was repeated after 385 

the mixed sessions in order to rule out effects of perceptual learning when 386 

comparing single-frequency with mixed sessions.  387 

 388 

Experiment 2 - Frequency change detection in streams 389 

For Experiment 2, two alternating tones with frequencies of 10 and 21kHz (1.07 390 

octaves) were played at rate of 5 tones/s throughout the experimental session. Tone 391 

duration was 100ms including 2ms cosine ramps. The level of each individual tone 392 

was roved between 60 and 66dB SPL (randomly) in order to avoid the detection of 393 

a differences in loudness when the shift in frequency occurred. The frequency of a 394 

tone from either tone sequence was shifted upwards by 4%,8%,16% or 32%. Mice 395 

had to report the appearance of the frequency shift within 700ms after onset of the 396 

shifted tone. Within a session, targets appeared either in only one of the two tone 397 

sequences (‚single‘) or with 0.5 probability in either of the two sequences (‚mixed‘). 398 

Each animal completed at least 8 sessions for each of the mixed session types. 399 

  400 

Experiment 3 - Gap detection in streams 401 

The temporal structure of the sequences in Experiment 3 was the same as in 402 
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Experiment 2, but instead of pure tones, narrowband noise with a bandwidth of 403 

0.25 octaves around 10 or 21kHz was used. We introduced this adjustment, 404 

because mice were not able to detect temporal gaps in the tone streams used in 405 

Experiment 2. The level of narrow band pulses was fixed at 60dB SPL. In the target 406 

pulses, gaps with duration of 15, 30, 45, 60 and 75ms were introduced (including 407 

2ms cosine pulses). The response window was 1 s. For Experiment 3, we used three 408 

different probabilities: 1 (target only in one sequence), 0.66 or 0.33. Each animal 409 

completed at least 8 sessions for each session type. 410 

Data analysis and statistics  411 

In all three experiments, for each session i and stimulus class s, the sensitivity d’ 412 

was calculated as: 413 

 414 

 415 

 416 

where z() is the inverse of normal cumulative function, Hi,s is the hit rate for the 417 

stimuli with parameters s in the ith session P(response|stimulus s) and FAi is the 418 

false alarm rate P(response|sham).  419 

In order to check for significant effects of stimulus probability on the sensitivity, 420 

we fit a generalized mixed effects model (MATLAB fitglme), with the d’ values as 421 

response variable and probability and stimulus parameters as factors. In 422 

Experiment 1, the stimulus parameter factor was target tone frequency. For 423 

Experiment 2, relative frequency shifts were entered as factor. For Experiment 3, 424 

the stimulus factor was gap duration. For each experiment, we performed repeated 425 

measures ANOVA (rmANOVA, MATLAB) and report both F-values and exact p-426 

values up to the fourth decimal. 427 
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Probabilistic choice model 428 

To account for different factors affecting animal choice behavior we devised a 429 

probabilistic choice model, similar to what has been used before in order to include 430 

history in psychophysics (Busse et al., 2011). 431 

The probability pgo to jump at a given trial t in a behavioral session is given by:  432 

 433 

 434 

with the response variable L(t), that is a weighted sum of three main terms: (1) the 435 

stimulus parameters s(t), (2) the overall probability of the stimulus to appear in the 436 

given channel p(t), and the stimulus history h(t):  437 

 438 

 439 

The stimulus parameters depend on the paradigm. For Experiment 1, this was 440 

absolute stimulus frequency and the signal to noise ratio. For Experiment 2, this 441 

was the absolute frequency of the stream the target appeared in and the frequency 442 

shift of the target. For Experiment 3, we entered absolute frequency of the target 443 

stream and the gap duration in the target pulse.  444 

The probability term is constant across a given session and only depends on the 445 

target channel. The history term is described by:  446 

 447 

, 448 

where h(t-i) is is 1 if the target in the (t-i)th trial before the current was in the same 449 

channel and 0 if it was presented in the respective other.  450 

The weights were fit using the Matlab function glmfit with a logit link and no 451 

constant term. For each animal, sessions were combined into sets that each 452 

contained all probability distributions (four single sessions in Experiments 1 and 453 

3, three sessions in Experiment 2). For each experiment and animal, at least five 454 
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such sets were combined randomly and corresponding models were fitted, 455 

resulting in a total of 86 sets. For each such set four versions of the model were 456 

fitted, the full model above and the following reduced versions: 457 

 Stimulus parameters only: 458 

 459 

Stimulus parameters + probability: 460 

 461 

      Stimulus parameters + history: 462 

 463 

For each set and model version, the deviance between the animal’s response and 464 

the probability pgo was collected and normalized to the model deviance for the 465 

model version including stimulus parameters only. 466 
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