1 MRGPRX4 is a novel bile acid receptor in cholestatic itch

- Huasheng Yu^{1,2,3}, Tianjun Zhao^{1,2,3}, Simin Liu¹, Qinxue Wu⁴, Omar Johnson⁴, Zhaofa
 Wu^{1,2}, Zihao Zhuang¹, Yaocheng Shi⁵, Renxi He^{1,2}, Yong Yang⁶, Jianjun Sun⁷,
 Xiaoqun Wang⁸, Haifeng Xu⁹, Zheng Zeng¹⁰, Xiaoguang Lei^{3,5}, Wenqin Luo^{4*}, Yulong
 Li^{1,2,3*}
- 6
- ⁷ ¹State Key Laboratory of Membrane Biology, Peking University School of Life
- 8 Sciences, Beijing 100871, China
- ⁹ ²PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- ¹⁰ ³Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- ¹¹ ⁴Department of Neuroscience, Perelman School of Medicine, University of
- 12 Pennsylvania, Philadelphia, PA 19104, USA
- ¹³ ⁵Department of Chemical Biology, College of Chemistry and Molecular Engineering,
- 14 Peking University, Beijing 100871, China
- ⁶Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory
- 16 of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- ¹⁷ ⁷Department of Neurosurgery, Peking University Third Hospital, Peking University,
- 18 Beijing, 100191, China
- ¹⁹ ⁸State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in
- 20 Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics,
- 21 Chinese Academy of Sciences, Beijing, 100101, China
- ²² ⁹Department of Liver Surgery, Peking Union Medical College Hospital, Chinese

- 23 Academy of Medical Sciences and Peking Union Medical College, Beijing 100730,
- 24 China
- ¹⁰Department of Infectious Diseases, Peking University First Hospital, Beijing 100034,
- 26 China
- 27 *Manuscript correspondence:
- 28 Yulong Li (<u>yulongli@pku.edu.cn</u>) & Wenqin Luo (<u>luow@pennmedicine.upenn.edu</u>)
- 29
- 30 Acknowledgments: We thank Dr. Y. Rao for sharing the tissue culture room, Dr. J.H.
- 31 Zhao for collecting clinical blood samples. We are grateful to Dr. L.Q. Luo and Dr. Y.
- 32 Song for critical reading of the manuscript. We also thank Dr. X.Z. Dong for sharing
- 33 unpublished data. This work was supported by the Junior Thousand Talents Program
- 34 of China to Y.L.
- 35
- 36
- 37
- 38
- 39
- 40
- 41

42

43 Abstract:

44 Patients with liver diseases often suffer from chronic itch or pruritus, yet the 45 itch-causing pruritogen(s) and their cognate receptor(s) remain largely elusive. Using transcriptomics and GPCR activation assays, we found that an orphan, primate 46 47 specific MRGPRX4 is expressed in human dorsal root ganglia (hDRG) and selectively 48 activated by bile acids. In situ hybridization and immunohistochemistry revealed that 49 MRGPRX4 is expressed in ~7% of hDRG neurons and co-localizes with HRH1, a known itch-inducing GPCR. Bile acids elicited a robust Ca²⁺ response in a subset of 50 51 cultured hDRG neurons, and intradermal injection of bile acids and an MRGPRX4 52 specific agonist induced significant itch in healthy human subjects. Surprisingly, 53 application of agonist for TGR5, a known sequence conserved bile acid receptor previously implicated in cholestatic itch, failed to elicit Ca²⁺ response in cultured 54 55 hDRG neurons, nor did it induce pruritus in human subjects. In situ hybridization and 56 immunostaining results revealed that hTGR5 is selectively expressed in satellite glial 57 cells, unlike mTGR5 (in mouse DRG neurons), likely accounting for the inter-species 58 difference functionally. Finally, we found that patients with cholestatic itch have 59 significantly higher plasma bile acid levels compared to non-itchy patients and the bile acid levels significantly decreased after itch relief. This elevated bile acid level in itchy 60 61 patients is sufficient to activate MRGPRX4. Taken together, our data strongly suggest 62 that MRGPRX4 is a novel bile acid receptor that likely underlies cholestatic itch, 63 providing a promising new drug target for anti-itch therapies.

64

65 **INTRODUCTION**

Chronic itch, or pruritus, is a severe and potentially debilitating clinical feature 66 67 associated with many dermatological and systemic conditions¹, severely affecting quality of life and potentially leading to lassitude, fatigue, and even depression and 68 suicidal tendencies². The most well-characterized itch receptors are the H1 and H4 69 histamine receptors (HRH1 and HRH4)³. Although antihistamines, which act by 70 71 inhibiting histamine receptors, are generally effective at relieving itch symptoms 72 induced by inflammation and allergens, these compounds are usually ineffective at 73 treating chronic itch caused by systemic diseases and most skin disorders. To date, 74 no effective treatment is available for treating histamine-resistant itch².

A high percentage of patients with systemic liver failure develop itch with cholestatic symptoms⁴. For example, the prevalence of itch is as high as 69% among patients with primary biliary cirrhosis, and severe itch is an indication for liver transplantation⁵. Moreover, itch occurs in more than half of pregnant woman with intrahepatic cholestasis of pregnancy, a condition that has been associated with an increased risk of preterm delivery, perinatal mortality, and fetal distress⁶.

Several medications have been tested for treating cholestatic itch, including ursodeoxycholic acid (UDCA), cholestyramine, and rifampicin; however, these compounds either are ineffective or induce severe side effects⁵. Therefore, safe and effective treatments for cholestatic itch are urgently needed, and identifying the underlying molecular mechanisms—particularly the receptor and ligand—is the essential first step.

87 Although the link between cholestasis and itch was first described more than

88 2000 years ago', the detailed mechanisms underlying cholestatic itch remain 89 unidentified. To date, a handful of molecules have been proposed as the pruritogens 90 that mediate cholestatic itch, including bile acids, bilirubin, lysophosphatidic acid, autotaxin, and endogenous opioids⁴. With respect to the cognate receptor for the 91 92 pruritogen, a few receptors have been proposed, albeit based primarily on rodent 93 models. For example, the membrane-bound bile acid receptor TGR5 has been reported to mediate bile acid induced itch in mice^{8,9}. However, a recent study found 94 95 that administering TGR5-selective agonists failed to elicit an itch response in mouse models of cholestasis¹⁰, raising doubts regarding whether TGR5 is indeed the 96 97 principal mediator for cholestatic itch. Recently, Meixiong et al. reported that Mrgpra1 98 and MRGPRX4 (in mice and humans, respectively) can be activated by bilirubin, a 99 compound that serves as one of the pruritogens in cholestatic itch in mice¹¹. 100 Nevertheless, the precise molecular mechanism that underlie cholestatic itch in 101 humans remains to be determined.

102 We specifically focused our search on genes that are selectively expressed in the 103 human dorsal root ganglia (DRG), where the cell bodies of primary itch-sensing 104 neurons are located. Our search revealed a novel ligand-receptor pair comprised of 105 bile acids (the ligand) and the receptor MRGPRX4. Moreover, we found that 106 MRGPRX4 is expressed selectively in a small subset of neurons in the human DRG, and bile acids directly trigger intracellular Ca²⁺ increase in these neurons. In addition, 107 108 intradermal injection of both bile acids and the MRGPRX4-specific agonist nateglinide 109 induce detectable itch in human subjects, and this bile acid-induced itch is

110 histamine-independent. Surprisingly, application of agonist for TGR5, a known 111 sequence conserved bile acid receptor previously implicated in cholestatic itch, failed to elicit Ca²⁺ response in cultured hDRG neurons, nor did it induce pruritus in human 112 113 subjects. In situ hybridization and immunostaining results revealed that unlike mTGR5 expressing in mouse DRG neurons, hTGR5 is selectively expressed in 114 115 satellite glial cells, likely accounting for the inter-species difference functionally. 116 Finally, we found that plasma bile acid levels are well correlated with itch sensation in 117 cholestatic patients and that this elevated bile acid level is sufficient to activate 118 MRGPRX4. Taken together, our results provide compelling evidence that the 119 ligand-receptor pair of bile acids and MRGPRX4 is likely to be one of the critical 120 mediators for human cholestatic itch.

121

122 **RESULTS**

123 **MRGPRX4 is activated by bile extract**

124 DRG neurons are primary somatosensory neurons that express a variety of receptors and ion channels for detecting both extrinsic and intrinsic stimuli¹². To identify a 125 126 receptor in mediating cholestatic itch in human, we reason that this candidate 127 receptor could be expressed in human DRG neurons and activated by bile extracts. 128 Since the majority of itch receptors identified to date belong to the G protein coupled receptor (GPCR) superfamily¹³, we analyzed two published transcriptomics datasets 129 compiled from a variety of human tissues^{14,15}, specifically focusing on GPCRs. 130 131 Among the 332 transcripts that are enriched in the human DRG (Table S1), we

132 identified the following seven highest-enriched orphan GPCRs: GPR149, MRGPRX4, GPR139, GPR83, MRGPRE, MRGPRX1, and MRGPRD^{16,17} (Fig. 1a and Table S2). 133 134 Next, we cloned and expressed these candidate receptors in HEK293T cells 135 (Supplementary Fig. 1a, b), finding that all seven receptors were expressed at the 136 plasma membrane (Supplementary Fig. 1b). We measured the activation of each 137 receptor by bovine bile extract using two reporter assays, the Gs-dependent luciferase assay¹⁸ and the Gq-dependent TGF α shedding assay¹⁹ (**Fig. 1b,c**). No 138 139 signal was detected with the Gs-dependent luciferase assay (Fig. 1b). Interestingly, 140 bile extract elicited a significant increase in reporter activity in cells expressing 141 MRGPRX4 measured using the TGF α shedding assay, but had no effect on cells 142 expressing the other six GPCRs (Fig. 1c). These results suggest that MRGPRX4 is 143 activated by one or more compounds present in bile extract, and that MRGPRX4 144 likely signals through the Gg but not the Gs pathway. Further experiments revealed 145 that bovine, porcine, and human bile extract activate MRGPRX4 to a similar extent in 146 a dose-dependent manner (Fig. 1d); in contrast, extracts obtained from bovine brain, 147 spleen, heart, kidney, and liver tissues induced no detectable signal on 148 MRGPRX4-expressing cells (Fig. 1e). Taken together, these results suggest that 149 MRGPRX4 is potently activated by bile extract and active compound(s) is/are highly 150 enriched in bile extract.

151

152 Identifying which in bile extract activate MRGPRX4

153 Next, to identify the component(s) in bovine bile extract that activate(s) MRGPRX4,

154 we separated the extract into six fractions using silica gel column chromatography 155 (Fig. 2a). Each fraction was then applied to MRGPRX4-expressing HEK293T cells, 156 and MRGPRX4 activation was measured using the TGF α shedding assay. Among the 157 six fractions tested, fraction 4 caused the strongest activation of MRGPRX4, whereas 158 fractions 1 and 6 caused the weakest activity (Fig. 2b), indicating that the active 159 component(s) are mainly present in fraction 4. Mass spectrometry of fractions 4 and 6 160 revealed a peak enriched specifically in fraction 4 (Fig. 2c); this peak corresponded to 161 ions with an m/z value of 410.3265 in the positive ion mode and was annotated to 162 prostaglandin F2 α diethyl amide and/or dihydroxy bile acids. Further experiments using ¹H-NMR revealed that two pure dihydroxy bile acids—deoxycholic acid (DCA) 163 164 and chenodeoxycholic acid (CDCA)-produced peaks that were identical to the 165 peaks in fraction 4 (Fig. 2d); other fractions that only weakly activated MRGPRX4 166 contained characteristic peaks of bile acids as shown by ¹H-NMR also 167 (Supplementary Fig. 2). These results suggest that DCA and/or CDCA are enriched 168 in the active fraction of bile extract and may be the key compounds that activate 169 MRGPRX4.

170

171 Characterization of bile acids: MRGPRX4 activation and the downstream 172 signaling

To further characterize the efficacy and potency of DCA, CDCA, other bile acids, and their derivatives in activating MRGPRX4, we systematically measured their ability to activate MRGPRX4 in HEK293T cells, using TGFα shedding assay and FLIPR

(fluorescent imaging plate reader) Ca²⁺ assay. All of the bile acids tested activated 176 177 MRGPRX4 to some extent; DCA had the highest potency measured with both assays, 178 with an EC₅₀ value of 2.7 μ M and 2.6 μ M in the TGF α shedding and FLIPR assays, 179 respectively; cholic acid (CA), CDCA, and lithocholic acid (LCA)-three close analogs 180 of DCA-were less potent (Fig. 3a-c). Based on the structural differences between 181 DCA and the less potent bile acids, we reasoned that hydroxylation at position of R1 182 and/or R2, as well as taurine/glycine conjugation at position R3, is important for 183 specific bile acids to activate MRGPRX4 (Fig. 3c).

184 Next, we examined the potential signaling events downstream of bile acid-induced MRGPRX4 activation by measuring intracellular Ca²⁺ concentration 185 186 ([Ca²⁺]_i) in MRGPRX4-expressing HEK293T cells loaded with Fluo-8 AM, a 187 fluorescent Ca²⁺ indicator. We found that DCA, CA, CDCA, and LCA induced a robust 188 fluorescence response in these cells (Fig. 3d-f), and pretreating the cells with the phospholipase C inhibitor U73122 significantly reduced the DCA-evoked Ca²⁺ signals; 189 190 in contrast, the G_βy inhibitor gallein had no effect on DCA-evoked signaling (Fig. 191 **3g-h**). Taken together, these results indicate that a Gq-dependent signaling pathway 192 involving phospholipase C is downstream to MRGPRX4 activation by bile acids.

Interestingly, even though MRGPRX1, MRGPRX2, and MRGPRX3 are close analogs of MRGPRX4, none of these receptors was activated by bile acids, even at 100 μ M concentration (**Supplementary Fig. 3a-e**). We therefore investigated the putative ligand-binding sites in MRGPRX4 by comparing the primary amino acid sequence of MRGPRX4 with these three analogs (**Fig. 3i**). We identified amino acid 198 residues that are conserved in MRGPRX1, MRGPRX2, and MRGPRX3 but not in 199 MRGPRX4 and mutated these residues, once per time, to an alanine residue in 200 MRGPRX4. We found that mutating amino acids 159, 180, and 235 reduced the 201 receptor's affinity for DCA (Fig. 3), without affecting trafficking to the cell membrane 202 (Fig. 3k); thus, these three sites may play a critical role in the binding of bile acids to 203 MRGPRX4. In addition, we examined whether mouse and/or rat Mrgpr family 204 members also respond to bile acids. Intriguingly, bile acids failed to activate any 205 mouse or rat Mrgpr members tested (**Supplementary Fig. 3g-h**), suggesting that the 206 ability of MRGPRX4 to sense bile acids may be a new functional addition during 207 evolution.

208

A subset of human itch-related DRG neurons express MRGPRX4 and respond to bile acids

211 Next, we examined endogenous expression pattern of MRGPRX4 in hDRGs. We 212 performed in situ hybridization using a digoxigenin-labeled riboprobe against 213 MRGPRX4 mRNA, and found that MRGPRX4 mRNA is expressed in only ~6-8% of 214 hDRG neurons (Fig. 4a, c); similar results were obtained with immunofluorescence 215 using an MRGPRX4-specific antibody (Fig. 4b, c and Supplementary Fig. 4). 216 Morphologically, these MRGPRX4-expressing neurons are small-diameter neurons, 217 with a diameter of approximately 50 µm, which is similar to small-diameter neurons 218 that express the neurotrophic tyrosine kinase receptor type 1 (TrkA) (Fig. 4d), suggesting a function in nociception and/or pruriception²⁰. 219

220 To further characterize the molecular profile of these MRGPRX4-positive hDRG 221 neurons, we performed triple-labeling of MRGPRX4 and two additional molecular 222 markers using RNAscope in situ hybridization (Fig. 4e). Our analysis revealed 223 that >90% of MRGPRX4-positive neurons also express the histamine receptor HRH1. a well-characterized itch receptor in humans²¹, and TRPV1 (transient receptor 224 225 potential cation channel subfamily V member 1) (Fig. 4f-g), which functions downstream of Mrgprs and histamine receptors^{22,23}. Interestingly, the majority of 226 227 MRGPRX4-expressing neurons also co-express Nav1.7 voltage-gated sodium channel, the peptidergic marker CGRP (calcitonin gene-related peptide), and 228 TrkA^{24,25} (Fig. 4f-g). These results suggest that MRGPRX4 is specifically expressed 229 230 in a subset of small diameter peptidergic hDRG neurons.

231 Next, we tested whether MRGPRX4 in DRG neurons can be activated by bile acids. Because bile acids failed to induce a detectable Ca²⁺ signal in cultured rat 232 DRG neurons (Supplementary Fig. 5), we expressed the human MRGPRX4 in 233 cultured rat DRG neurons. Bile acids triggered a robust Ca²⁺ response in 234 235 MRGPRX4-expressing rat DRG neurons (Supplementary Fig. 5), indicating that 236 MRGPRX4 expressed in rat DRG neurons mediates the bile acid induced activation. 237 Consistent with our finding that DCA is a more potent agonist of MRGPRX4 than CA, DCA induced a significantly larger Ca²⁺ response and activated a larger number of 238 239 MRGPRX4-expressing rat DRG neurons than CA (Supplementary Fig. 5).

Next, we asked whether hDRG neurons can also be activated by bile acids.
Application of DCA induced a robust fluorescence increase in a subset (~6%) of these

242 hDRG neurons loaded with Fluo-8 AM; this percentage of DCA-responsive cells is 243 similar to the percentage of MRGPRX4-expressing cells measured with in situ 244 hybridization (Fig. 4a, c). Moreover, the less potent MRGPRX4 agonist CA also 245 induced a response, albeit much weaker than DCA (Fig. 4h and Supplementary Fig. 6). In addition, nearly all (~90%) of DCA-responsive hDRG neurons were 246 247 capsaicin-sensitive, and approximately one-third of DCA-responsive neurons also 248 responded to histamine (Fig. 4j). Together, our results indicate that expression of 249 MRGPRX4 is sufficient to render bile acid sensitivity of primary somatosensory 250 neurons.

251

252 Pharmacological activation of MRGPRX4 triggers itch sensation in human 253 subjects

254 Given the specific expression pattern of MRGPRX4 in a subset of hDRG neurons. 255 and the known role of Mrgpr family members in mediating itch sensation, we next 256 asked whether pharmacologically activating MRGPRX4 could trigger itch sensation in 257 human subjects. We recruited healthy volunteers and performed a double-blind skin 258 itch test, in which each subject received a 25-µl intradermal injection of the test 259 compounds or vehicle in four separate sites on both forearms (Fig. 5a1, inset), after 260 which the subject was asked to rank the itch sensation at each injection site using a generalized labeled magnitude scale (LMS)²⁶. Interestingly, the pharmacological 261 MRGPRX4 specific agonist nateglinide, a previously reported MRGPRX4 agonist²¹, 262 263 (Supplementary Fig. 3f) —but not vehicle—induced a robust itch sensation in healthy subjects (**Fig. 5a1, a2**). These results show that activation of MRGPRX4 is sufficient to trigger itch sensation in humans, suggesting that MRGPRX4 is a human itch receptor.

267

Bile acid induced itch in humans is both histamine- and TGR5-independent

Previous studies have implicated that bile acids could induce itch in human^{28,29}. Here, 269 270 we systematically test pruritic effect of bile acids on human and whether bile aicdinduced itch shows some features similar to that of cholestatic itch¹⁷. We found that 271 500 µg (25 µl) of DCA induced a significant itch sensation that peaked within 5 min 272 273 and declined slowly over time; in contrast, control injections with vehicle did not 274 induce an itch response (Fig. 5a1, a2). Moreover, itch intensity induced by DCA was in a dose-dependent manner (Fig. 5b1, b2). We also found that less potent 275 276 MRGPRX4 agonists, including CA, CDCA, taurochenodeoxycholic acid (TCDCA), 277 and LCA, also induced a weaker-albeit still significant-itch sensation (Fig. 5c1, c2). Given that antihistamines are largely ineffective for treating cholestatic itch⁴, we 278 279 tested whether itch induced by bile acids can be blocked by antihistamines. We found 280 that pretreating subjects with an antihistamine prevented histamine-induced itch but 281 had no effect on DCA-induced itch (Fig. 5d1, d2), suggesting that itch induced by bile 282 acids does not involve histamine signaling. Taken together, these results indicate that 283 bile acids trigger an itch sensation with features similar to cholestatic itch.

In mice, the membrane bile acid receptor TGR5 has been reported to mediate bile acid induced itch^{8,9}. To test whether bile acid-induced itch in human is also

mediated by TGR5, we chose a non-bile acid TGR5 agonist compound 15³⁰, which is 286 287 nearly 70-fold more potent than DCA in activating human TGR5 and does not activate 288 human MRGPRX4 (Fig. 6b, c). Intradermal injections of 10 µg (25µl) of compound 15 289 did not induce detectable itch in humans, whereas DCA, as the positive control, induced significant itch (Fig. 6a1, a2, d). These results suggest that TRG5 is not the 290 291 receptor mediating bile acid-induced itch. Furthermore, we examined the expression 292 of TGR5 in the human, monkey, and mouse DRG tissues. Very surprisingly, although 293 the amino acid sequence of TGR5 is relatively conserved between rodents and 294 primates (Supplementary Fig. 7a), we found the different expression pattern of 295 TGR5 in DRG tissues. In human and monkey, both in situ hybridization and 296 immunostaining revealed that TGR5 is highly expressed in satellite glial cells 297 surrounding DRG neurons but not the primary sensory neurons (Fig. 6e-i and 298 **Supplementary Fig. 7**), while in mouse, the same *in situ* probe and antibody 299 detected the expression of TGR5 in mouse DRG neurons (Fig. 6f, h and Supplementary Fig. 7c), similar to the previous publication^{8,9}. These results 300 301 revealed an interesting species difference in TGR5 expression and function between mouse and primate. Taken together, our results demonstrate that the function of 302 303 TGR5 in human somatosensory system is different from that in mouse, and TGR5 is 304 not the receptor for mediating bile acid-induced itch in human.

305

306 The elevated levels of bile acids in cholestatic itchy patients are sufficient to 307 activate MRGPRX4

308 Lastly, to investigate whether bile acids are the pruritogens under pathological 309 conditions, we collected plasma samples from patients with liver or skin diseases and 310 measured the concentration of 12 major bile acids using HPLC-MS/MS (Fig. 7a and 311 **Supplementary Fig. 8a**). We found that glycine- and taurine-conjugated primary bile 312 acids, including alvcocholic acid (GCA). taurocholic acid (TCA). 313 glycochenodeoxycholic acid (GCDCA), and TCDCA are the major bile acids present in cholestatic patients (Fig. 7a), consistent with previously published results³¹⁻³³. 314 315 Compared to itchy patients with liver diseases, non-itchy patients had significantly 316 higher levels of total bile acids (defined here as the sum of the 12 bile acids shown in 317 Fig. 7a) (Fig. 7a, b). The level of total plasma bile acids in the itchy patients with skin 318 diseases was barely detectable and significantly lower than the itchy patients with 319 liver diseases. Among the 12 bile acids measured, the ones with the largest 320 differences between the patients with itch and those without itch were for GCA, 321 GCDCA, TCA, and TCDCA (Fig. 7a, b), suggesting that these four bile acids play key 322 roles in mediating chronic itch under pathological conditions. Indeed, intradermal 323 injections of TCDCA caused significant itch in healthy subjects (Fig. 5c1, c2). For 324 DCA, the most potent ligand for MRGPRX4 among all tested bile acids, we did not 325 see the significant difference between itchy and non-itchy patients with liver diseases 326 (Fig. 7a), suggesting it is not the major contributor for cholestatic itch under 327 pathological conditions. More importantly, although bile acid levels vary among itchy 328 patients with liver diseases both from our data (Fig. 7a, b) and previously reported results³²⁻³⁴, we found that the total plasma bile acids, as well as the individual levels of 329

GCDCA, TCDCA, TCA, and GCA, significantly decreased in 11 out of 13 patients following itch relief (**Fig. 7c, d** and **Supplementary Fig. 8c**). Taken together, these results suggest that high levels of bile acids are well correlated with itchy symptom in patients with liver diseases and that bile acids—particularly GCDCA, TCDCA, TCA, and GCA— could be main metabolites triggering cholestatic itch.

335 Next, we examined whether combinations of bile acids at pathologically relevant 336 levels are sufficient to activate MRGPRX4. We prepared mixtures of bile acids similar 337 to the plasma/serum levels in healthy subjects ("healthy mix") or in patients with liver diseases and itch ("liver itch mix"), which are estimated based on previously 338 published data^{31,35} and our quantification results (**Fig. 7a**). These mixtures were then 339 applied to MRGPRX4-expressing HEK293T cells while performing Ca²⁺ imaging. We 340 found that the "liver itch mix" but not "healthy mix" induced a significant Ca²⁺ signal 341 342 (Fig. 7e, f), suggesting that pathological relevant level of bile acids is sufficient to 343 activate MRGPRX4.

344 Recently, Meixiong et al. reported that MRGPRX4 can also be activated by bilirubin, which is another potential pruritogen for triggering cholestatic itch¹¹. We 345 346 therefore compared bilirubin and DCA with respect to binding and activating 347 MRGPRX4. We found that compared to bile acids, bilirubin is a less potent, partial 348 agonist of MRGPRX4 (Supplementary Fig. 9a). Given the structural differences 349 between bilirubin and DCA, we then tested whether bilirubin is an allosteric modulator 350 of MRGPRX4. Indeed, we found that bilirubin can potentiate the activation of 351 MRGPRX4 by DCA (Supplementary Fig. 9b), and—conversely—DCA potentiate the 352 activation of MRGPRX4 by bilirubin (Supplementary Fig. 9c). Moreover, we found 353 that both total bilirubin and conjugated bilirubin levels were significantly higher in itchy 354 patients with liver diseases compared to non-itchy patients (Supplementary Fig. 9d) 355 and plasma bilirubin levels decreased significantly after itch relief (Supplementary 356 Fig. 9e). Compare to total bilirubin, total bile acids show better correlation with itch intensity (measured using a self-report numerical rating scale³⁶) (Supplementary Fig. 357 358 **9f**). Taken together, these results suggest that bile acids are the major pruritogens in 359 MRGPRX4-mediated cholestatic itch and bilirubin facilitates the activation of 360 MRGPRX4 by bile acids and may also contribute to cholestatic itch in pathological 361 conditions.

362

363 **DISCUSSION**

364 Here, we report that MRGPRX4 is a novel GPCR that fits with the criteria we set for 365 identifying putative receptor in mediating cholestatic itch. MRGPRX4 is selectively 366 expressed in a small subset of human DRG neurons. Bile acids triggered a robust Ca²⁺ response in a subset of hDRG neurons as well as rat DRG neurons expressing 367 368 MRGPRX4 exogenously. Both bile acids and an MRGPRX4-specific agonist induce 369 itch in human. Bile acid-induced itch in human is histamine independent, which is 370 consistent with antihistamines are largely ineffective for treating cholestatic itch. Surprisingly, application of agonist for TGR5 failed to elicit Ca²⁺ response in cultured 371 372 hDRG neurons, nor did it induce pruritus in human subjects. The expression pattern 373 of TGR5 is different between mouse and human. hTGR5 is selectively expressed in

374 satellite glial cells, while mTGR5 is expressed in DRG neurons, likely accounting for 375 the inter-species difference functionally. We also found that plasma levels of bile 376 acids were well correlated with itchy patients with liver diseases. Importantly, a 377 mixture of bile acids with components and concentrations similar to that of cholestatic 378 itchy patients—but not healthy volunteers—was sufficient to activate MRGPRX4. Our 379 data indicate bile acids are the major pruritogens in MRGPRX4-mediated cholestatic 380 itch and bilirubin facilitates the activation of MRGPRX4 by bile acids and may also 381 contribute to cholestatic itch in pathological conditions. Based on our results, we 382 propose a new working model for cholestatic itch (Fig. 7g): patients with cholestasis 383 usually display increased plasma levels of bile acids and bilirubin, which are 384 precipitated in the skin and activate MRGPRX4 receptors in itch-related primary fibers, 385 thereby triggering itch in these patients. Our results exclude TGR5 as a primary itch 386 receptor in human, and the broad expression of TGR5 in satellite glial cells implies a 387 more general function which remains to be determined in the future.

388 Here, we provide important evidence that MRGPRX4 is sufficient for mediating 389 bile acid induced itch, and thus should play an important role in cholestatic itch. 390 Since specific antagonist for MRGPRX4 is currently unavailable, we could not 391 determine whether MRGPRX4 is necessary for bile acids induced itch in human. 392 Future studies will be designed to further examine the role of MRGPRX4 in 393 cholestatic itch using to-be-developed pharmacological and/or human genetic 394 approaches. For example, several single-nucleotide polymorphisms (SNPs) have been identified in the human *MRGPRX4* gene³⁷, and it would be interesting to screen 395

for loss-of-function and gain-of-function *MRGPRX4* variants. Characterizing the relationship between these variants and itch intensity in cholestatic patients and healthy subjects with bile acid induced itch could help to further delineate the relationship between MRGPRX4 activity and cholestatic itch. These experiments will also help to determine whether MRGPRX4 is the main molecular receptor for mediating cholestatic itch, or whether other GPCRs⁴, such as lysophosphatidic acid receptors and serotonin receptors also play roles in cholestatic itch.

403 Our current understandings about mechanisms underlying somatosensation in 404 the mammalian system are mainly derived from studies of rodents. Despite the great 405 value and insights we gained using rodent models, notable failures have happened in 406 translating results obtained in rodents into effective and safe clinical treatments in human³⁸⁻⁴¹. The bile acid receptors we study here is a great example demonstrating 407 408 the species differences between rodent and human somatosensory systems. 409 Although TGR5, a bile acid membrane receptor, was previously reported to be expressed in mouse DRG neurons and mediate bile acid induced itch in mice^{8,9}, our 410 411 expressing characterizations as well as functional assays revealed that TGR5 is not 412 expressed in human DRG neurons and doesn't directly mediate itch sensation in 413 human. Instead, primate MRGPRX4 gains the novel function of bile acid sensitivity 414 during evolution. Therefore, it is crucial to study and validate the mechanism of 415 cholestatic chronic itch and develop the correspondent treatment within the context of 416 human physiology.

Recently, Meixiong et al. reported that mouse Mrgpra1 and human MRGPRX4

418 can be activated by bilirubin, suggesting that bilirubin may serve as a pruritogen in cholestatic itch¹¹. Bilirubin, a yellow compound that causes the yellow discoloration in 419 420 jaundice, has not been considered a likely candidate pruritogen though, because the 421 clinical observation that itch often precedes the appearance of jaundice, particularly in patients with intrahepatic cholestasis of pregnancy (ICP)⁴² and patients with primary 422 biliary cirrhosis¹. Our results suggest that bilirubin is a partial agonist of MRGPRX4 423 424 and may potentiate the activation of MRGPRX4 by bile acids. This notion is 425 consistent with our finding that the correlation between bile acid levels and itch 426 intensity is stronger than the correlation between bilirubin levels and itch intensity. 427 Based on these findings, we propose that bile acid is the major contributor to 428 cholestatic itch, and bilirubin serves to increase bile acid induced cholestatic itch 429 under pathological conditions.

In summary, we found that the membrane-bound GPCR MRGPRX4 is a novel bile acid receptor and may serve as an important molecular mediator of chronic itch in patients with systemic liver diseases. Our results suggest that MRGPRX4 is a promising molecular target for developing new treatments to alleviate devastating chronic itch in these patients.

435

436 **Data availability statement**

The data that support the findings of this study are available from the corresponding
author upon request. All figures have associated raw data. There is no restriction
regarding data availability.

Conflict of interest

442 The authors declare no competing interests.

Figures and legends

Fig. 1 MRGPRX4 is activated by bile extract.

(a) Flow chart for the strategy used to identify orphan GPCRs enriched in human
DRG. Transcriptome analysis of DRG and other tissues (trigeminal ganglia, brain,
colon, liver, lung, skeletal muscle, and testis) revealed 332 transcripts with high
expression in the DRG. The top seven orphan GPCRs are listed. See also
Supplementary Tables S1 and S2. Gene expression data were obtained from Flegel
et al. *PLoS One*, 2013 & 2015.

(b and c) Activation of MRGPRX4 by bovine bile extract. The diagrams at the top
depict the reporter gene assays used to measure GPCR activation via Gs-dependent
(b) and Gq-dependent (c) pathways. The seven GPCRs identified in (a) were tested,
revealing that MRGPRX4-expressing HEK293T cells are activated by bile extract via
the Gq-dependent pathway. Forskolin and TPA were used as positive controls for
activating Gs- and Gq-dependent signaling, respectively. The responses obtained

from the tested GPCRs were normalized to the responses induced by respective positive controls. As positive controls for detecting GPCR activation, separate cells were transfected with ADRB1 and stimulated with 10 μ M norepinephrine (NE) (**b**) or transfected with HRH1 and stimulated with 10 μ M histamine (His) (**c**). "HEK (only)" refers to non-transfected cells. n = 3 experiments performed in triplicate.

(d) Concentration-response curve for the activation of MRGPRX4 by bovine bile extract, porcine bile extract, and human bile measured using the TGF α shedding assay. The bovine and porcine bile extract solutions were diluted 1 :10 from a 100 µ g/ml stock solution, and the human bile solution was diluted 1:10 from crude human bile. n = 2 experiments performed in triplicate.

(e) MRGPRX4 is activated selectively by bovine, porcine, and human bile extracts, but not by bovine brain, spleen, heart, kidney, or liver tissue extracts. The data for porcine and human bile are reproduced from (d). n = 2 experiments performed in triplicate. Student's *t*-test, **p* < 0.05, ****p* < 0.001, and n.s. not significant (*p* > 0.05).

476

477 Fig. 2 Identification of the active components in bile extract that activate
478 MRGPRX4.

(a) Flow chart depicting the strategy for isolating and identifying candidate MRGPRX4
ligands in bovine bile extract. F1 through F6 indicate the six fractions used in
subsequent experiments.

482	(b) Activation of MRGPRX4 by bile extract fractions F1 through F6; fraction F4 has
483	the highest activity. The data represent one experiment performed in triplicate.
484	Student's <i>t</i> -test, $**p < 0.01$. $***p < 0.001$ versus fraction F4.
485	(c) MS analysis of fractions F4 and F6 (which showed high and weak activity,
486	respectively). The selectively enriched peak in fraction F4 at molecular weight
487	410.3265 corresponds to the bile acids DCA and CDCA.
488	(d) ¹ H-NMR analysis of fractions F4 and F6 using purified DCA and CDCA as
489	controls.
490	
490 491	Fig. 3 Functional characterization and molecular profiling of bile acids as
490 491 492	Fig. 3 Functional characterization and molecular profiling of bile acids as ligands for MRGPRX4.
490 491 492 493	Fig. 3 Functional characterization and molecular profiling of bile acids as ligands for MRGPRX4. (a-c) Dose-dependent activation of MRGPRX4 by various bile acids and their
490 491 492 493 494	 Fig. 3 Functional characterization and molecular profiling of bile acids as ligands for MRGPRX4. (a-c) Dose-dependent activation of MRGPRX4 by various bile acids and their derivatives. MRGPRX4 activation was measured using the TGFα shedding assay (a)
490 491 492 493 494 495	 Fig. 3 Functional characterization and molecular profiling of bile acids as ligands for MRGPRX4. (a-c) Dose-dependent activation of MRGPRX4 by various bile acids and their derivatives. MRGPRX4 activation was measured using the TGFα shedding assay (a) or the FLIPR assay (b, see methods) in MRGPRX4-expressing HEK293T cells; n = 1
490 491 492 493 494 495 496	 Fig. 3 Functional characterization and molecular profiling of bile acids as ligands for MRGPRX4. (a-c) Dose-dependent activation of MRGPRX4 by various bile acids and their derivatives. MRGPRX4 activation was measured using the TGFα shedding assay (a) or the FLIPR assay (b, see methods) in MRGPRX4-expressing HEK293T cells; n = 1 experiment performed in triplicate. The general structure of the bile acids and
490 491 492 493 494 495 496 497	Fig. 3 Functional characterization and molecular profiling of bile acids as ligands for MRGPRX4. (a-c) Dose-dependent activation of MRGPRX4 by various bile acids and their derivatives. MRGPRX4 activation was measured using the TGF α shedding assay (a) or the FLIPR assay (b, see methods) in MRGPRX4-expressing HEK293T cells; n = 1 experiment performed in triplicate. The general structure of the bile acids and derivatives is shown in (a), and the respective potencies of the bile acids/derivatives

(**d-f**) Activation of MRGPRX4 by various bile acids in cells loaded with the Ca²⁺ indicator Fluo-8 AM. (**d**) Representative images of MRGPRX4-expressing HEK293T cells (shown by mCherry fluorescence) before and after application of 10 μ M DCA. (**e**) Representative traces of Ca²⁺ responses induced by application of 10 μ M DCA, CA, CDCA, or LCA. n = 50 cells each.

(**g-h**) MRGPRX4 is coupled to the Gq-PLC-Ca²⁺ signaling pathway. DCA (10 μM) evoked a robust Ca²⁺ signal in MRGPRX4-expressing HEK293T cells (**g**, left); this response was blocked by pretreating cells for 30 min with the PLC inhibitor U73122 (**g**, middle), but not the Gβγ inhibitor gallein (**g**, right). Triton X-100 was used as a positive control. The summary data are shown in (**h**); n = 7-10 cells each. Student's *t*-test, ****p* < 0.001, and n.s. = not significant (*p* > 0.05).

510 (i-k) Identification of key residues in MRGPRX4 that mediate ligand binding and 511 receptor activation. (i) Primary sequence alignment of the human MRGPRX1, 512 MRGPRX2, MRGPRX3, and MRGPRX4 proteins. The positions of the three amino 513 acids in MRGPRX4 that were mutated to alanine are shown at the right. (i) 514 Dose-dependent activation of wild-type (WT) MRGPRX4 and three MRGPRX4 515 mutants with the indicated point mutations was measured using the TGFa shedding 516 assay. n = 1 experiment performed in triplicate. (k) Plasma membrane expression of 517 Myc-tagged WT and mutant MRGPRX4 was measured using an anti-Myc antibody 518 and normalized to WT MRGPRX4 expression.

519

520 Fig. 4. A subset of human DRG neurons express MRGPRX4 and respond to bile 521 acids.

(a-d) Representative DRG sections showing *in situ* hybridization (ISH, **a**) and immunohistochemistry (IHC, **b**) for MRGPRX4; the summary data are shown in (**c**); n = 2234 and 2735 neurons for ISH and IHC, respectively. The scale bars represent 200 μ m (**a**) and 100 μ m (**b**). (**d**) Diameter distribution for all 2234 DRG neurons 526 measured using *in situ* hybridization, 124 MRGPRX4-positive neurons, and 788
527 TrkA-positive neurons.

528 (e) Flow chart depicting the steps for characterizing the gene expression profiles of 529 human DRG samples using triple-color RNAscope in situ hybridization. 530 (f) Representative RNAscope images of *MRGPRX4* and other genes in human DRG 531 sections. Each fluorescent dot indicates a single mRNA transcript. Scale bar, 10 µm. 532 (g) Quantification of the gene expression data shown in (f). A neuron was defined as 533 positive if \geq 20 fluorescent dots in the respective mRNA channel were detected in 534 that neuron. (h) Bile acids induced a Ca^{2+} response in a subset of cultured human DRG neurons. 535 536 (left) Representative bright-field images and Fluo-8 fluorescence images of two 537 different DRG cultures from one embryo donor one adult donor. (right) 538 Representative traces of individual DCA-responsive DRG neurons (circled by the 539 dash line in (left)). Pseudo-color images of chemical-induced signals are shown 540 under each trace. C15 (compound 15), CA, DCA, and His (histamine): 100 µM each; 541 KCI: 75 mM. Veh, vehicle. Scale bar, 50 µm.

542 (i) Percentage of human DRG neurons that were responsive to the indicated tested543 compounds measured as in (h).

(j) Venn diagram of the cultured human DRG neurons that were activated by the
indicated tested compounds. Green represents DCA responded neurons; Heavy gray
represents capsaicin responded neurons; light gray represents histamine responded
neurons.

Fig. 5 Bile acids and MRGPRX4 specific agonist induce histamine-independent

548

549

550 itch in human. 551 (a1-a2) Itch evoked by a double-blind intradermal injection of DCA and nateglinide 552 (Nat) in human subjects. (25 µl for each injection) (a1) Time course of the 553 perceived itch intensity (n = 18-32). The traces are plotted with the standard error of 554 the mean (s.e.m.) at the peak of each trace. The descriptions of the itch intensity are 555 shown on the right. The injection sites on the subject's forearm are indicated. X4, 556 MRGPRX4 (a2) Summary of the area-under-the-curve (AUC) of the itch intensity 557 traces shown in (a1). 558 (b1-b2) Itch evoked by the indicated doses of DCA (25 μ I for each injection, n = 8-14). 559 The linear regression analysis of concentration versus the AUC is showed as a red 560 line. 561 (c1-c2) Itch evoked by CDCA, CA, TCDCA, and LCA (25 μ I for each injection, n = 562 10-31). The vehicle data (Veh) is reproduced from (a1). 563 (d1-d2) DCA-evoked itch is not inhibited by antihistamine (Anti-His). (d1) Time course 564 of itch intensity evoked by an intradermal injection of DCA or histamine (His) following 565 antihistamine or placebo pretreatment (25 μ l for each injection, n = 12-14). Each pair 566 of dots connected by a gray line represents an individual subject. Student's *t*-test, **p < 0.01, ***p < 0.001, and n.s. = not significant (p > 0.05). 567 568

569 Fig. 6 TGR5 does not serve as an itch receptor in human

570	(a1-a2) Intradermal injection of a non-bile acid TGR5 agonist compound 15 (C15)
571	does not induce itch in human. (a1) Time course of the perceived intensity of itch
572	evoked by DCA and vehicle are reproduced from Fig. 5a1, and the itch evoked by
573	C15 is from 19 subjects. The equivalent concentration (equiv. conc.) of DCA and C15
574	means the fold of concentration to the EC_{50} of activating human TGR5. (a2) The
575	quantification results of area under curve (AUC) of itch intensity shown in (a1) (mean
576	\pm s.e.m.). Veh, vehicle. Student's t-test, ***p < 0.001, and n.s. not significant (p >
577	0.05).

(b-c) The activation of human MRGPRX4 (b) or human TGR5 (c) by DCA (red),
compound 15 (C15, green) and nateglinide in MRGPRX4- or TGR5-expressing
HEK293T cells detected by FLIPR and luciferase assay respectively..

581 (d) The relationship between the evoked itch and the relative potency to activate 582 human MRGPRX4 or human TGR5 by the specific agonists of these two receptors. 583 The Y-axis shows the relative activation of certain compound to the receptor, 584 representing the logarithm of (maximal response/ EC_{50}). The X-axis shows the 585 human itch intensity, representing the AUC of itch evoked by certain compound. 586 Statistic test was performed between the itch intensity of compound 15 and vehicle, 587 or between the itch intensity of nateglinide and vehicle. Nat, nateglinide; C15, 588 compound 15; Veh, vehicle. Student's *t*-test, *p < 0.01, and n.s. not significant (p > 0.01) 589 0.05).

(e) *In situ* hybridization (ISH) of TGR5 in human DRG sections. (left) The diagram
 depicting the morphology of DRG neurons and surrounding satellite glial cells.

592 (middle and right) TGR5 was highly expressed in satellite glial cells (indicated by 593 arrows) but not DRG neurons in human DRG. Scale bar, 50 µm 594 (f) In situ hybridization of TGR5 in mouse DRG sections. TGR5 was highly expressed 595 in DRG neurons (indicated by arrow heads) in mouse DRG. Scale bar, 50 um 596 (g-h) Immunohistochemistry (IHC) of human and mouse DRG sections. (g) In human 597 DRG, TGR5 was expressed in satellite glial cells (indicated by arrows) but not in 598 neurons (marked by NeuN, indicated by arrow heads). (h) In mouse DRG, TGR5 was 599 expressed in neurons (marked by NeuN, indicated by arrow heads). Scale bar, 50 µ 600 m. 601 (i) Quantification of the percentage of TGR5+ neurons (over NeuN+ neurons) in 602 human and mouse DRG (immunohistochemistry). Chi-square test, $*^{*}p < 0.01$. 603 604 Fig. 7 Elevated bile acids are correlated with the occurrence of itch among

605 patients with liver disease and are sufficient to activate MRGPRX4.

(**a-b**) Summary of individual bile acid levels (**a**) and total bile acid levels (**b**, the sum of the 12 bile acids shown in **a**) in itchy patients with liver diseases (Liver_itch, n = 27), non-itchy patients liver diseases, (Liver_non-itch, n = 36), and itchy patients with dermatic diseases (Skin_itch, n = 8). The plasma bile acid levels were measured using HPLC-MS/MS (inset).

(c-d) Summary of individual bile acid levels (c) and total bile acid levels (d, the sum of
the 12 bile acids shown in c) in 13 patients with liver diseases during itch and after
itch relief. The inset shows the separation of standard bile acids by HPLC-MS/MS.

614	(e-f) Left, Ca ²⁺ responses in MRGPRX4-expressing HEK293T cells induced by													
615	application of a mixture of artificial bile acids derived from itchy patients with liver													
616	diseases and healthy subjects. The Ca ²⁺ signal was measured using Fluo-8 and was													
617	normalized to the signal measured using the 1x liver_itch mix. The summary data are													
618	shown in (f); $n = 50$ cells each.													
619	(g) Proposed model depicting the mechanism underlying itch in patients with liver													
620	diseases. In itchy patients, accumulated bile acids reach the skin via the circulatory													
621	system, where they activate nerve fibers in a subset of MRGPRX4-expressing DRG													
622	neurons. These activated neurons relay the itch signal to the spinal cord and higher													
623	brain centers, eliciting the sensation of itch.													
624	Student's <i>t</i> -test, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.													
624 625	Student's <i>t</i> -test, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Supplementary figures													
624 625 626	Student's <i>t</i> -test, * <i>p</i> < 0.05, ** <i>p</i> < 0.01, *** <i>p</i> < 0.001. Supplementary figures													
624 625 626 627	Student's <i>t</i> -test, * <i>p</i> < 0.05, ** <i>p</i> < 0.01, *** <i>p</i> < 0.001. Supplementary figures Supplementary Fig. 1 Construct design and surface expression of candidate													
624 625 626 627 628	Student's <i>t</i> -test, * <i>p</i> < 0.05, ** <i>p</i> < 0.01, *** <i>p</i> < 0.001. Supplementary figures Supplementary Fig. 1 Construct design and surface expression of candidate GPCRs in HEK293T cells.													
624 625 626 627 628 629	 Student's <i>t</i>-test, *<i>p</i> < 0.05, **<i>p</i> < 0.01, ***<i>p</i> < 0.001. Supplementary figures Supplementary Fig. 1 Construct design and surface expression of candidate GPCRs in HEK293T cells. (a) Map of the generic GPCR expression vector. The 3' and 5' terminal repeats (TR) 													
624 625 626 627 628 629 630	 Student's <i>t</i>-test, *<i>p</i> < 0.05, **<i>p</i> < 0.01, ***<i>p</i> < 0.001. Supplementary figures Supplementary Fig. 1 Construct design and surface expression of candidate GPCRs in HEK293T cells. (a) Map of the generic GPCR expression vector. The 3' and 5' terminal repeats (TR) are recognized by the PiggyBac transposase. Myc, Myc tag; Puro^R, 													
624 625 626 627 628 629 630 631	 Student's <i>t</i>-test, *<i>p</i> < 0.05, **<i>p</i> < 0.01, ***<i>p</i> < 0.001. Supplementary figures Supplementary Fig. 1 Construct design and surface expression of candidate GPCRs in HEK293T cells. (a) Map of the generic GPCR expression vector. The 3' and 5' terminal repeats (TR) are recognized by the PiggyBac transposase. Myc, Myc tag; Puro^R, puromycin-resistance gene. 													
624 625 626 627 628 629 630 631 632	 Student's <i>t</i>-test, *<i>p</i> < 0.05, **<i>p</i> < 0.01, ***<i>p</i> < 0.001. Supplementary figures Supplementary Fig. 1 Construct design and surface expression of candidate GPCRs in HEK293T cells. (a) Map of the generic GPCR expression vector. The 3' and 5' terminal repeats (TR) are recognized by the PiggyBac transposase. Myc, Myc tag; Puro^R, puromycin-resistance gene. (b) Plasma membrane expression of the indicated GPCRs transiently expressed in 													

634

635 Supplementary Fig. 2 ¹H-NMR analysis of bile acids in fractions F1, F2, F3, F4,

636 and F6

The hydrogen chemical shift of CA, CDCA, DCA, and LCA at carbon 3, 7, 12 were determined by ¹H-NMR. Note that the active fractions (F2 through F4) contained the characteristic hydrogen peaks corresponding to these bile acids.

640

641 Supplementary Fig. 3 Human MRGPRX4, but not human MRGPRX1-3 or mouse

and rat Mrgpr family members, are activated by bile acids.

- (a) Phylogenetic analysis of mouse (Mm, green), rat (Rn, blue), rhesus monkey (Rh,
- black), and human (Hs, red) Mas-related GPCR (mrg) family members. Amino acid
 sequence similarity compared to Hs. MRGPRX4 is shown in the parenthesis.
- 646 (**b-f**) Activation of human MRGPRX1-4 by CA, CDCA, DCA, LCA and Nateglinide
- 647 (100 μ M each, n = 100 cells from two experiments). Human MRGPRX1-4 were stably
- 648 expressed in HEK293T cells, and activation was measured using the Ca²⁺ indicator
- 649 Fluo-8. Responses are normalized to Bam8-22 (20 μ M), PAMP9-20 (20 μ M), ATP
- 650 (50 μ M), and DCA (100 μ M) for MRGPRX1, MRGPRX2, MRGPRX3, and
- 651 MRGPRX4, respectively. The data for MRGPRX4 (e) are reproduced from Fig. 3f.
- (g-h) Mouse and rat Mrgpr family members are not activated by DCA (100 μ M, n = 6
- cells) or a mixture of DCA and LCA mix (20 μ M each, n = 50 cells).

654

655 **Supplementary Fig. 4 The anti-MRGPRX4 antibody has high specificity.**

HEK293T cells were transiently transfected with MRGPRX1, MRGPRX2, MRGPRX3,
or MRGPRX4. The anti-MRGPRX4 antibody (Abcam, ab120808, 1:200 dilution)
specifically labeled MRGPRX4-expressing HEK293T cells, but not MRGPRX1-,
MRGPRX2-, or MRGPRX3-expressing cells. Transfected cells were identified by
mCherry fluorescence, and the nuclei were counterstained with DAPI. Scale bar, 50
µm.

662

663 Supplementary Fig. 5 Expressing MRGPRX4 in cultured rat DRG neurons 664 renders the cells responsive to bile acids.

665 DRG transfected with (a) Top, cultured rat neurons the were pPiggyBac-CAG-MRGPRX4-P2A-mCherry plasmid by electroporation. The cells 666 667 circled by dashed lines are an MRGPRX4-positive neuron (neuron 2 with red 668 MRGPRX4-negative fluorescence) and an (neuron 1) neuron. Bottom, non-transfected cultured rat DRG neurons. A representative neuron (neuron 3) is 669 670 circled by a dash line. Scale bar, 50 µm.

671 (**b**) Representative traces from the cells indicated in (**a**). DCA and CA: 10 μ M; 672 capsaicin (Cap): 1 μ M; KCI: 75 mM.

673 (c) Summary of the amplitude and percentage of Ca^{2+} signals in response to DCA

and CA. Responsive neurons were defined as exceeding a threshold of 20% $\Delta F/F_0$.

n = 60-77 neurons per group.

676	(d) Summary of the amplitude and percentage of Ca^{2+} signals in response to
677	capsaicin and KCI. Responsive neurons were defined as in (c). n = 67-95 neurons per
678	group.
679	Student's <i>t</i> -test or two-proportion z-test, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, and n.s. =
680	not significant ($p > 0.05$).
681	
682	Supplementary Fig. 6 Cultured human DRG neurons respond to various
683	chemicals.
684	Ca ²⁺ imaging of human DRG neurons from one human embryo (donor 1) and three
685	adult donors (donors 2-4).
686	(a) Representative bright-field and fluorescence images of cultured human DRG
687	neurons. Scale bar, 50 μm.
688	(b) Representative Ca^{2+} traces in response to the indicated test compounds
689	measured in the cells shown in (a). Veh, vehicle. Compound 15 (C15), CA and DCA:
690	100 μ M; histamine (His): 50 μ M; capsaicin (Cap): 1 μ M; KCI: 75 mM.
691	(c) Summary of the percentage of neurons that responded to the indicated test
692	compounds (defined as exceeding a threshold of > 20% Δ F/F ₀).
693	
694	
695	
696	

697 Supplementary Fig. 7 Expression of TGR5 in mouse and monkey DRG

(a) Phylogenetic analysis of mouse (Mm.), rat (Rn.), rhesus monkey (Rh,) and human
(Hs,) TGR5. Amino acid sequence similarity compared to Hs. TGR5 is shown in the
parenthesis.

(b) The HEK293T cells were transiently transfected with human TGR5 expression
vector (pPiggyBac-TGR5-P2A-mCherry). The anti-TGR5 antibody can specifically
labeled the TGR5-expressing cells identified by the mCherry signal. The nuclei were
counterstained with DAPI. Arrow heads indicate the representative TGR5-expressing
cells. Scale bar, 20 μm.

- (c) In situ hybridization (ISH) of TGR5 in mouse showing the morphology of mouse
- 707 DRG and the adjacent spinal cord. Scale bar, 100 µm.
- (d) In situ hybridization of TGR5 in monkey (Macaca mulatta) DRG sections. TGR5
- was highly expressed in satellite glial cells (indicated by arrows). Scale bar, 50 μm
- 710 (e) Immunohistochemistry (IHC) of monkey DRG sections. TGR5 was expressed in
- satellite glial cells (indicated by arrows) but not neurons (marked by NeuN, indicated
- 712 by arrow heads). Scale bar, 50 μm.

713

714 Supplementary Fig. 8 Quantification of bile acids in human plasma

- (a) Standard curve of 12 bile acids quantified by HPLC-MS/MS. All the 12 bile acids
- show good linear correlation between the MS response and the concentration (0.1-1

717 μ**M**)

718 (b) Quantification results of 8 bile acids shown in **Fig. 7a**.

(c) Quantification results of 8 bile acids shown in **Fig. 7c**.

- All error bars represent the s.e.m.; student's *t*-test, p < 0.05, and n.s. = not significant
- 721 (*p* > 0.05).
- 722

723 Supplementary Fig 9. Bilirubin potentiates the activation of MRGPRX4 by bile

acids and may contribute to cholestatic itch.

- (a) Comparison of the activation of MRGPRX4 by DCA, bilirubin and taurine
 conjugated bilirubin. Taurine conjugated bilirubin was used in order to mimic the
 direct bilirubin under human physiological condition. MRGPRX4 was expressed in
 HEK293T cells and the activation was measured by FLIPR assay.
 (b) Bilirubin allosterically modulates the activation of MRGPRX4 by DCA. Different
- concentrations of bilirubin was mixed with DCA, and then the activation of MRGPRX4
- by these mixes was tested in MRGPRX4-expressing HEK293T cells using FLIPRassav.
- (c) DCA allosterically modulates the activation of MRGPRX4 by bilirubin, similar to(b).
- 735 (d) Comparison of total bilirubin, direct bilirubin (conjugated) and indirect bilirubin
- 736 (unconjugated) level in liver disease patients with itch (Liver_itch) (n = 30) or without
- itch (Liver_Non-itch) (n = 34), or patients with dermatic itch (Skin_itch) (n = 6).
- (e) Comparison of total bilirubin, direct bilirubin and indirect bilirubin level in liver
 disease patients (n=12) during itch and after itch relief.

740	(f) C	orrelation between itch intensity and plasma total bile acid, total bilirubin, direct
741	biliru	bin, and indirect bilirubin. The itch intensity was directly reported by patients via a
742	ques	tionnaire with 0 representing no itch and 10 the highest level of itch.
743	All ei	fror bars represent the s.e.m (a-c) One-way ANOVA, $*p < 0.05$, $**p < 0.01$, $***p$
744	< 0.0	001, and n.s. not significant ($p > 0.05$). (d-f) Student's <i>t</i> -test, ** $p < 0.01$, *** $p < 0$
745	0.00	1, and n.s. = not significant ($p > 0.05$).
746		
747		
748		
749	Supp	plementary Table. 1 Genes that are highly expressed in human DRG
750		
751	Supp	plementary Table 2 GPCRs expression profiling in human DRG
752	Red	labeled genes are candidate GPCRs that are highly expressed in human DRG.
753	Blue	labeled gene is TGR5.
754		
755		
756		
757	Refe	rences
758	1	Koch, S. C., Acton, D. & Goulding, M. Spinal Circuits for Touch, Pain, and Itch. Annu Rev
759		<i>Physiol</i> 80 , 189-217, doi:10.1146/annurev-physiol-022516-034303 (2018).
760	2	Tajiri, K. & Shimizu, Y. Recent advances in the management of pruritus in chronic liver
761		diseases. <i>World J Gastroenterol</i> 23 , 3418-3426, doi:10.3748/wjg.v23.i19.3418 (2017).
762	3	Thurmond, R. L., Gelfand, E. W. & Dunford, P. J. The role of histamine H1 and H4 receptors in

- 763 allergic inflammation: the search for new antihistamines. *Nat Rev Drug Discov* 7, 41-53,
- 764 doi:10.1038/nrd2465 (2008).
- 765 4 Beuers, U., Kremer, A. E., Bolier, R. & Elferink, R. P. Pruritus in cholestasis: facts and fiction.
- 766 *Hepatology* **60**, 399-407, doi:10.1002/hep.26909 (2014).
- 767 5 Imam, M. H., Gossard, A. A., Sinakos, E. & Lindor, K. D. Pathogenesis and management of
- 768 pruritus in cholestatic liver disease. *J Gastroenterol Hepatol* 27, 1150-1158,
 769 doi:10.1111/j.1440-1746.2012.07109.x (2012).
- 770 6 Jenkins, J. K. & Boothby, L. A. Treatment of itching associated with intrahepatic cholestasis of
- 771 pregnancy. Ann Pharmacother **36**, 1462-1465, doi:10.1345/aph.1A479 (2002).
- 772 7 Kremer, A. E., Oude Elferink, R. P. J. & Beuers, U. Pathophysiology and current management
- of pruritus in liver disease. *Clinics and Research in Hepatology and Gastroenterology* **35**,
- 774 89-97, doi:10.1016/j.clinre.2010.10.007 (2011).
- Alemi, F. *et al.* The TGR5 receptor mediates bile acid-induced itch and analgesia. *J Clin Invest*
- 776 **123**, 1513-1530, doi:10.1172/JCl64551 (2013).
- 577 9 Lieu, T. et al. The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice.
- 778 *Gastroenterology* **147**, 1417-1428, doi:10.1053/j.gastro.2014.08.042 (2014).
- 10 Cipriani, S. *et al.* Impaired Itching Perception in Murine Models of Cholestasis Is Supported by
- 780 Dysregulation of GPBAR1 Signaling. *PLoS One* **10**, e0129866,
- 781 doi:10.1371/journal.pone.0129866 (2015).
- Meixiong, J. *et al.* Identification of a bilirubin receptor that may mediate a component of
 cholestatic itch. *Elife* 8, doi:10.7554/eLife.44116 (2019).
- 12 Belmonte, C. & Viana, F. Molecular and cellular limits to somatosensory specificity. *Mol Pain* 4,

785 14, doi:10.1186/1744-8069-4-14 (2008).

- 786 13 Dong, X. & Dong, X. Peripheral and Central Mechanisms of Itch. *Neuron* 98, 482-494,
 787 doi:10.1016/j.neuron.2018.03.023 (2018).
- 788 14 Flegel, C., Manteniotis, S., Osthold, S., Hatt, H. & Gisselmann, G. Expression profile of ectopic
- 789 olfactory receptors determined by deep sequencing. *PLoS One* **8**, e55368 (2013).
- 790 15 Flegel, C. *et al.* RNA-seq analysis of human trigeminal and dorsal root ganglia with a focus on
- 791 chemoreceptors. *PLoS One* **10**, e0128951 (2015).
- 792 16 Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating
- 793 chloroquine-induced pruritus. *Cell* **139**, 1353-1365, doi:10.1016/j.cell.2009.11.034 (2009).
- Tiu, Q. *et al.* Mechanisms of itch evoked by beta-alanine. *J Neurosci* 32, 14532-14537,
 doi:10.1523/JNEUROSCI.3509-12.2012 (2012).
- The Terror Terro
- 797 imidazopyrazinone substrate. *ACS Chem Biol* **7**, 1848-1857, doi:10.1021/cb3002478 (2012).
- 19 Inoue, A. *et al.* TGFalpha shedding assay: an accurate and versatile method for detecting
- 799 GPCR activation. *Nat Methods* **9**, 1021-1029, doi:10.1038/nmeth.2172 (2012).
- Patapoutian, A. & Reichardt, L. F. Trk receptors: mediators of neurotrophin action. *Curr Opin Neurobiol* 11, 272-280 (2001).
- 802 21 Han, S. K., Mancino, V. & Simon, M. I. Phospholipase Cbeta 3 mediates the scratching
 803 response activated by the histamine H1 receptor on C-fiber nociceptive neurons. *Neuron* 52,
- 804 691-703, doi:10.1016/j.neuron.2006.09.036 (2006).
- 805 22 Imamachi, N. *et al.* TRPV1-expressing primary afferents generate behavioral responses to
 806 pruritogens via multiple mechanisms. *PNAS* **106**, 11330 –11335 (2009).

807	23	Wilson, S. R. et al. TRPA1 is required for histamine-independent, Mas-related G
808		protein-coupled receptor-mediated itch. Nat Neurosci 14, 595-602, doi:10.1038/nn.2789
809		(2011).
810	24	Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell
811		RNA sequencing. <i>Nat Neurosci</i> 18, 145-153, doi:10.1038/nn.3881 (2015).
812	25	Li, C. L. et al. Somatosensory neuron types identified by high-coverage single-cell
813		RNA-sequencing and functional heterogeneity. Cell Res 26, 83-102, doi:10.1038/cr.2015.149
814		(2016).
815	26	Green, B. G. et al. Evaluating the 'Labeled Magnitude Scale' for Measuring Sensations of
816		Taste and Smell. <i>Chemical Senses</i> 21 , 323–334 (1996).
817	27	Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the
818		druggable human GPCRome. <i>Nat Struct Mol Biol</i> 22 , 362-369, doi:10.1038/nsmb.3014 (2015).
819	28	J. KIRBY, K. W. H., J. L. BURTON. Pruritic Effect of Bile Salts. British Medical Journal 4,
820		693-695 (1974).
821	29	Varadi, D. P. Pruritus Induced by Crude Bile and Purified Bile Acids. Arch Dermatol 109
822		(1974).
823	30	Hogenauer, K. et al. G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce
824		the production of proinflammatory cytokines and stabilize the alternative macrophage
825		phenotype. <i>J Med Chem</i> 57 , 10343-10354, doi:10.1021/jm501052c (2014).
826	31	Neale, G., Lewis, B., Weaver, V. & Panveliwalla, D. Serum bile acids in liver disease. Gut 12,
827		145-152 (1971).
828	32	Freedman, M. R., Holzbach, R. T. & Ferguson, D. R. Pruritus in cholestasis no direct causative

role for bile acid retention. *The American Journal of Medicine* **70**, 1011-1016 (1981).

- 830 33 Bartholomew, T. C., Summerfield, J. A., Billing, B. H., Lawson, A. M. & Setchell, K. D. Bile acid
- 831 profiles of human serum and skin interstitial fluid and their relationship to pruritus studied by
- gas chromatography-mass spectrometry. *Clin Sci (Lond)* 63, 65-73 (1982).
- 833 34 Leslie Schoenfield & Sjovall, J. Bile acids on the skin of patients with pruritus hepatobiliary
- 834 disease. *Nature* January 7, 93-94 (1967).
- 835 35 Xiang, X. et al. High performance liquid chromatography-tandem mass spectrometry for the
- 836 determination of bile acid concentrations in human plasma. J Chromatogr B Analyt Technol
- 837 *Biomed Life Sci* 878, 51-60, doi:10.1016/j.jchromb.2009.11.019 (2010).
- 838 36 Jenkins, H. H., Spencer, E. D., Weissgerber, A. J., Osborne, L. A. & Pellegrini, J. E.
- 839 Correlating an 11-point verbal numeric rating scale to a 4-point verbal rating scale in the 840 measurement of pruritus. *J Perianesth Nurs* **24**, 152-155, doi:10.1016/j.jopan.2009.01.010
- 841 (2009).
- 842 37 Lek, M. *et al.* Analysis of protein-coding genetic variation in 60,706 humans. *Nature* 536,
 843 285-291, doi:10.1038/nature19057 (2016).
- 844 38 Hill, R. NK1 (substance P) receptor antagonists--why are they not analgesic in humans?
 845 *Trends Pharmacol Sci* 21, 244-246 (2000).
- 846 39 Mogil, J. S. Animal models of pain: progress and challenges. *Nat Rev Neurosci* 10, 283-294,
 847 doi:10.1038/nrn2606 (2009).
- Hug, A. & Weidner, N. From bench to beside to cure spinal cord injury: lost in translation? *Int Rev Neurobiol* **106**, 173-196, doi:10.1016/B978-0-12-407178-0.00008-9 (2012).
- 850 41 Taneja, A., Di Iorio, V. L., Danhof, M. & Della Pasqua, O. Translation of drug effects from

- 851 experimental models of neuropathic pain and analgesia to humans. *Drug Discov Today* 17,
- 852 837-849, doi: 10.1016/j.drudis.2012.02.010 (2012).
- 42 Geenes, V. & Williamson, C. Intrahepatic cholestasis of pregnancy. World J Gastroenterol 15,
- 854 2049-2066 (2009).
- 43 Yusa, K., Zhou, L., Li, M. A., Bradley, A. & Craig, N. L. A hyperactive piggyBac transposase for
- 856 mammalian applications. Proc Natl Acad Sci U S A 108, 1531-1536,
- doi:10.1073/pnas.1008322108 (2011).

858

859 MATERIALS AND METHODS

860 Analysis of GPCRs expressed in human DRG neurons

The expression profile of all genes in hDRG neurons was compared to human reference tissues, including trigeminal ganglia, brain, colon, liver, lung, muscle, and testis^{14,15}. To identify DRG-enriched GPCRs, we using the following formula: [(the expression level of a given gene in the DRG)/(the total expression level of that gene in all tissues)]; a value \geq 0.5 was used to define DRG-enriched genes. The expression level of a gene refers to the number of fragments per kilobase of exon per million fragments mapped (FPKM) in the tissue transcriptome.

868

869 Bovine tissue extracts

870 Fresh bovine heart, brain, kidney, spleen, and liver tissues (40 g each) were 871 dissected and then boiled for 5 min in 200 ml water. Acetic acid and HCl were then 872 added to a final concentration of 1 M and 20 mM, respectively, and the mixture was 873 homogenized thoroughly and then centrifuged at 11,000 rpm for 30 min. The 874 supernatant was collected and concentrated to a volume of 40 ml using a rotary 875 evaporator. Acetone (80 ml) was then added to the concentrated solution, and the 876 new solution was again centrifuged at 11,000 rpm for 30 minutes. The supernatant 877 was collected using a rotary evaporator and freeze-dried in a vacuum. The final 878 product was weighed, and equal amounts of each extract were used to test for 879 activity.

880

881 Generation of stable GPCR-expressing cell lines

Stable cell lines expressing orphan GPCRs were generated using the PiggyBac Transposon System. In brief, each orphan GPCR was subcloned into the PiggyBac Transposon vector and co-transfected with the hyperactive PiggyBac transposase⁴³ into the HEK293T-based TGF α shedding reporter cell line¹⁹ using polyethylenimine (PEI). Receptor-expressing cells were selected and maintained in DMEM containing 10% fetal bovine serum (FBS), 1 µg/ml puromycin, 100 U penicillin, and 100 µg/ml streptomycin in a humidified atmosphere at 37°C containing 5% CO₂.

889

890 **TGFα shedding assay**

Cultured cells expressing orphan GPCRs were rinsed once with Mg²⁺-free and 891 Ca^{2+} -free phosphate-buffered saline (PBS) and then detached with 0.05% (w/v) 892 893 trypsin. The cell suspension was transferred to a 15-ml tube and centrifuged at 190xq 894 for 5 min. The supernatant was discarded, and the cell pellet was suspended in 10 ml 895 PBS and incubated for 15 min at room temperature (RT). The cells were 896 re-centrifuged and suspended in 4 ml HBSS (Hanks' balanced salt solution) 897 containing 5 mM HEPES (pH 7.4). The suspended cells were then seeded in a 898 96-well plate at 40,000-50,000 cells per well and placed in a 37°C incubator in 5% 899 CO₂ for 30 min. A 10x stock solution of each drug was prepared in assay buffer 900 (HBSS containing 5 mM HEPES, pH 7.4), and 10 µl of 10x stock solution was added 901 to each well. The plate was then placed in the incubator for 2 hr, after which alkaline 902 phosphatase (AP) activity was measured in the conditioned media and cells.

903

904 FLIPR assay

- HEK293T cells stably expressing human MRGPRX4 were seeded in 96-well plates at
 a density of ~50,000 cells per well. The following day, the cells were loaded with
 Fluo-8 (Screen Quest Fluo-8 No-Wash Calcium Assay Kit, AAT Bioquest, Cat. No.
 36316) for 2 hr, and test compounds were added to the wells. The Fluo-8 signal was
 measured using the FLIPR TETRA system (PerkinElmer).
- 910

911 Luciferase assay

We generated a luciferase reporter plasmid that encodes secreted NanoLuc under the control of a cAMP response element (CRE) and a minimal promoter. The hygromycin-resistance gene and EBFP driven by the SV40 promoter in the reporter plasmid were used to generate stable cell lines. HEK293T cells were transfected with this plasmid, and a stable cell line was generated by selecting with hygromycin.

917 This stable reporter cell line was then transfected with various GPCRs and used 918 to monitor the activation of these receptors. In brief, the cells were seeded in 96-well 919 plates; the next day, the culture medium was replaced, and compounds were added 920 to the wells; forskolin (10 μ M final concentration) and 0.01% DMSO (v/v) were used 921 as positive and negative controls, respectively. The plates were incubated at 37°C in 922 5% CO₂ for 24 hr, after which a 10- μ l aliguot of cell culture medium was removed from 923 each well and combined with 40 µl culture medium plus 50 µl assay buffer (containing 924 20 µM of the luciferase substrate coelenterazine); after 5 min incubation,

925 Iuminescence was measured using an EnVision plate reader (PerkinElmer).

926

927 Fractionation of bile acid components

A commercially available bovine bile acid powder (126.6 mg) was loaded in a silica gel column (DCM:MeOH = 10:1). The smaller fractions were combined to form six larger fractions (F1 through F6) based on analytical thin-layer chromatography performed using 0.25-mm silica gel 60-F plates. Flash chromatography was performed using 200–400 mesh silica gel.

933

934 **MS and NMR**

935 High-resolution mass spectrometry was performed at the Peking University Mass

936 Spectrometry Laboratory using a Bruker Fourier Transform Ion Cyclotron Resonance

937 Mass Spectrometer Solarix XR. ¹H-NMR spectra were recorded on a Bruker

⁹³⁸ 400-MHz spectrometer at ambient temperature with CDCl₃ as the solvent.

939

940 Immunostaining and flow cytometry analysis

Suspended live HEK 293 cells stably expressing the point-mutated MRGPRX4 were washed in washing buffer (1X PBS solution, mixed with 5% fatal bovine serum (FBS)) for 3 times. Then cells were incubated with primary antibody (Sigmal-Aldrich Cat. No. C3956, 1:25 dilution) for 30 minutes, and secondary antibody (AAT Bioquest iFluro[™] Alexa 488 goat antirabbit IgG Cat. No. 1060423, 1:50 dilution) for 1 hour. Cells were washed for two times after each antibody treatment. Next, cells were resuspended

with 300 uL to 500 uL FACS buffer, and fluorescence-activated cell-sorting analysis
was performed, using the BD FACS Calibor Flow cytometer (BD Biosciences), and
the data were analyzed using FlowJo software (Ver. 7.6.1).

950

951 Cultured human DRG neurons

952 Collection of DRG tissue from adult humans was approved by the Committee for 953 Medical Science Research Ethics, Peking University Third Hospital 954 (IRB00006761-2015238), and collection from human embryos was approved by the 955 Reproductive Study Ethics Committee of Peking University Third Hospital 956 (2012SZ-013 and 2017SZ-043) and Beijing Anzhen Hospital (2014012x). DRG 957 tissues were obtained from adult patients undergoing surgical excision of a 958 schwannoma; the tissues were placed immediately in ice-cold DMEM/F12 medium. 959 The tissues were then cut into pieces <1 mm in size and treated with an enzyme 960 solution containing 5 mg/ml dispase and 1 mg/ml collagenase at 37°C for 1 hr. After 961 trituration and centrifugation, the cells were washed in 15% (w/v) bovine serum 962 albumin (BSA) resuspended in DMEM/F12 containing 10% FBS, plated on glass 963 coverslips coated with poly-D-lysine and laminin, cultured in an incubator at 37°C, 964 and used within 24 hr of plating.

965

966 Culture and electroporation of rodent DRG neurons

967 Rat DRG tissues were obtained from the thoracic and lumbar vertebrae and placed in
968 ice-cold DMEM/F12 medium. The tissues were cut into pieces <1 mm in size and

969	then treated with an enzyme solution containing 5 mg/ml dispase and 1 mg/ml
970	collagenase at 37°C for 1 hr. After trituration and centrifugation, the cells were
971	washed in 15% BSA, resuspended in DMEM/F12 containing 10% FBS, plated on
972	glass coverslips coated with poly-D-lysine and laminin, cultured in an incubator at
973	37°C, and used within 24 hr of plating.
974	Rat DRG neurons were electroporated as follows. After washing the neurons with

975 15% BSA, the neurons were resuspended in DMEM/F12 and electroporated using a
976 P3 Primary Cell 4D-Nucleofector X Kit L (cat. no. V4XP-3012, Lonza) in accordance
977 with the manufacturer's instructions. After electroporation, the neurons were cultured

- 978 for 72 hr before use in order to allow the transgenes to express.
- 979

980 Ca²⁺ imaging

For Ca²⁺ imaging experiments, cells were loaded at 37°C for 1 hr with 10 µg/ml Fluo-8
AM (AAT Bioquest, Inc.) supplemented with 0.01% Pluronic F-127 (w/v; Invitrogen).
Bile acids, bio-mimicked bile acid mixes, and/or various drugs to be tested were
added to the cells in a chamber containing a custom-made 8-channel perfusion valve
control system. Fluorescence images were acquired using a Nikon A1 confocal
microscope.

987

988 In situ hybridization and immunostaining

989 Single colorimetric *in situ* hybridization in hDRG sections was performed as follows.

990 The sections were fixed in freshly prepared 4% paraformaldehyde (PFA) in PBS for

991 20 min at RT, and then washed in fresh-DEPC PBS (1:1000 DEPC was added to 1x 992 PBS immediately before use) and DEPC-pretreated PBS (1:1000 DEPC in PBS 993 overnight, followed by autoclaving) for 10 min each. The sections were then 994 immersed in a DEPC-containing antigen-retrieval solution containing 10 mM citric acid, 0.05% Tween-20 (pH 6.0) in a 95°C water bath for 20 min, and then cooled at 995 996 RT for 30 min. After washing in DEPC-pretreated PBS for 10 min, the sections were 997 incubated in a Proteinase K solution (25 µg/mL in DEPC-pretreated water) for 20 min 998 and then washed in fresh-DEPC PBS and DEPC-pretreated PBS (10 min each). The 999 sections were incubated in freshly prepared acetylation solution containing 0.1 M TEA 1000 and 0.25% acetic anhydride in DEPC-pretreated water for 10 min at RT, followed by a 10-min wash in DEPC-pretreated PBS. The prehybridization step was performed in 1001 1002 probe-free hybridization buffer consisting of 50% formamide, 5x SSC, 0.3 mg/ml 1003 veast tRNA, 100 µg/ml heparin, 1x Denhardt's solution, 0.1% Tween-20, 0.1% 1004 CHAPS, and 5 mM EDTA in RNase-free water at 62°C for 30 min in a humidified 1005 chamber, followed by an overnight hybridization step in hybridization buffer containing 1006 5 ng/µl DIG-labeled riboprobes at 62°C in a humidified chamber (under a Parafilm 1007 coverslip). After the hybridization step, the sections were washed in 0.2x SSC at 68°C 1008 (once for 15 min and twice for 30 min each), followed by blocking in PBS containing 1009 0.1% Triton X-100 and 20% horse serum for 1 hr at RT. The sections were then stained overnight at 4°C with pre-absorbed AP-conjugated sheep anti-DIG antibody 1010 1011 (1:1000, Roche, cat. 11093274910) in PBS containing 0.1% Triton X-100 and 20% 1012 horse serum. The sections were washed 3 times for 10 min each in PBS containing

1013 0.1% Triton X-100, followed by overnight incubation in the dark in AP buffer 1014 containing 100 mM Tris (pH 9.5), 50 mM MgCl₂, 100 mM NaCl, 0.1% Tween-20, 5 1015 mM levamisole, 0.34 mg/ml NBT (Roche cat. no. 11383213001), and 0.17 mg/ml BCIP (Roche, cat. no. 1138221001) to allow the color reaction to develop. The 1016 sections were washed 3 times for 10 min each in PBS, and then fixed for 30 min in 4% 1017 1018 PFA in PBS. The sections were quickly rinsed 5 times in ddH₂O, dried at 37°C for 1 hr, 1019 and dehydrated in xylene (3 times for 2 min each). Finally, the sections were mounted 1020 under a glass coverslip using Permount (Fisher).

1021 Immunostaining was performed using a rabbit anti-hMRGPRX4 antibody 1022 obtained (Abcam, cat. no. ab120808). The sections were fixed in freshly prepared 4% 1023 PFA in PBS for 20 min at RT and then washed in PBS containing 0.1% Triton X-100 3 1024 times for 10 min each, followed by block in PBS containing 0.1% Triton X-100 and 20% 1025 horse serum for 1 hour at RT. The sections were then incubated overnight in primary 1026 antibody at 4°C, washed with PBS containing 0.1% Triton X-100 3 times for 15 min 1027 each, and incubated with secondary antibody for 1 hour at RT. After washing with 1028 PBS 3 times for 15 min each, the sections were mounted under glass coverslips and 1029 Fluoromount-G (Invitrogen).

1030

1031 **RNAscope in situ hybridization**

1032 RNAscope *in situ* hybridization was performed in accordance with the manufacturer's
1033 instructions (Advanced Cell Diagnostics). In brief, human DRG sections were fixed,
1034 dehydrated, and treated with protease. The sections were then hybridized with the

respective target probe for 2 hours at 40°C, followed by four-round signal
amplification. The sections were then mounted under coverslips, sealed with nail
polish, and stored in the dark at 4°C until imaged.

1038

1039 Human itch test

The human itch test studies were approved by the Committee for Protecting Human and Animal Subjects at the Department of Psychology, Peking University (#2018-05-02). Volunteers were students and faculty members recruited from Peking University. All subjects provided written informed consent and were provided with the experimental protocol. All injections were performed using an INJEX 30 needle-free injection system (INJEX Pharma GmbH, Berlin, Germany). We performed two studies as described below.

1047 In the first study (to measure bile acid induced itch sensation), each tested 1048 compound was dissolved in physiological saline containing 7% Tween-80 1049 (Sigma-Aldrich). The injection sites were cleaned with rubbing alcohol, and 25 µl of 1050 each solution was injected intradermally on the volar surface of each arm. The same 1051 volume of vehicle (saline containing 7% Tween-80) served as the negative control. 1052 Itch was defined as the desire to initiate scratching during the experiment, and the 1053 subjects rate the perceived intensity according the generalized labeled magnitude scale (LMS) described by Green et al.²⁶ 1054

1055 In the second study (to measure the effect of antihistamines on DCA-induced 1056 itch), two experimental sessions were performed, separated by 2 weeks, with 14 and 1057 12 subjects participating in the first and second sessions, respectively. Approximately 1058 1.5 g of topical antihistamine cream (doxepin hydrochloride cream, Chongging 1059 Huapont Pharm. Co., China) or a placebo cream (cold cream, Eau Thermale Avène, Paris, France) was applied 2.5 hr before injection of DCA or histamine 1060 (Sigma-Aldrich): any unabsorbed cream was removed with alcohol. A 500 µg/25 µl 1061 1062 solution of DCA was prepared as described above, and a 2.5 µg/25 µl solution of 1063 histamine was dissolved in saline; 25 µl of the DCA or histamine solution was injected 1064 into the volar surface of the arm as described above. In the first session, each subject 1065 received two intradermal injections of DCA (one at the antihistamine-treated site and 1066 one at the placebo-treated site). In the second session, each subject received two intradermal injections of histamine (one at the antihistamine-treated site and one at 1067 1068 the placebo-treated site). The subjects then rate the itch sensation as described 1069 above.

1070

1071 Quantification of plasma bile acids and bilirubin

These experiments were approved by the Committee for Biomedical Ethics, Peking University First Hospital (2017-R-94). Itch intensity was measured using a self-report numerical rating scale (NRS)³⁶, and whole blood samples were collected from patients with skin diseases and patients with liver diseases. Plasma was obtained by centrifuging 2 ml of whole blood at 4°C, 11,000 g for 10 min; 100 μ l of each plasma sample was then mixed with 400 μ l acetonitrile and left to sit at 4°C for 20 min. The mixture was centrifuged, and the supernatant was dried in a rotatory evaporator

1079 (45°C under vacuum), and the dried residue was retrieved and dissolved in 60%
1080 methanol for further analysis.

1081	The bile acid level in plasma samples was measured using HPLC-MS/MS
1082	(Agilent model LC1260 QQQ 6495). Chromatographic separation was performed in
1083	an ACQUITY UPLC HSS T3 column (2.1 mm \times 100 mm, 1.8 $\mu\text{m};$ Waters Corp.). The
1084	mobile phase consisted of solution A (water) and solution B (acetonitrile). The total
1085	running time was 23 min, and a linear gradient (0.3 ml/min) was applied as follows:
1086	0-2 min: 10% B - 40% B; 2-18 min: 40% B - 50% B; 18-19 min: 50-100% B; 19-20 min:
1087	100% B; 20-21 min: 100-10% B; 21-23 min: 10% B. The injection volume was 5 $\mu I,$
1088	and the mobile phase flow rate was 3 ml/min. Deoxycholic-2,2,4,4,11,11-d6 acid
1089	(Sigma, cat. no. 809675) was used as an internal standard.

Total bilirubin and direct bilirubin values were obtained from the patients' hospitalblood chemistry reports.

1092

1093 Statistical analysis

Summary data are presented as the mean \pm SEM. Human subjects were randomly assigned to control and experimental groups, and the subjects and investigators were double-blinded with respect to the experiment treatments. Data were analyzed using the Student's *t*-test, two-proportion z-test, Chi-square test or One-way ANOVA and differences with a *P*-value of < 0.05 were considered significant.

1099

1100

Fig. 1 Identification of MRGPRX4 activated by bile extract.

Fig. 2 Identification of active components that activate MRGPRX4 from bile extract.

Fig. 3 Functional characterization and molecular profiling of bile acids as ligands for MRGPRX4

Fig. 4 A subset of hDRG neurons express MRGPRX4 and respond to bile acids.

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available u aCC-BY-NC-ND 4.0 International license. Fig. 5 Bile acids and MRGPRX4 specific agonist induce histamine-independent itch in human

Fig. 6 TGR5 does not serve as an itch receptor in human

Fig. 7 Elevated bile acids correlate with the occurrence of itch among liver disease patients and are sufficient to activate MRGPRX4

Supplementary Fig. 1 Construct design and surface expression of candidate GPCRs in HEK293T cells

Supplementary Fig. 2 ¹H-NMR analysis of bile acids in fractions F1, F2, F3, F4, and F6

Supplementary Fig. 3 Human MRGPRX4, but not human MRGPRX1-3 or mouse and rat Mrgpr family members, are activated by bile acids.

Supplementary Fig. 4 The anti-MRGPRX4 antibody has high specificity.

Supplementary Fig. 6 Cultured human DRG neurons respond to various chemicals

Supplementary Fig. 7 Expression of TGR5 in mouse and monkey DRG

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available u Supplementary Fig. 8 Quantification of bile acids in human plasma

*

Supplementary Fig. 9 Bilirubin is an allosteric modulator and potentiates the activation of MRGPRX4 by bile acids and may contribute to cholestatic itch

Supplementary Table 1 Genes that are highly expressed in human DRG

Rank	gene	DRG/All	Rank	gene	DRG/All	Rank	gene	DRG/AII	Rank	gene	DRG/All	Rank	gene	DRG/All
1	LOC401164	1 0000	68	CCDC140	0.6985	135	ANKRD33	0.6209	202	GGT8P	0 5634	269	MAP7D2	0 5279
2	100645591	1.0000	69	PIRT	0.6964	136	CHRNA6	0.6181	202	CHRM4	0.5629	270	LOC100289511	0.5278
3	MIR1250	1.0000	70	VAT1	0.6962	137	EPN3	0.6181	200	HOXC6	0.5627	271	SI C10A2	0.5276
4	MIR1914	1.0000	71	KRT75	0.6956	138	LIPM	0.6166	205	LOC100130298	0.5623	272	HSPA12A	0.5275
5	MIR3188	1.0000	72	HHLA1	0.6948	139	NBPF11	0.6150	206	LPAR3	0.5623	273	CYP4F24P	0.5273
6	MIR572	1.0000	73	RET	0.6899	140	KANK4	0.6145	207	FLJ42969	0.5611	274	RPL21P28	0.5260
7	MIR659	1.0000	74	GSX1	0.6867	141	OR13C5	0.6145	208	SLC2A6	0.5609	275	B4GALNT1	0.5253
8	MIR92B	1.0000	75	SCN10A	0.6867	142	SPDYE2	0.6136	209	FGF22	0.5606	276	CD1A	0.5253
9	MSGN1	1.0000	76	INSC	0.6863	143	PCDHAC2	0.6122	210	GRM4	0.5602	277	AATK	0.5249
10	OR10A4	1.0000	77	KCNK18	0.6858	144	PLD4	0.6120	211	FOXD3	0.5600	278	RXRG	0.5249
11	OR2M4	1.0000	78	OR2L13	0.6853	145	LOC100329108	0.6109	212	NKAIN4	0.5598	279	CRYBA2	0.5228
12	OR4H6P	1.0000	79	PRPH	0.6849	146	TRPV1	0.6099	213	LCNL1	0.5590	280	KCNA10	0.5221
13	OR56B2P	1.0000	80	LOC441617	0.6846	147	HOXD1	0.6098	214	TLX2	0.5588	281	SYT2	0.5214
14	P2RX6P	1.0000	81	SPTBN5	0.6845	148	OR56B4	0.6094	215	LOC100130275	0.5585	282	TSPAN10	0.5208
15	OR4N5	0.9985	82	SNORD123	0.6834	149	TLX3	0.6086	216	PDE6H	0.5579	283	SNORD116-21	0.5202
16	OR13C9	0.9799	83	CALCB	0.6819	150	PROKR2	0.6083	217	FOXS1	0.5576	284	INSRR	0.5201
17	SNORD87	0.9791	84	TMEM72	0.6789	151	KCNG4	0.6077	218	CHST8	0.5574	285	TUBB2A	0.5200
18	MIR324	0.9375	85	ADAMTS16	0.6761	152	NPSR1	0.6069	219	F2RL2	0.5564	286	C18orf42	0.5200
19	DYTN	0.9317	86	SNORA70B	0.6760	153	EGFL8	0.6065	220	MIR1247	0.5559	287	RESP18	0.5187
20	CRYGB	0.9233	87	MIR630	0.6754	154	FZD2	0.6061	221	GPR149	0.5547	288	PCDHAC1	0.5187
21	OR2M3	0.8983	88	SYT6	0.6753	155	SNORD125	0.6054	222	EMILIN3	0.5540	289	FLJ42875	0.5182
22	GPR139	0.8873	89	OR2T33	0.6725	156	TSHB	0.6045	223	TMEFF2	0.5527	290	OR2T32P	0.5177
23	MRGPRX4	0.8862	90	OTOP3	0.6707	157	KRT14	0.6042	224	HOXC4	0.5515	291	FCRLB	0.5170
24	SNORD91A	0.8861	91	BMP8B	0.6673	158	RASA4	0.6040	225	SLC3A1	0.5515	292	TMEM183B	0.5169
25	NOTO	0.8811	92	ISL2	0.6670	159	GLRA4	0.6034	226	MMD2	0.5508	293	THY1	0.5155
26	KRT32	0.8781	93	ENTPD2	0.6663	160	CHAT	0.6033	227	COL28A1	0.5498	294	FGF13	0.5154
27	NCRNA00052	0.8666	94	LOC644145	0.6660	161	C13orf36	0.6030	228	OR2W3	0.5496	295	LOC646329	0.5141
28	OR7E89P	0.8631	95	FAM19A3	0.6643	162	TTTY22	0.6019	229	PCSK2	0.5490	296	LOC100129726	0.5140
29	HCRT	0.8601	96	OR2T12	0.6639	163	POLR3G	0.6010	230	MIXL1	0.5477	297	SLITRK2	0.5140
30	MIR3907	0.8565	97	FGFBP3	0.6628	164	TTC24	0.6004	231	CADM3	0.5461	298	SHISA3	0.5138
31	OR2M1P	0.8519	98	TUSC5	0.6624	165	PRX	0.5978	232	BEAN1	0.5456	299	TMC3	0.5132
32	MRGPRX1	0.8291	99	CHRNA9	0.6583	166	LOC285401	0.5971	233	LOC645431	0.5454	300	P2RY12	0.5124
33	MRGPRD	0.8071	100	OTOF	0.6581	167	PLA2G3	0.5957	234	IMPDH1	0.5454	301	PRRG3	0.5114
34	NEFH	0.7988	101	ANGPTL7	0.6576	168	CCL1	0.5939	235	CLDN19	0.5443	302	MICALL2	0.5112
35	MRGPRE	0.7926	102	SHOX2	0.6566	169	KCND1	0.5920	236	LOC200726	0.5436	303	COL27A1	0.5110
36	P2RX3	0.7858	103	SLC18A3	0.6554	170	COL22A1	0.5899	237	FABP7	0.5431	304	SLC13A1	0.5108
37	PSMB11	0.7852	104	CALCA	0.6553	171	OR2L1P	0.5849	238	FAM90A10	0.5429	305	CHRNB3	0.5106
38	CST4	0.7728	105	PLEKHD1	0.6549	172	RDH12	0.5844	239	LOC440300	0.5426	306	FKBP1B	0.5104
39	HOXB8	0.7718	106	POU4F1	0.6519	173	FMO1	0.5841	240	MIA	0.5423	307	CCL3L3	0.5104
40	POU4F3	0.7700	107	NPPB	0.6511	174	NRG1	0.5841	241	PRG1	0.5421	308	PCBP3	0.5094
41	SNAR-B1	0.7700	108	IL31RA	0.6506	175	OR7E102P	0.5840	242	LRRC16B	0.5418	309	KCNA6	0.5091
42	SNAR-B2	0.7700	109	DEFB130	0.6499	176	LOC647012	0.5828	243	TRPV3	0.5412	310	GSTT2B	0.5084
43	FOSB	0.7584	110	LOC100133267	0.6499	177	AHNAK2	0.5827	244	VAMP1	0.5405	311	FXYD7	0.5083
44	LCTL	0.7571	111	SCN11A	0.6495	178	REEP1	0.5815	245	ISL1	0.5396	312	C2orf66	0.5082
45	TMEM132E	0.7539	112	GRIK3	0.6489	179	STMN2	0.5812	246	L1CAM	0.5396	313	OR7E59P	0.5080
46	BHLHA9	0.7505	113	FAM70A	0.6487	180	LOC100288346	0.5809	247	CHRFAM7A	0.5392	314	MOS	0.5076
47	SCGB1C1	0.7439	114	AMIGO3	0.6471	181	TSPAN11	0.5809	248	GPR83	0.5390	315	C17orf99	0.5076
48	NTRK1	0.7438	115	LOC574538	0.6467	182	CD1E	0.5802	249	LOC100129931	0.5388	316	PRSS35	0.5075
49	BARHL1	0.7424	116	OR7E130P	0.6463	183	PTPN20B	0.5801	250	AFAP1L2	0.5381	317	AURKB	0.5073
50	PRDM12	0.7422	117	TAC1	0.6449	184	HTR3A	0.5800	251	PDZD7	0.5377	318	LOC100130148	0.5067
51	FRMPD1	0.7377	118	BET3L	0.6440	185	NMB	0.5794	252	GNG3	0.5372	319	LRRTM1	0.5066
52	OR2T8	0.7376	119	SFRP4	0.6435	186	PCDH8	0.5786	253	GJC3	0.5371	320	HOXA6	0.5065
53	AVIL	0.7362	120	NEFM	0.6423	187	AQP12B	0.5781	254	CRYGD	0.5369	321	CYP1A1	0.5064
54	TRIM67	0.7359	121	POU4F2	0.6412	188	OR2A13P	0.5766	255	SNORD116-20	0.5365	322	PTPRN	0.5062
55	NBPF24	0.7344	122	MAST1	0.6374	189	HMX1	0.5754	256	RAB3D	0.5365	323	LOC100130954	0.5041
56	DRGX	0.7271	123	NGFR	0.6374	190	BTNL2	0.5754	257	CPEB1	0.5363	324	C17orf102	0.5039
57	TMEM179	0.7192	124	TUBB3	0.6367	191	ADIPOQ	0.5754	258	IFITM5	0.5358	325	C1orf130	0.5035
58	GFRA3	0.7188	125	KCNH6	0.6356	192	TMEM63C	0.5747	259	CYP2W1	0.5356	326	COL5A3	0.5035
59	NEFL	0.7183	126	VSTM5	0.6354	193	PRIMA1	0.5718	260	PODNL1	0.5344	327	FBXO2	0.5034
60	OR11H2	0.7176	127	MPZ	0.6344	194	OR7E163P	0.5713	261	KIF3C	0.5337	328	OR6B2	0.5022
61	CER1	0.7153	128	OR1H1P	0.6329	195	CHRNA7	0.5706	262	ADAMTSL1	0.5336	329	MATN2	0.5021
62	MIR570	0.7149	129	LOC149134	0.6309	196	EXTL1	0.5682	263	BCAN	0.5335	330	SLC17A6	0.5014
63	SHH	0.7125	130	AQP12A	0.6266	197	CLDN22	0.5679	264	DPYSL5	0.5313	331	CYSLTR2	0.5013
64	STAC	0.7121	131	KCTD8	0.6251	198	SCN4B	0.5672	265	HKDC1	0.5308	332	B4GALNT4	0.5008
65	MIR770	0.7100	132	TMEM233	0.6228	199	CPNE6	0.5667	266	CLEC2L	0.5298			
66	FLJ46446	0.7017	133	LOC284233	0.6224	200	SYNGR3	0.5663	267	DISP2	0.5288			
67	LOC727677	0.6995	134	TMPRSS5	0.6212	201	MIR339	0.5653	268	DHH	0.5286		1	

Supplementary	V Table 2 GP	CRs expres	sion profiling	a in human	DRG

Damk	CDCD	DDC/All	Dawle	CDCD		Denk	CRCR	DDC/All	Denk	CRCR	DDC/All	Dank	CDCD	DDC/All
Rank	GPUR	DRG/AII	Rank	UTCOD	DKG/AII	Rank	GPCR	DKG/AII	Rank	GPCR	DRG/AII	Rank	CDDDD	DRG/AII
1	GPRI39	0.007	75	UTDAD	0.237	149	DAIZ	0.132	223	GPRC5B	0.065	296	GPR39	0.017
2	MRGPRX4	0.886	76	HIRIB	0.235	150	HIRIF	0.131	224	GPR125	0.062	299	ISHK	0.015
3	MRGPRAT	0.829	77	CXCR3	0.235	151	P2R111	0.131	225	ADRA2B	0.062	300	HUAR3	0.014
4	MRGPRD	0.807	78	UPRL1	0.233	152	ADURA1	0.131	226	F2R	0.060	301	RXFP1	0.012
5	MRGPRE	0.793	79	GABBR1	0.229	153	GPR45	0.129	227	GPR88	0.058	302	CHRM5	0.011
6	PROKRZ	0.608	80	PIGER3	0.228	154	GPR12	0.129	228	GPR84	0.054	303	FFAR2	0.011
	NPSR1	0.607	81	LPHN3	0.222	155	ADRA2C	0.128	229	GRM2	0.054	304	GPR182	0.010
8	FZD2	0.606	82	CELSR2	0.221	156	LPAR6	0.127	230	RHOD	0.054	305	CXCR1	0.009
9	CHRM4	0.563	83	GPR132	0.219	157	PTGER1	0.126	231	ADCYAP1R1	0.053	306	GPR97	0.008
10	LPAR3	0.562	84	GPR56	0.214	158	LPAR2	0.125	232	GPR22	0.052	307	CXCR2	0.007
11	GRM4	0.560	85	PTGER2	0.214	159	ADRB2	0.123	233	GPR135	0.052	308	F2RL3	0.006
12	F2RL2	0.556	86	GPR61	0.210	160	HTR4	0.123	234	CHRM3	0.050	309	NTSR1	0.005
13	GPR149	0.555	87	GPR64	0.209	161	ADORA2B	0.122	235	FPR1	0.050	310	GRM3	0.004
14	GPR83	0.539	88	BDKRB2	0.209	162	GPR75	0.119	236	SSTR3	0.050	311	GRM5	0.004
15	P2RY12	0.512	89	GPR142	0.208	163	TGR5	0.117	237	GPR15	0.050	312	S1PR5	0.002
16	CYSLTR2	0.501	90	P2RY1	0.207	164	CRCP	0.116	238	S1PR4	0.049	313	ADRB3	0.000
17	HTR1D	0.489	91	GPR98	0.204	165	GPR176	0.114	239	LPHN2	0.049	314	AGTR2	0.000
18	GPR114	0.487	92	PTGER4	0.199	166	NMUR1	0.114	240	OXTR	0.049	315	AVPR1B	0.000
19	GPR173	0.482	93	GPR152	0.196	167	MCHR1	0.114	241	FZD9	0.048	316	BRS3	0.000
20	CCKAR	0.478	94	HCAR1	0.194	168	GNRHR	0.112	242	GPR52	0.047	317	CCR3	0.000
21	MC5R	0.461	95	LTB4R	0.192	169	S1PR2	0.111	243	GPR55	0.047	318	CCR7	0.000
22	OPRK1	0.457	96	LPHN1	0.192	170	GPR183	0.110	244	GPR113	0.047	319	CCR8	0.000
23	GPR35	0.457	97	GPR133	0.191	171	HTR6	0.110	245	CCRL2	0.046	320	CNR2	0.000
24	FFAR1	0.447	98	P2RY6	0.188	172	FZD6	0.107	246	GPR179	0.046	321	DRD3	0.000
25	CX3CR1	0.445	99	GNRHR2	0.187	173	ADORA2A	0.104	247	ADRA1B	0.045	322	FPR2	0.000
26	FZD8	0.441	100	GPR34	0.187	174	GPR25	0.102	248	CELSR1	0.044	323	GALR3	0.000
27	GPR27	0.440	101	GPR126	0.185	175	P2RY2	0.102	249	APLNR	0.044	324	GHRHR	0.000
28	LGR5	0.436	102	RXFP3	0.184	176	GPR65	0.102	250	GRM6	0.043	325	GHSR	0.000
29	QRFPR	0.434	103	NPY5R	0.184	177	GPRC5C	0.101	251	GPR160	0.043	326	GPR101	0.000
30	GPR128	0.426	104	HTR5A	0.179	178	C5AR1	0.098	252	GIPR	0.043	327	GPR110	0.000
31	LHCGR	0.425	105	GPR153	0.179	179	FZD3	0.098	253	GPR116	0.043	328	GPR112	0.000
32	OPRD1	0.416	106	CXCR4	0.179	180	PTGIR	0.097	254	GPR141	0.043	329	GPR119	0.000
33	PTGFR	0.405	107	GPR19	0.179	181	P2RY8	0.096	255	HTR1E	0.043	330	GPR144	0.000
34	MRGPRX3	0.379	108	CRHR1	0.177	182	GPR174	0.095	256	GPR62	0.043	331	GPR148	0.000
35	MAS1L	0.378	109	CCR2	0.174	183	PTH2R	0.094	257	CCR4	0.041	332	GPR150	0.000
36	NPFFR2	0.377	110	GPR17	0.173	184	GPR3	0.093	258	NMUR2	0.041	333	GPR151	0.000
37	GPR37L1	0.373	111	GPR50	0.173	185	GPR26	0.092	259	HTR2A	0.040	334	GPR31	0.000
38	DRD2	0.368	112	CASR	0.172	186	GRM8	0.092	260	GPR123	0.039	335	GPR32	0.000
39	GPR161	0.360	113	TBXA2R	0.170	187	EMR4P	0.091	261	CHRM1	0.039	336	GPR6	0.000
40	PTGDR	0.350	114	HRH4	0.167	188	NMBR	0.090	262	GPR4	0.038	337	GPR78	0.000
41	P2RY14	0.335	115	CCR6	0.167	189	CXCR6	0.089	263	GPR21	0.037	338	GPR87	0.000
42	NPFFR1	0.329	116	AVPR2	0.167	190	TAS1R3	0.088	264	PPYR1	0.037	339	GPRC5D	0.000
43	GRM7	0.326	117	CYSLTR1	0.166	191	CCR5	0.088	265	ELTD1	0.036	340	GPRC6A	0.000
44	HRH1	0.320	118	GPR115	0.165	192	GPR77	0.087	266	EMR1	0.036	341	HCRTR1	0.000
45	CRHR2	0.317	119	CALCR	0.161	193	FZD4	0.087	267	FZD5	0.033	342	HTR1A	0.000
46	FZD1	0.313	120	GPR68	0.159	194	SSBP1	0.086	268	LTB4R2	0.033	343	KISS1R	0.000
47	SSTR4	0.311	121	TRIM5	0.158	195	CCRL1	0.085	269	HCAR2	0.032	344	LPAR4	0.000
48	GPR124	0.305	122	TACR1	0.157	196	DRD1	0.085	270	CALCRL	0.032	345	MC2R	0.000
49	BAI1	0.304	123	O3FAR1	0.157	197	MC4R	0.083	271	F2RL1	0.032	346	MC3R	0.000
50	CCR10	0.304	124	CCKBR	0.156	198	SSTR2	0.082	272	AVPR1A	0.031	347	MCHR2	0.000
51	LPAR5	0.298	125	HRH3	0.156	199	GPR162	0.082	273	GPR37	0.028	348	MLNR	0.000
52	LPAR1	0.294	126	GLP1R	0.156	200	MTNR1A	0.081	274	S1PR1	0.028	349	MRGPRG	0.000
53	DRD4	0.293	127	GPR82	0.155	201	CCBP2	0.080	275	TACR2	0.028	350	MRGPRX2	0.000
54	PROKR1	0.291	128	GPR20	0.155	202	CCR1	0.080	276	SUCNR1	0.027	351	MTNR1B	0.000
55	BAI3	0.288	129	CMKLR1	0.154	203	HRH2	0.079	277	GPR1	0.026	352	NPBWR1	0.000
56	ADRA1D	0.287	130	CXCR7	0.151	204	BDKRB1	0.078	278	CHRM2	0.025	353	NPBWR2	0.000
57	GALR1	0.285	131	C3AR1	0.150	205	DARC	0.077	279	GRM1	0.025	354	NPY2R	0.000
58	FZD7	0.282	132	S1PR3	0.149	206	GPR111	0.076	280	HTR2C	0.025	355	OPN5	0.000
59	GPR156	0.281	133	GPR85	0.147	207	ADORA3	0.075	281	LGR6	0.024	356	P2RY10	0.000
60	P2RY13	0.274	134	PTAFR	0.147	208	OXGR1	0.073	282	EMR3	0.024	357	PRLHR	0.000
61	CCR9	0.273	135	Tpra1	0.147	209	GRPR	0.072	283	GPR18	0.024	358	RXFP2	0.000
62	SMO	0.270	136	NPY1R	0.144	210	MRGPRF	0.072	284	GLP2R	0.024	359	RXFP4	0.000
63	P2RY4	0.266	137	OXER1	0.143	211	HCRTR2	0.071	285	AGTR1	0.024	360	SSTR5	0.000
64	GABBR2	0.262	138	OPN3	0.143	212	CNR1	0.070	286	FSHR	0.023	361	TAAR3	0.000
65	FZD10	0.260	139	Gpr137	0.142	213	MAS1	0.070	287	Gpr143	0.023	362	TAAR5	0.000
66	EDNRB	0.259	140	EDNRA	0.140	214	OPRM1	0.070	288	ADRB1	0.023	363	TAAR6	0.000
67	MC1R	0.258	141	GPR157	0.140	215	C17orf103	0.070	289	VIPR1	0.023	364	TAAR8	0.000
68	CELSR3	0.257	142	GPR146	0.139	216	CD97	0.070	290	VIPR2	0.022	365	TACR3	0.000
69	ADRA2A	0.252	143	GPER	0.137	217	NTSR2	0.067	291	HTR2B	0.021	366	TAS1R2	0.000
70	DRD5	0.249	144	GPR63	0.136	218	FFAR3	0.066	292	CXCR5	0.020	367	TRHR	0.000
71	LGR4	0.242	145	TAS1R1	0.134	219	SCTR	0.066	293	ADRA1A	0.019	368	XCR1	0.000
72	HTR7	0.241	146	NPY6R	0.134	220	SSTR1	0.066	294	GPRC5A	0.018			
73	GPR158	0.240	147	PTH1R	0.134	221	EMR2	0.066	295	GALR2	0.018			
74	Gpr107	0.240	148	FPR3	0.133	222	GCGR	0.065	296	GPR171	0.017			