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Abstract 17 

Within computational neuroscience, the algorithmic and neural basis of concept 18 

learning remains poorly understood. Concept learning requires both a type of 19 

internal model expansion process (adding novel hidden states that explain new 20 

observations), and a model reduction process (merging different states into one 21 

underlying cause and thus reducing model complexity via meta-learning). Although 22 

various algorithmic models of concept learning have been proposed within machine 23 

learning and cognitive science, many are limited to various degrees by an inability to 24 

generalize, the need for very large amounts of training data, and/or insufficiently 25 

established biological plausibility. In this paper, we articulate a model of concept 26 

learning based on active inference and its accompanying neural process theory, with 27 

the idea that a generative model can be equipped with extra (hidden state or cause) 28 

‘slots’ that can be engaged when an agent learns about novel concepts. This can be 29 

combined with a Bayesian model reduction process, in which any concept learning – 30 

associated with these slots – can be reset in favor of a simpler model with higher 31 

model evidence. We use simulations to illustrate this model’s ability to add new 32 

concepts to its state space (with relatively few observations) and increase the 33 

granularity of the concepts it currently possesses. We further show that it 34 

accomplishes a simple form of ‘one-shot’ generalization to new stimuli. Although 35 

deliberately simple, these results suggest that active inference may offer useful 36 

resources in developing neurocomputational models of concept learning. 37 

Keywords: Model Expansion; Structure Learning; Concepts; Computational 38 

Neuroscience; Active Inference 39 
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Introduction 41 

The ability to conceptualize and understand regularly observed patterns in 42 

co-occurring feature observations is central to human cognition. For example, we do 43 

not simply observe particular sets of colors, textures, shapes, and sizes – we also 44 

observe identifiable objects such as, say, a ‘screwdriver’. If we were tool experts, we 45 

might also recognize particular types of screwdrivers (e.g., flat vs. Phillip’s head), 46 

designed for a particular use. This ability to recognize co-occurring features under 47 

conceptual categories (as opposed to just perceiving sensory qualities; e.g., red, 48 

round, etc.) is also highly adaptive. Only if we know an object is a screwdriver could 49 

we efficiently infer that it affords putting certain structures together and taking 50 

them apart; and only if we know the specific type of screwdriver could we efficiently 51 

infer, say, the artefacts to use it on. Many concepts of this sort require experience-52 

dependent acquisition (i.e., learning).  53 

From a computational perspective, the ability to acquire a new concept can 54 

be seen as a type of Bayesian model comparison or structure learning (Botvinick, 55 

Niv, & Barto, 2009; S. J. Gershman & Niv, 2010; MacKay & Peto, 1995; Salakhutdinov, 56 

Tenenbaum, & Torralba, 2013; Tervo, Tenenbaum, & Gershman, 2016). Specifically, 57 

concept acquisition can be cast as an agent learning (or inferring) that a new 58 

hypothesis (referred to here as a hidden cause or state) should be added to the 59 

internal or generative model with which she explains her environment, because 60 

existing causes cannot account for new observations (e.g., an agent might start out 61 

believing that the only tools are hammers and screwdrivers, but later learn that 62 

there are also wrenches). In other words, the structure of the space of hidden causes 63 
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itself needs to expand to accommodate new patterns of observations. This model 64 

expansion process is complementary to a process called Bayesian model reduction 65 

(Karl Friston & Penny, 2011); in which the agent can infer that there is redundancy 66 

in her model, and a model with fewer states or parameters provides a more 67 

parsimonious (i.e. simpler) explanation of observations (KJ Friston, Lin, et al., 2017; 68 

Schmidhuber, 2006). For example, in some instances it may be more appropriate to 69 

differentiate between fish and birds as opposed to salmon, peacocks and pigeons. 70 

This reflects a reduction in model complexity based on a particular feature space 71 

underlying observations and thus resonates with other accounts of concept learning 72 

as dimensionality reduction (Behrens et al., 2018; Stachenfeld, Botvinick, & 73 

Gershman, 2016) – a topic we discuss further below. 74 

 A growing body of work in a number of domains has approached this 75 

problem from different angles. In developmental psychology and cognitive science, 76 

for example, probability theoretic (Bayesian) models have been proposed to account 77 

for word learning in children and the remarkable human ability to generalize from 78 

very few (or even one) examples in which both broader and narrower categorical 79 

referents could be inferred (Kemp, Perfors, & Tenenbaum, 2007; Lake, 80 

Salakhutdinov, & Tenenbaum, 2015; Perfors, Tenenbaum, Griffiths, & Xu, 2011; Xu & 81 

Tenenbaum, 2007a, 2007b). In statistics, a number of nonparametric Bayesian 82 

models, such as the “Chinese Room” process and the “Indian Buffet” process, have 83 

been used to infer the need for model expansion (S. Gershman & Blei, 2012). There 84 

are also related approaches in machine learning, as applied to things like Gaussian 85 

mixture models (McNicholas, 2016).  86 
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These are the generative models that underwrite various clustering 87 

algorithms that take sets of data points in a multidimensional space and divide them 88 

into spatially separable clusters. While many of these approaches assume the 89 

number of clusters is known in advance, various goodness-of-fit criteria may be 90 

used to determine the optimal number. However, a number of approaches require 91 

much larger amounts of data than humans do to learn new concepts (Geman, 92 

Bienenstock, & Doursat, 1992; Hinton et al., 2012; LeCun, Bengio, & Hinton, 2015; 93 

Lecun, Bottou, Bengio, & Haffner, 1998; Mnih et al., 2015). Many also require 94 

corrective feedback to learn and yet fail to acquire sufficiently rich conceptual 95 

structure to allow for generalization (Barsalou, 1983; Biederman, 1987; Feldman, 96 

1997; Jern & Kemp, 2013; A. B. Markman & Makin, 1998; Osherson & Smith, 1981; 97 

Ward, 1994; Williams & Lombrozo, 2010). 98 

One potentially fruitful research avenue that has not yet been examined is to 99 

explore concept learning from the perspective of Active Inference models based on 100 

the free-energy principle (KJ Friston, 2010; KJ Friston et al., 2016; KJ Friston, Lin, et 101 

al., 2017; KJ Friston, Parr, & de Vries, 2017). In this paper, we explore the potential 102 

of this approach. In brief, we conclude that structure learning is an emergent 103 

property of active inference (and learning) under generative models with ‘spare 104 

capacity’; where spare or uncommitted capacity is used to expand the repertoire of 105 

representations (Baker & Tenenbaum, 2014), while Bayesian model reduction (KJ 106 

Friston, Lin, et al., 2017; Hobson & Friston, 2012) promotes generalization by 107 

minimizing model complexity – and releasing representations to replenish ‘spare 108 

capacity’. 109 
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In what follows, we first provide a brief overview of active inference. We then 110 

introduce a model of concept learning (using basic and subordinate level animal 111 

categories) to produce synthetic cognitive (semantic) processes associated with 112 

adding new concepts to a state space and increasing the granularity of an existing 113 

state space. We then establish the validity of this model using numerical analyses of 114 

concept learning when repeatedly presenting a synthetic agent with different 115 

animals characterized by different combinations of observable features. We will 116 

demonstrate how particular approaches combining Bayesian model reduction and 117 

expansion can reproduce successful concept learning without the need for 118 

corrective feedback, and allow for generalization. We conclude with a brief 119 

discussion of the implications of this work. 120 

 121 

An Active Inference model of concept learning 122 

 123 

A primer on Active Inference  124 

 125 

Active Inference suggests that the brain is an inference machine that 126 

approximates optimal probabilistic (Bayesian) belief updating across perceptual, 127 

cognitive, and motor domains. Active Inference more specifically postulates that the 128 

brain embodies an internal model of the world that is “generative” in the sense that 129 

it can simulate the sensory data that it should receive if its model of the world is 130 

correct. These simulated (predicted) sensory data can be compared to actual 131 

observations, and differences between predicted and observed sensations can be 132 
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used to update the model. Over short timescales (e.g., a single observation) this 133 

updating corresponds to inference (perception), whereas on longer timescales it 134 

corresponds to learning (i.e., updating expectations about what will be observed 135 

later). Another way of putting this is that perception optimizes beliefs about the 136 

current state of the world, while learning optimizes beliefs about the relationships 137 

between the variables that constitute the world. These processes can be seen as 138 

ensuring the generative model (entailed by recognition processes in the brain) 139 

remains an accurate model of the world that it seeks to regulate (Conant & Ashbey, 140 

1970). 141 

Active Inference casts decision-making in similar terms. Actions can be 142 

chosen to resolve uncertainty about variables within a generative model (i.e., 143 

sampling from domains in which the model does not make precise predictions), 144 

which can prevent anticipated deviations from predicted outcomes. In addition, 145 

some expectations are treated as a fixed phenotype of an organism. For example, if 146 

an organism did not continue to “expect” to observe certain amounts of food, water, 147 

and shelter, then it would quickly cease to exist (McKay & Dennett, 2009) – as it 148 

would not pursue those behaviors that fulfill these expectations (c.f. the ‘optimism 149 

bias’ (Sharot, 2011)). Thus, a creature should continually seek out observations that 150 

support – or are internally consistent with – its own continued existence. Decision-151 

making can therefore be cast as a process in which the brain infers the sets of 152 

actions (policies) that would lead to observations consistent with its own survival-153 

related expectations (i.e., its “prior preferences”). Mathematically, this can be 154 

described as selecting sequences of actions (policies) that maximize “Bayesian 155 
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model evidence” expected under a policy, where model evidence is the (marginal) 156 

likelihood that particular sensory inputs would be observed under a given model.  157 

In real-world settings, directly computing Bayesian model evidence is 158 

generally intractable. Thus, some approximation is necessary. Active Inference 159 

proposes that the brain computes a quantity called “variational free energy” that 160 

provides a bound on model evidence, such that minimization of free energy 161 

indirectly maximizes model evidence (this is exactly the same functional used in 162 

machine learning where it is known as an evidence lower bound or ELBO). In this 163 

case, decision-making will be approximately (Bayes) optimal if it infers (and enacts) 164 

the policy that will minimize expected free energy (i.e., free energy with respect to a 165 

policy, where one takes expected future observations into account). Technically, 166 

expected free energy is the variational free energy averaged under the posterior 167 

predictive density over policy-specific outcomes. 168 

Expected free energy can be decomposed in different ways that reflect 169 

uncertainty and prior preferences, respectively (e.g., epistemic and instrumental 170 

affordance or ambiguity and risk). This formulation means that any agent that 171 

minimizes expected free energy engages initially in exploratory behavior to 172 

minimise uncertainty in a new environment. Once uncertainty is resolved, the agent 173 

then exploits that environment to fulfil its prior preferences. The formal basis for 174 

Active Inference has been thoroughly detailed elsewhere (KJ Friston, FitzGerald, 175 

Rigoli, Schwartenbeck, & Pezzulo, 2017), and the reader is referred there for a full 176 

mathematical treatment. 177 
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When the generative model is formulated as a partially observable Markov 178 

decision process (a mathematical framework for modeling decision-making in cases 179 

where some outcomes are under the control of the agent and others are not, and 180 

where states of the world are not directly known but must be inferred from 181 

observations), active inference takes a particular form. Here, the generative model is 182 

specified by writing down plausible or allowable policies, hidden states of the world 183 

(that must be inferred from observations), and observable outcomes, as well as a 184 

number of matrices that define the probabilistic relationships between these 185 

quantities (see right panel of figure 1). 186 

 187 

Figure 1. Left: Illustration of the trial structure performed by the agent. At the first time 188 
point, the agent is exposed to one of 8 possible animals that are each characterized by a 189 
unique combination of visual features. At the 2nd time point, the agent would then report 190 
which animal concept matched that feature combination. The agent could report a specific 191 
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category (e.g., pigeon, hawk, minnow, etc.) or a general category (i.e., bird or fish) if 192 
insufficiently certain about the specific category. See the main text for more details. Right: 193 
Illustration of the Markov decision process formulation of active inference used in the 194 
simulations described in this paper. The generative model is heredepicted graphically, such 195 
that arrows indicate dependencies between variables. Here observations (o)  depend on 196 
hidden states (s), as specified by the A matrix, and those states depend on both previous 197 
states (as specified by the B matrix,  or the initial states specified by the D matrix) and the 198 
policies (π) selected by the agent. The probability of selecting a particular policy in turn 199 
depends on the expected free energy (G) of each policy with respect to the prior preferences 200 
(C) of the agent. The degree to which expected free energy influences policy selection is also 201 
modulated by a prior policy precision parameter (γ), which is in turn dependent on beta (β) 202 
–where higher values of beta promote more randomness in policy selection (i.e., less 203 
influence of the differences in expected free energy across policies). For more details 204 
regarding the associated mathematics, see (KJ Friston, Lin, et al., 2017; KJ Friston, Parr, et 205 
al., 2017). 206 

 207 

The ‘A’ matrix indicates which observations are generated by each 208 

combination of hidden states (i.e., the likelihood mapping specifying the probability 209 

that a particular set of observations would be observed given a particular set of 210 

hidden states). The ‘B’ matrix is a transition matrix, indicating the probability that 211 

one hidden state will evolve into another over time. The agent, based on the selected 212 

policy, controls some of these transitions (e.g., those that pertain to the positions of 213 

its limbs). The ‘D’ matrix encodes prior expectations about the initial hidden state 214 

the agent will occupy. Finally, the ‘C’ matrix specifies prior preferences over 215 

observations; it quantifies the degree to which different observed outcomes are 216 

rewarding or punishing to the agent. In these models, observations and hidden 217 

states can be factorized into multiple outcome modalities and hidden state factors. 218 

This means that the likelihood mapping (the ‘A’ matrix) can also model the 219 

interactions among different hidden states when generating outcomes 220 

(observations). In what follows, we describe how this type of generative model was 221 

specified to perform concept inference/learning. 222 
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 223 

A model of concept inference and learning 224 

 To model concept inference, we constructed a simple task for an agent to 225 

perform (see figure 1, left panel). In this task, the agent was presented with different 226 

animals on different trials and asked to answer a question about the type of animal 227 

that was seen. As described below, in some simulations the agent was asked to 228 

report the type of animal that was learned previously; in other simulations, the 229 

agent was instead asked a question that required conceptual generalization. 230 

Crucially, to answer these questions the agent was required to observe different 231 

animal features, where the identity of the animal depended on the combination of 232 

features. There were three feature categories (size, color, and species-specific; 233 

described further below) and two discrete time points in a trial (observe and 234 

report).  235 

To simulate concept learning (based on the task described above) we need to 236 

specify an appropriate generative model. Once this model has been specified, one 237 

can use standard (variational) message passing to simulate belief updating and 238 

behavior in a biologically plausible way: for details, please see (KJ Friston, 239 

FitzGerald, et al., 2017; KJ Friston, Parr, et al., 2017). In our (minimal) model, the 240 

first hidden state factor included (up to) eight levels, specifying four possible types 241 

of birds and four possible types of fish (Figure 2A). The outcome modalities 242 

included: a feature space including two size features (big, small), two color features 243 

(gray, colorful), and two species-differentiating features (wings, gills). The ‘A’ matrix 244 

specified a likelihood mapping between features and animal concepts, such that 245 
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each feature combination was predicted by an animal concept (Hawk, Pigeon, 246 

Parrot, Parakeet, Sturgeon, Minnow, Whale shark, Clownfish). This model was 247 

deliberately simple to allow for a clear illustration, but it is plausibly scalable to 248 

include more concepts and a much larger feature space. The ‘B’ matrix for the first 249 

hidden state factor was an identity matrix, reflecting the belief that the animal 250 

identity was conserved during each trial (i.e., the animals were not switched out 251 

mid-trial).  252 

 253 
 254 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2019. ; https://doi.org/10.1101/633677doi: bioRxiv preprint 

https://doi.org/10.1101/633677
http://creativecommons.org/licenses/by-nc-nd/4.0/


Concept Learning 

 
 

14 

255 
Figure 2. (A) Illustration of the first hidden state factor containing columns (levels) for 8 256 
different animal concepts. Each of these 8 concepts generated a different pattern of visual 257 
feature observations associated with the outcome modalities of size, color, and species-258 
specific features. The B matrix was an identity matrix, indicating that the animal being 259 
observed did not change within a trial (white = 1, black = 0). The A matrix illustrates the 260 
specific mapping from animal concepts to feature combinations. As depicted, each concept 261 
corresponded to a unique point in a 3-dimensional feature space. (B) illustration of the 2nd 262 
hidden state factor corresponding to the verbal reports the agent could choose in response 263 
to her observations. These generated feedback as to whether their verbal report was 264 
accurate with respect to a basic category report or a specific category report. As illustrated 265 
in the C matrix, the agent most preferred to be correct about specific categories, but least 266 
preferred being incorrect. Thus, reporting the basic categories was a safer choice if the 267 
agent was too uncertain about the specific identity of the animal. 268 

 269 

The second hidden state factor was the agent’s report. That this is assumed 270 

to factorise from the first hidden state factor means that there is no prior constraint 271 

that links the chosen report to the animal generating observations. The agent could 272 

report each of the eight possible specific animal categories, or opt for a less specific 273 

report of a bird or a fish. Only one category could be reported at any time. Thus, the 274 
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agent had to choose to report only bird vs. fish or to report a more specific category. 275 

In other words, the agent could decide upon the appropriate level of coarse-graining 276 

of her responses (figure 2B).  277 

During learning trials, the policy space was restricted such that the agent 278 

could not provide verbal reports or observe corrective feedback (i.e., all it could do 279 

is “stay still” in its initial state and observe the feature patterns presented). This 280 

allowed the agent to learn concepts in an unsupervised manner (i.e. without being 281 

told what the true state was or whether it was correct or incorrect). After learning, 282 

active reporting was enabled, and the ‘C’ matrix was set so that the agent preferred 283 

to report correct beliefs. We defined the preferences of the agent such that she 284 

preferred correctly reporting specific category knowledge and was averse to 285 

incorrect reports. This ensured that she only reported the general category of bird 286 

vs. fish, unless sufficiently certain about the more specific category. 287 

In the simulations reported below, there were two time points in each trial of 288 

categorisation or conceptual inference. At the first time point, the agent was 289 

presented with the animals features, and always began in a state of having made no 290 

report (the “start” state). The agent’s task was simply to observe the features, infer 291 

the animal identity, and then report it (i.e., in reporting trials). Over 32 simulations 292 

(i.e., 4 trials per animal), we confirmed that, if the agent already started out with full 293 

knowledge of the animal concepts (i.e., a fully precise ‘A’ matrix), it would report the 294 

specific category correctly 100% of the time. Over an additional 32 simulations, we 295 

also confirmed that, if the agent was only equipped with knowledge of the 296 

distinction between wings and gills (i.e., by replacing the rows in the ‘A’ matrix 297 
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corresponding to the mappings from animals to size and color with flat 298 

distributions), it would report the generic category correctly 100% of the time but 299 

would not report the specific categories.1 This was an expected and straightforward 300 

consequence of the generative model – but provides a useful example of how agents 301 

trade off preferences and different types of uncertainty. 302 

 303 

Simulating concept learning and the acquisition of expertise 304 

 305 

Having confirmed that our model could successfully recognize animals if 306 

equipped with the relevant concepts (i.e., likelihood mappings) – we turn now to 307 

concept learning.  308 

 309 

Concept acquisition  310 

We first examined our model’s ability to acquire concept knowledge in two 311 

distinct ways. This included 1) the agent’s ability to “expand” (i.e., fill in an unused 312 

column within) its state space and add new concepts, and 2) the agent’s ability to 313 

increase the granularity of its conceptual state space and learn more specific 314 

concepts, when it already possessed broader concepts.  315 

 316 

Adding Concepts 317 

                                                        
1 However, "risky" reporting behavior could be elicited by manipulating the strengths of the agent's 
preferences such that she placed a very high value on reporting specific categories correctly (i.e., 
relative to how much it disliked reporting incorrectly). 
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To assess whether our agent could expand her state space by acquiring a new 318 

concept, we first set one column of the previously described model’s ‘A’ matrix 319 

(mapping an animal concept to its associated features) to be a uniform distribution2; 320 

creating an imprecise likelihood mapping for one concept – essentially, that concept 321 

predicted all features with nearly equal probability. Here, we chose sturgeon (large, 322 

gray, gills) as the concept for which the agent had no initial knowledge (see Figure 323 

3A, right-most column of left-most ‘pre-learning’ matrix). We then generated 2000 324 

observations based on the outcome statistics of a model with full knowledge of all 325 

eight animals (the “generative process”), to test whether the model could learn the 326 

correct likelihood mapping for sturgeon (note: this excessive number of 327 

observations was used for consistency with later simulations, in which more 328 

concepts have to be learned, and also to evaluate how performance improved as a 329 

function of the number of observations the agent was exposed to; see figure 3B).  330 

In these simulations, learning was implemented via updating (concentration) 331 

parameters for the model’s ‘A’ matrix after each trial. For details of these free energy 332 

minimizing learning processes, please see (KJ Friston et al., 2016) as well as the left 333 

panel of Figure 8 and the associated legend further below. An intuitive way to think 334 

about this belief updating process is that the strength of association between a 335 

concept and an observation is quantified simply by counting how often they are 336 

inferred to co-occur. This is exactly the same principle that underwrites Hebbian 337 

plasticity and long-term potentiation (Brown, Zhao, & Leung, 2010). Crucially, 338 

                                                        
2 To break the symmetry of the uniform distribution, we added small amounts of Gaussian noise 
(with a variance of .001) to avoid getting stuck in local free energy minima during learning. 
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policies were restricted during learning, such that the agent could not select 339 

reporting actions; thus, learning was driven entirely by repeated exposure to 340 

different feature combinations. We evaluated successful learning in two ways. First, 341 

we compared the ‘A’ matrix learned by the model to that of the generative process. 342 

Second, we disabled learning after various trial numbers (i.e., such that 343 

concentration parameters no longer accumulated) and enabled reporting. We then 344 

evaluated reporting accuracy with 20 trials for each of the 8 concepts. 345 

 As shown in Figure 3A, the ‘A’ matrix (likelihood) mapping – learned by the 346 

agent – and the column for sturgeon in particular, strongly resembled that of the 347 

generative process. When first evaluating reporting, the model was 100 % accurate 348 

across 20 reporting trials, when exposed to a sturgeon (reporting accuracy when 349 

exposed to each of the other animals also remain at 100%) and first reached this 350 

level of accuracy after around 50 exposures to all 8 animals (with equal probability) 351 

(figure 3B). The agent also always chose to report specific categories (i.e., it never 352 

chose to only report bird or fish). Model performance was stable over 8 repeated 353 

simulations.  354 

Crucially, during learning, the agent was not told which state was generating 355 

its observations. This meant that it had to solve both an inference and a learning 356 

problem. First, it had to infer whether a given feature combination was better 357 

explained by an existing concept, or by a concept that predicts features uniformly. In 358 

other words, it had to decide that the features were sufficiently different – from 359 

things it had seen before – to assign it a new hypothetical concept. Given that a novel 360 

state is only inferred when another state is not a better explanation, this precludes 361 
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learning ‘duplicate’ states that generate the same patterns of observations. The 362 

second problem is simpler. Having inferred that these outcomes are caused by 363 

something new, the problem becomes one of learning a simple state-outcome 364 

mapping through accumulation of Dirichlet parameters.  365 

 To examine whether this result generalized, we repeated these simulations 366 

under conditions in which the agent had to learn more than one concept. When the 367 

model needed to learn one bird (parakeet) and one fish (minnow), the model was 368 

also able to learn the appropriate likelihood mapping for these 2 concepts (although 369 

note that, because the agent did not receive feedback about the state it was in during 370 

learning, the new feature mappings were often not assigned to the same columns as 371 

in the generative process; see figure 3A). Reporting also reached 100% accuracy, 372 

but required a notably greater number of trials. Across 8 repeated simulations, the 373 

mean accuracy reached by the model after 2000 trials was 98.75% (SD = 2%). 374 
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 376 
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Figure 3. (A) illustration of representative simulation results in which the agent successfully 377 
learned 1, 2, or 4 new animal concept categories with no prior knowledge beforehand. The 378 
generative process is shown in the upper right, illustrating the feature combinations to be 379 
learned. Pre-learning, either 1, 2 or 4 columns in the likelihood mapping began as a flat 380 
distribution with a slight amount of Gaussian noise. The agent was and then provided with 381 
2000 observations of the 8 animals with equal probability. Crucially, the agent was 382 
prevented from providing verbal reports during these 2000 trials and thus did not receive 383 
feedback about the true identity of the animal. Thus learning was driven completely by 384 
repeated exposure in an unsupervised manner. Also note that, while the agent was 385 
successful at learning the new concepts, it did not always assign the new feature patterns to 386 
the same columns as illustrated in the generative process. This is to be expected given that 387 
the agent received no feedback about the true hidden state that generated her observations. 388 
(B) illustration of how reporting accuracy, and the proportion of basic category and specific 389 
category responses, changed as a function of repeated exposures. This was accomplished by 390 
taking the generative model at a number of representative trials and then testing it with 20 391 
observations of each animal in which reporting was enabled. As can be seen, maximal 392 
accuracy was achieved much more quickly when the agent had to learn fewer concepts. 393 
When it had learned 4 concepts, it also began by reporting the general categories and then 394 
subsequently became sufficiently confident to report the more specific categories. 395 
 396 

When the model needed to learn all 4 birds, performance varied somewhat 397 

more when the simulations were repeated. The learned likelihood mappings after 398 

2000 trials always resembled that of the generative process, but with variable levels 399 

of precision; notably, the model again assigned different concepts to different 400 

columns relative to the generative process, as would be expected when the agent is 401 

not given feedback about the state she is in. Over 8 repeated simulations, the model 402 

performed well in 6 (92.50 % – 98.8 % accuracy) and failed to learn one concept in 403 

the other 2 (72.50 % accuracy in each) due to overgeneralization (e.g., mistaking 404 

parrot for Hawk in a majority of trials; i.e., the model simply learned that there are 405 

large birds). Figure 3A and 3B illustrate representative results when the model was 406 

successful (note: the agent never chose to report basic categories in the simulations 407 

where only 1 or 2 concepts needed to be learned). 408 
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To further assess concept learning, we also tested the agent’s ability to 409 

successfully avoid state duplication. That is, we wished to confirm that the model 410 

would only learn a new concept if actually presented with a new animal for which it 411 

did not already have a concept. To do so, we equipped the model with knowledge of 412 

seven out of the eight concept categories, and then repeatedly exposed it only to the 413 

animals it already knew over 80 trials. We subsequently exposed it to the eighth 414 

animal (Hawk) for which it did not already have knowledge over 20 additional 415 

trials. As can be seen in figure 4, the unused concept column was not engaged during 416 

the first 80 trials (bottom left and middle). However, in the final 20 trials, the agent 417 

correctly inferred that her current conceptual repertoire was unable to explain her 418 

new pattern of observations, leading the unused concept column to be adumbrated 419 

and the appropriate state-observation mapping to be learned (bottom right). We 420 

repeated these simulations under conditions in which the agent already had 421 

knowledge of six, five, or four concepts. In all cases, we observed that unused 422 

concept columns were never engaged inappropriately.  423 

 424 
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 425 
Figure 4. Illustration of representative simulation results when the agent had to avoid 426 
inappropriately learning a new concept (i.e., avoid state duplication)after only being 427 
exposed to animals for which it already had knowledge. Here the agent began with prior 428 
knowledge about seven concept categories, and was also equipped with an eighth column 429 
that could be engaged to learn a new concept category (bottom left). The agent was then 430 
presented with several instances of each of the seven animals that she already knew (80 431 
trials in total). In this simulation, the agent was successful in assigning each stimulus to an 432 
animal concept she had already acquired, and did not engage the unused concept ‘slot’ 433 
(bottom middle). Finally, the agent was presented with a new animal (a hawk) that she did 434 
not already know over 20 trials. In this case, the agent successfully engaged the additional 435 
column (i.e., she inferred that none of the concepts she possessed could account for her new 436 
observations), and learn the correct state-observation mapping (bottom right). 437 

 438 

Crucially, these simulations suggest that adaptive concept learning needs to 439 

be informed by existing knowledge about other concepts, such that a novel concept 440 

should only be learned if observations cannot be explained with existing conceptual 441 

knowledge. Here, this is achieved via the interplay of inference and learning, such 442 

that agents initially have to infer whether to assign an observation to an existing 443 
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concept, and only if this is not possible an ‘open slot’ is employed to learn about a 444 

novel concept. 445 

 446 

Increasing granularity  447 

Next, to explore the model’s ability to increase the granularity of its concept 448 

space, we first equipped the model with only the distinction between birds and fish 449 

(i.e., the rows of the likelihood mapping corresponding to color and size features 450 

were flattened in the same manner described above). We then performed the same 451 

procedure used in our previous simulations. As can be seen in Figure 5A (bottom 452 

left), the ‘A’ matrix learned by the model now more strongly resembled that of the 453 

generative process. Figure 5A (bottom) also illustrates reporting accuracy and the 454 

proportion of basic and specific category reports as a function of trial number. As 455 

can be seen, the agent initially only reported general categories, and became 456 

sufficiently confident to report specific categories after roughly 50 – 100 trials, but 457 

its accuracy increased gradually over the next 1000 trials (i.e., the agent reported 458 

specific categories considerably before its accuracy improved). Across 8 repeated 459 

simulations, the final accuracy level reached was between 93% – 98% in 7 460 

simulations, but she failed to learn one concept in the 8th case, with 84.4% overall 461 

accuracy (i.e., a failure to distinguish between pigeon and parakeet, and therefore 462 

only learned a broader category of “small birds”).  463 

To assess whether learning basic categories first was helpful in subsequently 464 

learning specific categories, we also repeated this simulation without any initial 465 

knowledge of the basic categories. As exemplified in figure 5A and 5B, the model 466 
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tended to perform reasonably well, but most often learned a less precise likelihood 467 

mapping and reached a lower reporting accuracy percentage after 2000 learning 468 

trials (across 8 repeated simulations: mean = 81.21%, SD = 6.39%, range from 469 

68.80% – 91.30%). Thus, learning basic concept categories first appeared to 470 

facilitate learning more specific concepts later. 471 

 472 
 473 
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474 
Figure 5. (A, left) Illustration of representative simulation results when the agent had to 475 
learn to increase the granularity of its concept space. Here the agent began with prior 476 
knowledge about the basic concept categories (i.e., it had learned the broad categories of 477 
“bird” and “fish”) but had not learned the feature patterns (i.e., rows) that differentiate 478 
different types of birds and fish. Post learning (i.e., after 2000 exposures), the agent did 479 
successfully learn all of the more granular concept categories, although again note that 480 
specific concepts were assigned to different columns then depicted in the generative 481 
process due to the unsupervised nature of the learning. (A, right) illustration of the 482 
analogous learning result when the agent had to learn all 8 specific categories without prior 483 
knowledge of the general categories. Although moderately successful, learning tended to be 484 
more difficult in this case. (B) Representative plots of reporting accuracy in each of the 2 485 
learning conditions as a function of the number of exposures. As can be seen, when the 486 
model starts out with prior knowledge about basic categories, it slowly become sufficiently 487 
confident to start reporting the more specific categories, and its final accuracy is high. In 488 
contrast, while the agent that did not start out with any prior knowledge of the general 489 
categories also grew confident in reporting specific categories over time, its final accuracy 490 
levels tended to be lower. In both cases, the agent began reporting specific categories before 491 
it achieved significant accuracy levels, therefore showing some initial overconfidence. 492 

 493 

 494 
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Overall, these findings provide a proof of principle that this sort of active 495 

inference scheme can add concepts to its state space in an unsupervised manner 496 

(i.e., without feedback) based purely on (expected) free energy minimization. In this 497 

case, it was able to accomplish this starting from a completely uninformative 498 

likelihood distribution. It could also learn more granular concepts after already 499 

acquiring more basic concepts, and our results suggest that learning granular 500 

concepts may be facilitated by first learning basic concepts (e.g., as in currently 501 

common educational practices). 502 

The novel feature of this generative model involved ‘building in’ a number of 503 

“reserve” hidden state levels. These initially had uninformative likelihood mappings; 504 

yet, if a new pattern of features was repeatedly observed, and the model could not 505 

account for this pattern with existing (informative) state-observation mappings, 506 

these additional hidden state levels could be engaged to improve the model’s 507 

explanatory power. This approach therefore accommodates a simple form of model 508 

expansion. 509 

 510 

Integrating model expansion and reduction 511 

 512 

We next investigated ways in which model expansion could be combined with 513 

Bayesian model reduction (KJ Friston, Lin, et al., 2017) – allowing the agent to adjust 514 

her model to accommodate new patterns of observations, while also precluding 515 

unnecessary conceptual complexity (i.e., over-fitting). To do so, we again allowed 516 

the agent to learn from 2000 exposures to different animals as described in the 517 
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previous section – but also allowed the model to learn its ‘D’ matrix (i.e., accumulate 518 

concentration parameters reflecting prior expectations over initial states). This 519 

allowed an assessment of the agent’s probabilistic beliefs about which hidden state 520 

factor levels (animals) it had been exposed to. In different simulations, the agent 521 

was only exposed to some animals and not others. We then examined whether a 522 

subsequent model reduction step could recover the animal concepts presented 523 

during the simulation; eliminating those concepts that were unnecessary to explain 524 

the data at hand. The success of this 2-step procedure could then license the agent to 525 

“reset” the unnecessary hidden state columns after concept acquisition, which 526 

would have accrued unnecessary likelihood updates during learning. Doing so 527 

would allow the optimal ability for those “reserve” states to be appropriately 528 

engaged, if and when the agent was exposed to truly novel stimuli. 529 

 The 2nd step of this procedure was accomplished by applying Bayesian model 530 

reduction to the ‘D’ matrix concentration parameters after learning. This is a form of 531 

post-hoc model optimization (K. J. Friston et al., 2016; Karl Friston, Parr, & Zeidman, 532 

2018) that rests upon estimation of a ‘full’ model, followed by analytic computation 533 

of the evidence that would have been afforded to alternative models (with 534 

alternative, ‘reduced’, priors) had they been used instead. Mathematically, this 535 

procedure is a generalization of things like automatic relevance determination (Karl 536 

Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007; Wipf & Rao, 2007) or 537 

the use of the Savage Dickie ratio in model comparison (Cornish & Littenberg, 538 

2007). It is based upon straightforward probability theory and, importantly, has a 539 

simple physiological interpretation; namely, synaptic decay and the elimination of 540 
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unused synaptic connections. In this (biological) setting, the concentration 541 

parameters of the implicit Dirichlet distributions can be thought of as synaptic tags. 542 

For a technical description of Bayesian model reduction techniques and their 543 

proposed neural implementation, see (KJ Friston, Lin, et al., 2017; Hobson & Friston, 544 

2012; Hobson, Hong, & Friston, 2014a); also see the left panel of Figure 8 and the 545 

associated legend further below for some additional details). 546 

The posterior concentration parameters were compared to the prior 547 

distribution for a full model (i.e., a flat distribution over 8 concepts) and prior 548 

distributions for possible reduced models (i.e., which retained different possible 549 

combinations of some but not all concepts; technically, reduced models were 550 

defined such that the to-be-eliminated concepts were less likely than the to-be-551 

retained concepts). If Bayesian model reduction provided more evidence for one or 552 

more reduced models, the reduced model with the most evidence was selected. 553 

Note: an alternative would be to perform model reduction on the ‘A’ matrix, but this 554 

is more complex due to a larger space of possible reduced models; it also does not 555 

address the question of the number of hidden state levels to retain in a 556 

straightforward manner. 557 

 In our first simulation, we presented our agent with all animals except for 558 

parakeets with equal probability over 2000 trials. When compared to the full model, 559 

the winning model corresponded to the correct 7-animal model matching the 560 

generative process in 6/8 cases (log evidence differences ranged from -3.12 to -8.3), 561 

and in 2/8 cases it instead selected a 6-animal model due to a failure to distinguish 562 

between 2 specific concepts during learning (log evidence differences = -5.30, -563 
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7.70). Figure 6 illustrates the results of a representative successful case). In the 564 

successful cases, this would correctly license the removal of changes in the model’s 565 

‘A’ and ‘D’ matrix parameters for the 8th animal concept during learning in the 566 

previous trials.  Similar results were obtained whenever any single animal type was 567 

absent from the generative process. 568 

 569 

Figure 6. Representative illustrations of simulations in which the agent performed Bayesian 570 
model reduction after learning. In these simulations, the agent was first exposed to 2000 571 
trials in which either 7, 6, or 5 animals were actually presented (i.e., illustrated in the top 572 
row, where only the white columns had nonzero probabilities in the generative process). In 573 
each case, model reduction was often successful at identifying the reduced model with the 574 
correct number of animal types presented (bottom row, where black columns should be 575 
removed) based on how much evidence it provided for the posterior distribution over 576 
hidden states learned by the agent (2nd row). This would license the agent to reset 577 
the unneeded columns in its likelihood mapping (3rd row) to their initial state (i.e., a 578 
flat distribution over features) such that it could be engaged if/when a new type of 579 
animal began to be observed (i.e., as in the simulations illustrated in the previous 580 
sections). 581 
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 582 

In a second simulation, the generative process contained 2 birds and all 4 583 

fish. Here, the correct reduced model was correctly selected in 6/8 simulations (log 584 

evidence differences range from -.96 to -8.24, with magnitudes greater than -3 in 585 

5/6 cases), whereas it incorrectly selected the 5-animal model in 2 cases (log 586 

evidence differences = -3.54, -4.50). In a third simulation, the generative process 587 

contained 1 bird and all 4 fish. Here, the correct reduced model had the most 588 

evidence in only 3/8 simulations (log evidence differences = -4.10, -4.11, -5.48), 589 

whereas a 6-animal model was selected in 3/8 cases and a 3-animal and 7-animal 590 

model were each selected once (log evidence differences > -3.0). Figure 6 also 591 

illustrates representative examples of correct model recovery in these 2nd and 3rd 592 

simulations. 593 

While we have used the terms ‘correct’ and ‘incorrect’ above to describe the 594 

model used to generate the data, we acknowledge that ‘all models are wrong’ (Box, 595 

Hunter, & Hunter, 2005), and that the important question is not whether we can 596 

recover the ‘true’ process used to generate the data, but whether we can arrive at 597 

the simplest but accurate explanation for these data. The failures to recover the 598 

‘true’ model highlighted above may reflect that a process other than that used to 599 

generate the data could have been used to do so in a simpler way. Simpler here 600 

means we would have to diverge to a lesser degree, from our prior beliefs, in order 601 

to explain the data under a given model, relative to a more complex model. It is 602 

worth highlighting the importance of the word prior in the previous sentence. This 603 

means that the simplicity of the model is sensitive to our prior beliefs about it. To 604 
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illustrate this, we repeated the same model comparisons as above, but with precise 605 

beliefs in an ‘A’ matrix that complies with that used to generate the data. Specifically, 606 

we repeated the three simulations above but only enabled ‘D’ matrix learning (i.e., 607 

the model was already equipped with the ‘A’ matrix of the generative process). In 608 

each case, Bayesian model reduction now uniquely identified the correct reduced 609 

model in 100% of cases. 610 

These results demonstrate that – after a naïve model has expanded its hidden 611 

state space to include likelihood mappings and initial state priors for a number of 612 

concept categories – Bayesian model reduction can subsequently be used to 613 

eliminate any parameter updates accrued for one or two redundant concept 614 

categories. In practice, the ‘A’ and ‘D’ concentration parameters for these redundant 615 

categories could be reset to their default pre-learning values – and could then be re-616 

engaged if new patterns of observations were repeatedly observed in the future. 617 

However, when three concepts should be removed, Bayesian model reduction was 618 

much less reliable. This appeared to be due to imperfect ‘A’ matrix learning, when 619 

occurring simultaneously with the (resultingly noisy) accumulation of prior 620 

expectations over hidden states – as a fully precise ‘A’ matrix led to correct model 621 

reduction in every case tested (i.e., suggesting that this type of model reduction 622 

procedure could be improved by first allowing state-observation learning to 623 

proceed alone, then subsequently allowing the model to learn prior expectations 624 

over hidden states, which could then be used in model reduction). 625 

 626 

Can concept acquisition allow for generalization? 627 
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One important ability afforded by concept learning is generalization. In a 628 

final set of simulations, we asked if our model of concept knowledge could account 629 

for generalization. To do so, we altered the model such that it no longer reported 630 

what it saw, but instead had to answer a question that depended on generalization 631 

from particular cross-category feature combinations. Specifically, the model was 632 

shown particular animals and asked: “could this be seen from a distance?” The 633 

answer to this question depended on both size and color, such that the answer was 634 

yes only for colorful, large animals (i.e., assuming small or gray animals would blend 635 

in with the sky or water and be missed). 636 

 Crucially, this question was asked of animals that the model had not been 637 

exposed to, such that it had to generalize from knowledge it already possessed (see 638 

Figure 7). To simulate and test for this ability, we equipped the model’s ‘A’ matrix 639 

with expert knowledge of 7 out of the 8 animals (i.e., as if these concepts had been 640 

learned previously, as in our simulations above). The 8th animal was unknown to the 641 

agent, in that it’s likelihood mapping was set such that the 8th animal state “slot” 642 

predicted all observations roughly equally.  In one variant, the model possessed all 643 

concepts except for “parrot,” and it knew that the answer to the question was yes for 644 

“whale shark” but not for any other concept it knew. To simulate one-shot 645 

generalization, learning was disabled and a parrot (which it had never seen before) 646 

was presented 20 times to see if it would correctly generalize and answer “yes” in a 647 

reliable manner. In another variant, the model had learned all concepts except 648 

“minnow” and was tested the same way to see if it would reliably provide the 649 

correct “no” response. 650 
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 Here, we observed that in both of these cases (as well as all others we tested) 651 

the model generalized remarkably well. It answered “yes” and “no” correctly in 652 

100% of trials. Thus, the agent did not simply possess concepts to explain things it 653 

saw. It instead demonstrated generalizable knowledge and could correctly answer 654 

questions when seeing a novel stimulus.      655 

 656 

 657 

Figure 7. Depiction of simulations in which we tested the agents ability to generalize from 658 
prior knowledge and correctly answered questions about new animals to which it had not 659 
previously been exposed. In the simulations, the generative model was modified so that the 660 
agent instead chose to report either “yes” or “no” to the question: “could this animal be seen 661 
from a distance?” Here, the answer was only yes if the animal was both large and colorful. 662 
We observed that when the agent started out with no knowledge of parrots it still correctly 663 
answered this question 100% of the time, based only on its knowledge of other animals. 664 
Similarly, when it started with no knowledge of minnows, it also correctly reported “no” 665 
100% of the time. Thus, the agent was able to generalize from prior knowledge with no 666 
additional learning. 667 
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 668 

 669 

Open questions and relation to other theoretical accounts of concept learning 670 

 671 

As our simulations show, this model allows for learning novel concepts (i.e., 672 

novel hidden states) based on assigning one or more ‘open slots’ that can be utilised 673 

to learn novel feature combinations. In a simple example, we have shown that this 674 

setup offers a potential computational mechanism for ‘model expansion’; i.e., the 675 

process of expanding a state space to account for novel instances in perceptual 676 

categorisation. We also illustrated how this framework can be combined with model 677 

reduction, which may be a mechanism for ‘re-setting’ these open slots based on 678 

recent experience.  679 

This provides a first step towards understanding how agents flexibly expand 680 

or reduce their model to adapt to ongoing experience. Yet, several open questions 681 

remain, which have partly been addressed in previous work. For example, the 682 

proposed framework resonates with previous similarity-based accounts of concept 683 

learning. Previous work has proposed a computational framework for arbitrating 684 

between assigning an observation to a previously formed memory or forming a 685 

novel (hidden) state representation (S. J. Gershman, Monfils, Norman, & Niv, 2017), 686 

based on evidence that this observation was sampled from an existing or novel 687 

latent state. This process is conceptually similar to our application of Bayesian 688 

model reduction over states. In the present framework, concept learning relies on a 689 

process based on inference and learning. First, agents have to infer whether ongoing 690 
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observations can be sufficiently explained by existing conceptual knowledge – or 691 

speak to the presence of a novel concept that motivates the use of an ‘open slot’. 692 

This process is cast as inference on (hidden) states. Second, if the agent infers that 693 

there is a novel concept that explains current observations, it has to learn about the 694 

specific feature configuration of that concept (i.e., novel state). This process 695 

highlights the interplay between inference, which allows for the acquisition of 696 

knowledge on a relatively short timescale, and learning, which allows for knowledge 697 

acquisition on a longer and more stable timescale. 698 

Similar considerations apply to the degree of ‘similarity’ of observations. In 699 

the framework proposed here, we have assumed that the feature space of 700 

observations is already learned and fixed. However, these feature spaces have to be 701 

learned in the first place, which implies learning the underlying components or 702 

feature dimensions that define observations. This relates closely to notion of 703 

structure learning as dimensionality reduction based on covariance between 704 

observations, as prominently discussed in the context of spatial navigation (Behrens 705 

et al., 2018; Dordek, Soudry, Meir, & Derdikman, 2016; Stachenfeld et al., 2016; 706 

Whittington, Muller, Mark, Barry, & Behrens, 2018).  707 

Another important issue is how such abstract conceptual knowledge is 708 

formed across different contexts or tasks. For example, the abstract concept of a 709 

‘bird’ will be useful for learning about the fauna in a novel environment, but specific 710 

types of birds – tied to a previous context – might be less useful in this regard. This 711 

speaks to the formation of abstract, task-general knowledge that results from 712 

training across different tasks, as recently discussed in the context of meta-713 
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reinforcement learning (Ritter, Wang, Kurth-Nelson, & Botvinick, 2018; J X Wang et 714 

al., 2016) with a putative link to the prefrontal cortex (Jane X. Wang et al., 2018). In 715 

the present framework, such task-general knowledge would speak to the formation 716 

of a hierarchical organisation that allows for the formation of conceptual knowledge 717 

both within and across contexts. Also note that our proposed framework depends 718 

on a pre-defined state space, including a pre-defined set of ‘open slots’ that allow for 719 

novel context learning. The contribution of the present framework is to show how 720 

these ‘open slots’ can be used for novel concept learning and be re-set based on 721 

model reduction. It will be important to extend this approach towards learning the 722 

structure of these models in the first place, including the appropriate number of 723 

‘open slots’ (i.e., columns of the A-matrix) for learning in a particular content 724 

domain and the relevant feature dimensions of observations (i.e., rows of A-matrix).  725 

This corresponds to a potentially powerful and simple application of 726 

Bayesian model reduction, in which candidate models (i.e., reduced forms of a full 727 

model) are readily identifiable based upon the similarity between the likelihoods 728 

conditioned upon different hidden states. If two or more likelihoods are sufficiently 729 

similar, the hidden states can be merged (by assigning the concentration 730 

parameters accumulated during experience-dependent learning to one or other of 731 

the hidden states). The ensuing change in model evidence scores the reduction in 732 

complexity. If this reduction is greater than the loss of accuracy – in relation to 733 

observations previously encountered – Bayesian model reduction will, effectively, 734 

merge one state into another; thereby freeing up a state for the learning of new 735 
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concepts. We will demonstrate this form of structure learning via Bayesian model 736 

reduction in future work. 737 

 738 

Potential advantages of the approach 739 

The present approach may offer some potential theoretical and empirical 740 

advantages in comparison to previous work. One theoretical advantage corresponds 741 

to the parsimony of casting this type of structure learning as an instance of Bayesian 742 

model selection. When integrated with other aspects of the active inference 743 

framework, this entails that perceptual inference, active learning, and structure 744 

learning are all expressions of the same principle; namely, the minimization of 745 

variational free energy, over three distinct timescales. A second, related theoretical 746 

advantage is that, when this type of structure learning is cast as Bayesian model 747 

selection/reduction, there is no need to invoke additional procedures or schemes 748 

(e.g., nonparametric Bayes or ‘stick breaking’ processes; (S. Gershman & Blei, 749 

2012)). Instead, a generative model with the capacity to represent a sufficiently 750 

complex world will automatically learn causal structure in a way that contextualizes 751 

active inference within active learning, and active learning within structure 752 

learning. 753 

 One potential empirical advantage of the present approach stems from the 754 

fact that active inference models have a plausible biological basis that affords 755 

testable neurobiological predictions. Specifically, these models have well-articulated 756 

companion micro-anatomical neural process theories, based on commonly used 757 

message-passing algorithms (KJ Friston, FitzGerald, et al., 2017; Parr & Friston, 758 
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2018; Parr, Markovic, Kiebel, & Friston, 2019). In these process theories, for 759 

example, the activation level of different neural populations (typically portrayed as 760 

consisting of different cortical columns) can encode posterior probability estimates 761 

over different hidden states. These activation levels can then be updated by synaptic 762 

inputs with particular weights that convey the conditional probabilities encoded in 763 

the ‘A’ and ‘B’ (among other) matrices described above, where active learning then 764 

corresponds to associative synaptic plasticity. Phasic dopamine responses also play 765 

a particular role in these models, by reporting changes in policy precision (i.e., the 766 

degree of confidence in one policy over others) upon new observations (see Figure 8 767 

and the associated legend for more details).  768 

 769 

 770 

Figure 8. This figure illustrates the mathematical framework of active inference and 771 
associated neural process theory used in the simulations described in this paper. The 772 
differential equations in the left panel approximate Bayesian belief updating within the 773 
graphical model depicted in the right panel of Figure 1 via a gradient descent on free energy 774 
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(F). The right panel also illustrates the proposed neural basis by which neurons making up 775 
cortical columns could implement these equations. The equations have been expressed in 776 
terms of two types of prediction errors. State prediction errors (ε) signal the difference 777 
between the (logarithms of) expected states (s) under each policy and time point—and the 778 
corresponding predictions based upon outcomes/observations (A matrix) and the 779 
(preceding and subsequent) hidden states (B matrix, and, although not written, the D 780 
matrix for the initial hidden states at the first time point). These represent prior and 781 
likelihood terms respectively – also marked as messages 2, 3, and 4, which are depicted as 782 
being passed between neural populations (colored balls) via particular synaptic 783 
connections in the right panel. These (prediction error) signals drive depolarization (v) in 784 
those neurons encoding hidden states (s), where the probability distribution over hidden 785 
states is then obtained via a softmax (normalized exponential) function (σ). Outcome 786 
prediction errors (ς) instead signal the difference between the (logarithms of) expected 787 
observations (o) and those predicted under prior preferences (C). This term additionally 788 
considers the expected ambiguity or conditional entropy (H) between states and outcomes 789 
as well as a novelty term (W) reflecting the degree to which beliefs about how states 790 
generate outcomes would change upon observing different possible state-outcome 791 
mappings (computed from the A matrix). This prediction error is weighted by the expected 792 
observations to evaluate the expected free energy (G) for each policy (π), conveyed via 793 
message 5. These policy-specific free energies are then integrated to give the policy 794 
expectations via a softmax function, conveyed through message 1. Actions at each time 795 
point (u) are then chosen out of the possible actions under each policy (U) weighted by the 796 
value (negative expected free energy) of each policy. In our simulations, the model learned 797 
associations between hidden states and observations (A) via a process in which counts 798 
were accumulated (a) reflecting the number of times the agent observed a particular 799 
outcome when she believed that she occupied each possible hidden state. Although not 800 
displayed explicitly, learning prior expectations over initial hidden states (D) is similarly 801 
accomplished via accumulation of concentration parameters (d). These prior expectations 802 
reflect counts of how many times the agent believes it previously occupied each possible 803 
initial state. Concentration parameters are converted into expected log probabilities using 804 
digamma functions (ψ). The way in which Bayesian model reduction was performed in this 805 
paper is also written in the lower left (where B indicates a beta function, and m is the 806 
posterior probability of each model). Here, the posterior distribution over initial states (d) 807 
is used to assess the difference in the evidence (ΔF) it provides for the number of hidden 808 
states in the current model and other possible models characterized by fewer hidden states. 809 
Prior concentration parameters are shown in italics, posterior in bold, and those priors and 810 
posteriors associated with the reduced model are equipped with a tilde (~). As already 811 
stated, the right panel illustrates a possible neural implementation of the update equations 812 
in the middle panel. In this implementation, probability estimates have been associated 813 
with neuronal populations that are arranged to reproduce known intrinsic (within cortical 814 
area) connections. Red connections are excitatory, blue connections are inhibitory, and 815 
green connections are modulatory (i.e., involve a multiplication or weighting). These 816 
connections mediate the message passing associated with the equations in the left panel. 817 
Cyan units correspond to expectations about hidden states and (future) outcomes under 818 
each policy, while red states indicate their Bayesian model averages (i.e., a “best guess” 819 
based on the average of the probability estimates for the states and outcomes across 820 
policies, weighted by the probability estimates for their associated policies. Pink units 821 
correspond to (state and outcome) prediction errors that are averaged to evaluate expected 822 
free energy and subsequent policy expectations (in the lower part of the network). This 823 
(neural) network formulation of belief updating means that connection strengths 824 
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correspond to the parameters of the generative model described in the text. Learning then 825 
corresponds to changes in the synaptic connection strengths. Only exemplar connections 826 
are shown to avoid visual clutter. Furthermore, we have just shown neuronal populations 827 
encoding hidden states under two policies over three time points (i.e., two transitions), 828 
whereas in the task described in this paper there are greater number of allowable policies. 829 
For more information regarding the mathematics and processes illustrated in this figure, 830 
see (KJ Friston, Lin, et al., 2017; KJ Friston, Parr, et al., 2017). 831 
 832 

 833 

 834 

Based on these theories, the present model would predict that the brain 835 

contains “reserve” cortical columns and synapses (most likely within secondary 836 

sensory and association cortices) available to capture new patterns in observed 837 

features. To our knowledge, no direct evidence supporting the presence of unused 838 

cortical columns in the brain has been observed, although the generation of new 839 

neurons (with new synaptic connections) is known to occur in the hippocampus 840 

(Chancey et al., 2013). "Silent synapses” have also been observed in the brain, which 841 

does appear consistent with this prediction; such synapses can persist into 842 

adulthood and only become activated when new learning becomes necessary (e.g., 843 

see (Chancey et al., 2013; Funahashi, Maruyama, Yoshimura, & Komatsu, 2013; 844 

Kerchner & Nicoll, 2008)). One way in which this idea of “spare capacity” or 845 

“reserve” cortical columns might be tested in the context of neuroimaging would be 846 

to examine whether greater levels of neural activation – within conceptual 847 

processing regions – are observed after learning additional concepts, which would 848 

imply that additional populations of neurons become capable of being activated. In 849 

principle, single-cell recording methods might also test for the presence of neurons 850 
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that remain at baseline firing rates during task conditions, but then become 851 

sensitive to new stimuli within the relevant conceptual domain after learning. 852 

Figure 9 provides a concrete example of two specific empirical predictions 853 

that follow from simulating the neural responses that should be observed within our 854 

concept learning task under these process theories. In the left panel, we plot the 855 

firing rates (darker = higher firing rate) and local field potentials (rate of change in 856 

firing rates) associated with neural populations encoding the probability of the 857 

presence of different animals that would be expected across a number of learning 858 

trials. In this particular example, the agent began with knowledge of the basic 859 

categories of ‘bird’ and ‘fish,’ but needed to learn the eight more specific animal 860 

categories over 50 interleaved exposures to each animal (only 10 equally spaced 861 

learning trials involving the presentation of a parakeet are shown for simplicity). As 862 

can be seen, early in learning the firing rates and local field potentials remain at 863 

baseline levels; in contrast, as learning progresses, these neural responses take a 864 

characteristic shape with more and more positive changes in firing rate in the 865 

populations representing the most probable animal, while other populations drop 866 

further and further below baseline firing rates.  867 

The right panel depicts a similar simulation, but where the agent was 868 

allowed to self-report what it saw on each trial (for clarity of illustration, we here 869 

show 12 equally spaced learning trials for parakeet over 120 total trials). Enabling 870 

policy selection allowed us to simulate expected phasic dopamine responses during 871 

the task, corresponding to changes in the precision of the probability distribution 872 

over policies after observing a stimulus on each trial. As can be seen, during early 873 
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trials the model predicts small firing rate increases when the agent is confident in its 874 

ability to correctly report the more general animal category after observing a new 875 

stimulus, and firing rate decreases when the agent becomes less confident in one 876 

policy over others (i.e., as confidence in reporting the specific versus general 877 

categories becomes more similar). Larger and larger phasic dopaminergic responses 878 

are then expected as the agent becomes more and more confident in its ability to 879 

correctly report the specific animal category upon observing a new stimulus. It will 880 

be important for future neuroimaging studies to test these predictions in this type of 881 

concept learning/stimulus categorization task. 882 

 883 

 884 

 885 
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Figure 9. Simulated neuronal firing rates, local field potentials, and dopaminergic responses 886 
across learning trials based on the neural process theory associated with active inference 887 
summarized in Figure 8. The top left panel displays the predicted firing rates (darker = 888 
higher firing rate) of neural populations encoding the probability of each hidden state 889 
over 50 interleaved exposures to each animal (only 10 equally spaced learning trials 890 
involving the presentation of a parakeet are shown for simplicity) in the case where 891 
the agent starts out with knowledge of the basic animal categories but must learn 892 
the more specific categories. As can be seen, initially each of the four neural 893 
populations encoding possible bird categories (i.e., one row per possible category) 894 
have equally low firing rates (gray); as learning continues, firing rates increase for 895 
the ‘parakeet’ population and decrease for the others. The bottom left panel 896 
illustrates the predicted local field potentials (based on the rate of change in firing 897 
rates) that would be measured across the task. The top right panel displays the 898 
predicted firing rates of neural populations in an analogous simulation in which 899 
reporting policies were enabled (for clarity of illustration, we here show 12 equally 900 
spaced learning trials for parakeet over 120 total trials). Enabling policy selection 901 
allowed us to simulate the phasic dopaminergic responses (reporting changes in the 902 
precision of the probability distribution over policies) predicted to occur across 903 
learning trials; here the agent first becomes confident in its ability to correctly 904 
report the general animal category upon observing a stimulus, then becomes unsure 905 
about reporting specific versus general categories, and then becomes confident in 906 
its ability to report the specific categories. 907 
 908 

 909 

Discussion 910 

 911 

The Active Inference formulation of concept learning presented here 912 

demonstrates a simple way in which a generative model can acquire both basic and 913 

highly granular knowledge of the hidden states/causes in its environment. In 914 

comparison to previous theoretical work using active inference (e.g., (M. Mirza, 915 

Adams, Mathys, & Friston, 2016; Parr & Friston, 2017; Schwartenbeck, FitzGerald, 916 

Mathys, Dolan, & Friston, 2015)), the novel aspect of our model was that it was 917 

further equipped with “reserve” hidden states initially devoid of content (i.e., these 918 

states started out with uninformative likelihood mappings that predicted all 919 
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outcomes with roughly equal probability). Over multiple exposures to different 920 

stimuli, these hidden states came to acquire conceptual content that captured 921 

distinct statistical patterns in the features of those stimuli. This was accomplished 922 

via the model’s ability to infer when its currently learned hidden states were unable 923 

to account for a new observation, leading an unused hidden state column to be 924 

engaged that could acquire a new state-observation mapping. 925 

Crucially, the model was able to start with some concepts and then expand its 926 

representational repertoire to learn others – but would only do so when a new 927 

stimulus was observed. This is conceptually similar to nonparametric Bayesian 928 

learning models, such as the “Chinese Room” process and the “Indian Buffet” 929 

process, that can also infer the need to invoke additional hidden causes with 930 

additional data (S. Gershman & Blei, 2012). These statistical learning models do not 931 

need to build in additional “category slots” for learning as in our model and can, in 932 

principle, entertain infinite state spaces. On the other hand, it is less clear at present 933 

how the brain could implement this type of learning. An advantage of our model is 934 

that learning depends solely on biologically plausible Hebbian mechanisms (for a 935 

possible neural implementation of model reduction, see (KJ Friston, Lin, et al., 2017; 936 

Hobson & Friston, 2012; Hobson, Hong, & Friston, 2014b)).  937 

The distinction between nonparametric Bayesian learning and the current 938 

active learning scheme may be important from a neurodevelopmental perspective 939 

as well. In brief, structure learning in this paper starts with a generative model with 940 

‘spare capacity’, where uncommitted or naive conceptual ‘slots’ are used to explain 941 

the sensorium, during optimization of free energy or model evidence. In contrast, 942 
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nonparametric Bayesian approaches add new slots when appropriate. One might 943 

imagine that neonates are equipped with brains with ‘spare capacity’ (Baker & 944 

Tenenbaum, 2014) that is progressively leveraged during neurodevelopment, much 945 

in the spirit of curriculum learning (Al-Muhaideb & Menai, 2011). In this sense, the 946 

current approach to structure learning may be better considered as active learning 947 

with generative models that are equipped with a large number of hidden states, 948 

which are judiciously reduced – via a process of Bayesian model reduction. 949 

Furthermore, as in the acquisition of expertise, our model can also begin with broad 950 

category knowledge and then subsequently learn finer-grained within-category 951 

distinctions, which has received less attention from the perspective of the 952 

aforementioned models. Reporting broad versus specific category recognition is 953 

also a distinct aspect of our model – driven by differing levels of uncertainty and an 954 

expectation (preference) not to incorrectly report a more specific category. 955 

Our simulation results also demonstrated that, when combined with 956 

Bayesian model reduction, the model can guard against learning too many 957 

categories during model expansion – often retaining only the number of hidden 958 

causes actually present in its environment – and to keep “reserve” hidden states for 959 

learning about new causes if or when they appear. With perfect “expert” knowledge 960 

of the possible animal types it could observe (i.e., fully precise likelihood mappings 961 

matching the generative process) this was true in general. Interestingly, however, 962 

with an imperfectly learned likelihood mapping, model reduction only succeeded 963 

when the agent had to remove either 1 or 2 concepts from her model; when 3 964 

potential categories needed to be removed, the correct reduced model was 965 
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identified less than half the time. It would be interesting to empirically test whether 966 

similar learning difficulties are present in humans.  967 

Neurobiological theories associated with Active Inference also make 968 

predictions about the neural basis of this process (Hobson & Friston, 2012; Hobson 969 

et al., 2014b). Specifically, during periods of rest (e.g., daydreaming) or sleep, it is 970 

suggested that, because sensory information is down-weighted, learning is driven 971 

mainly by internal model simulations (e.g., as appears to happen in the phenomenon 972 

of hippocampal replay; (Feld & Born, 2017; Lewis, Knoblich, & Poe, 2018; Pfeiffer & 973 

Foster, 2013)); this type of learning can accomplish a model reduction process in 974 

which redundant model parameters are identified and removed to prevent model 975 

over-fitting and promote selection of the most parsimonious model that can 976 

successfully account for previous observations.  This is consistent with work 977 

suggesting that, during sleep, many (but not all) synaptic strength increases 978 

acquired in the previous day are attenuated (Tononi & Cirelli, 2014). The role of 979 

sleep and daydreaming in keeping “reserve” representational resources available 980 

for model expansion could therefore be especially important to concept learning – 981 

consistent with the known role of sleep in learning and memory (Ackermann & 982 

Rasch, 2014; Feld & Born, 2017; Perogamvros & Schwartz, 2012; Stickgold, Hobson, 983 

Fosse, & Fosse, 2001; Walker & Stickgold, 2010).   984 

In addition, an emergent feature of our model was its ability to generalize 985 

prior knowledge to new stimuli to which it had not previously been exposed. In fact, 986 

the model could correctly generalize upon a single exposure to a new stimulus – a 987 

type of “one-shot learning” capacity qualitatively similar to that observed in humans 988 
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(Landau, Smith, & Jones, 1988; E. Markman, 1989; Xu & Tenenbaum, 2007b). While 989 

it should be kept in mind that the example we have provided is very simple, it 990 

demonstrates the potential usefulness of this novel approach. Some other 991 

prominent approaches in machine-learning (e.g., deep learning) tend to require 992 

larger amounts of data (Geman et al., 1992; Hinton et al., 2012; LeCun et al., 2015; 993 

Lecun et al., 1998; Mnih et al., 2015), and do not learn the rich structure that allows 994 

humans to use concept knowledge in a wide variety of generalizable functions 995 

(Barsalou, 1983; Biederman, 1987; Feldman, 1997; Jern & Kemp, 2013; A. B. 996 

Markman & Makin, 1998; Osherson & Smith, 1981; Ward, 1994; Williams & 997 

Lombrozo, 2010). Other recent hierarchical Bayesian approaches in cognitive 998 

science have made progress in this domain, however, by modeling concepts as types 999 

of probabilistic programs (Ghahramani, 2015; Goodman, Tenenbaum, & 1000 

Gerstenberg, 2015; Lake et al., 2015).  1001 

It is important to note that this model is deliberately simple and is meant 1002 

only to represent a proof of principle that categorical inference and conceptual 1003 

knowledge acquisition can be modeled within this particular neurocomputational 1004 

framework. We chose a particular set of feature combinations to illustrate this, but it 1005 

remains to be demonstrated that learning in this model would be equally successful 1006 

with a larger feature space and set of learnable hidden causes.  1007 

Finally, another topic for future work would be the expansion of this type of 1008 

model to context-specific learning (e.g., with an additional hidden state factor for 1009 

encoding distinct contexts). In such cases, regularities in co-occurring features differ 1010 

in different contexts and other cues to context may not be directly observable (e.g., 1011 
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the same species of bird could be a slightly different color or size in different parts 1012 

of the world that otherwise appear similar) – creating difficulties in inferring when 1013 

to update previously learned associations and when to instead acquire competing 1014 

associations assigned to new contexts. At present, it is not clear whether the 1015 

approach we have illustrated would be successful at performing this additional 1016 

function, although the process of inferring the presence of a new hidden state in a 1017 

second hidden state factor encoding context would be similar (for related work on 1018 

context-dependent contingency learning, see (S. J. Gershman et al., 2017; S. 1019 

Gershman, Jones, Norman, Monfils, & Niv, 2013)). Another point worth highlighting 1020 

is that we have made particular choices with regard to various model parameters 1021 

and the number of observations provided during learning. Further investigations of 1022 

the space of these possible parameter settings will be important. With this in mind, 1023 

however, our current modelling results could offer additional benefits. For example, 1024 

the model’s simplicity could be amenable to empirical studies of saccadic eye 1025 

movements toward specific features during novel category learning (e.g. following 1026 

the approach of (M. B. Mirza, Adams, Mathys, & Friston, 2018)). This approach could 1027 

also be combined with measures of neural activity in humans or other animals, 1028 

allowing more direct tests of the predictions highlighted above. In addition, the 1029 

introduction of exploratory, novelty-seeking, actions could be used to reduce the 1030 

number of samples required for learning, with agents selecting those data that are 1031 

most relevant. 1032 

In conclusion, the Active Inference scheme we have described illustrates 1033 

feature integration in the service of conceptual inference: it can successfully 1034 
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simulate simple forms of concept acquisition and concept differentiation (i.e. 1035 

increasing granularity), and it spontaneously affords one-shot generalization. 1036 

Finally, it speaks to empirical work in which behavioral tasks could be designed to 1037 

fit such models, which would allow investigation of individual differences in concept 1038 

learning and its neural basis. For example, such a model can simulate (neuronal) 1039 

belief updating to predict neuroimaging responses as we illustrated above; i.e., to 1040 

identify the neural networks engaged in evidence accumulation and learning 1041 

(Schwartenbeck et al., 2015). In principle, the model parameters (e.g., ‘A’ matrix 1042 

precision) can also be fit to behavioral choices and reaction times – and thereby 1043 

phenotype subjects in terms of the priors under which they infer and learn 1044 

(Schwartenbeck & Friston, 2016). This approach could therefore advance 1045 

neurocomputational approaches to concept learning in several directions. 1046 

 1047 

Software note 1048 

Although the generative model – specified by the various matrices described in this 1049 

paper – changes from application to application, the belief updates are generic and 1050 

can be implemented using standard routines (here spm_MDP_VB_X.m). These 1051 

routines are available as Matlab code in the SPM academic 1052 

software: http://www.fil.ion.ucl.ac.uk/spm/. The simulations in this paper can be 1053 

reproduced (and customised) via running the Matlab code included here is 1054 

supplementary material (Concepts_model.m). 1055 

 1056 

 1057 
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