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Abstract 

The influence of the global BOLD signal on resting state functional connectivity in fMRI data remains 

a topic of debate, with little consensus. In this study, we assessed the effects of global signal regression 

(GSR) on effective connectivity within and between resting-state networks – as estimated with 

dynamic causal modelling (DCM) for resting state fMRI (rsfMRI). DCM incorporates a forward 

(generative) model that quantifies the contribution of different types of noise (including global 

measurement noise), effective connectivity, and (neuro)vascular processes to functional connectivity 

measurements. DCM analyses were applied to two different designs; namely, longitudinal and cross-

sectional designs. In the modelling of longitudinal designs, we included four extensive longitudinal 

resting state fMRI datasets with a total number of 20 subjects. In the analysis of cross-sectional designs, 

we used rsfMRI data from 361 subjects from the Human Connectome Project. We hypothesized that 

(1) GSR would have no discernible impact on effective connectivity estimated with DCM, and (2) GSR 

would be reflected in the parameters representing global measurement noise. Additionally, we 

performed comparative analyses of the informative value of data with and without GSR. Our results 

showed negligible to small effects of GSR on connectivity within small (separately estimated) RSNs. For 

between-network connectivity, we found two important effects: the effect of GSR on between-

network connectivity (averaged over all connections) was negligible to small, while the effect of GSR 

on individual connections was non-negligible. Contrary to our expectations, we found either no effect 

(in the longitudinal designs) or a non-specific (cross-sectional design) effect of GSR on parameters 

representing (global) measurement noise. Data without GSR were found to be more informative than 

data with GSR; however, in small resting state networks the precision of posterior estimates was 

greater using data after GSR. In conclusion, GSR is a minor concern in DCM studies; however, individual 

between-network connections (as opposed to average between-network connectivity) and noise 

parameters should be interpreted quantitatively with some caution. The Kullback-Leibler divergence 

of the posterior from the prior, together with the precision of posterior estimates, might offer a useful 

measure to assess the appropriateness of GSR, when nuancing data features in resting state fMRI.  
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1. Introduction 

The fMRI signal is corrupted by noise from several sources; for example, motion-induced noise, 

background (thermal) noise, and non-neural physiological noise that arises from cardiac and 

respiratory processes (Liu, 2016). This is especially a problem in resting state fMRI research, which 

usually aims to quantify low-frequency fluctuations in the absence of explicit perturbations. Extensive 

research has been carried out to develop and apply methods to de-noise the (resting-state) fMRI signal 

(e.g., Erdoğan et al., 2016; Kasper et al., 2017; Rummel et al., 2013). Some studies focus on modeling 

explicit (external) sources of noise (e.g., by including motion and cardiac signal as regressors in a GLM; 

see, e.g., Kasper et al., 2017), others focus on identifying signal and noise directly from fMRI signals 

(e.g., using ICA; see, e.g., Rummel et al., 2013). A widely applied (group of) method(s) – used to de-

noise fMRI signals – is to correct resting-state fMRI time-series for fluctuations in the global signal (GS), 

which is the average signal across all voxels of the entire MRI volume. Different types of corrections 

for GS fluctuations have been developed and applied, including GS regression (GSR), GS normalization, 

and GS subtraction (Liu, Nalci, & Falahpour, 2017).  

The use (or omission) of GSR in fMRI connectivity studies has been a hot topic of debate (Murphy 

& Fox, 2016). The method has commonly been applied to account for multiple non-neural sources of 

noise (e.g., motion and cardiac-induced signal). Some studies have shown that GSR might increase the 

efficiency of detecting significant functional connectivity (Liu et al., 2017). Fox et al. (2009), for 

example, showed that global signal regression (GSR) enhanced both the spatial specificity of positive 

correlations and detection of anti-correlation between networks (e.g., between default mode and 

dorsal attention networks). Similarly, Yan et al. (2013) showed that GSR decreased the correlation 

between motion and functional connectivity. On the other hand, other studies have shown that global 

signal regression introduces spurious connectivity, and leads to complex region-dependent biases 

(Anderson et al., 2011; Murphy et al., 2009; Saad et al., 2012). Murphy et al. (2009), for example, 

showed both analytically and through simulations that global signal regression causes spurious 

negative connectivity. Saad et al. (2012) and Gotts et al. (2013) showed that group differences can 

become distorted after GSR. With this background, some authors have argued for new perspectives 

on how to study GSR (see, e.g., Power et al., 2017; Uddin, 2017). 

Typically, studies investigating the impact of global signal corrections have focused on measures of 

connectivity that do not include a biologically plausible (forward) model; for example, correlation and 

independent component analysis (ICA). Therefore, connectivity estimates in these studies are not 

separated from estimates of hemodynamic processes or measurement noise. Dynamic causal 

modelling (DCM; Friston, Harrison, & Penny, 2003) is a method that allows such separation, by 
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explicitly incorporating parameters representing state and measurement noise, effective connectivity 

and (neuro)vascular processes. Parameters representing noise are separated into three components: 

neural fluctuations that drive the system (i.e., state noise), observation or measurement noise (both 

local and global; e.g., caused by changes in scanner temperature), and sampling error (caused by 

imperfect sampling). Parameters representing (neuro)vascular processes include parameters 

modelling vasodilatory signal decay (related to neurovascular coupling), mean blood transit time (the 

average time it takes for blood to pass the veins), and the ratio of intravascular to extravascular 

contributions to the measured fMRI signal (Stephan et al., 2007).  

In the present study, we assessed the effects of global signal regression on effective connectivity 

and noise parameters as estimated by (spectral) DCM for resting state fMRI (Friston, Kahan, Biswal, & 

Razi, 2014; Razi, Kahan, Rees, & Friston, 2015). We expected that (1) global signal regression would 

not have a substantial impact on effective connectivity, and (2) its main effect would be reflected in 

the parameters representing global observation noise. In addition, we investigated whether data with 

GSR affords a greater information gain compared to data without GSR – as well as increasing the 

precision of posterior connectivity estimates. To address these questions, we decomposed free energy 

– a lower bound on the log model evidence – into an accuracy and a complexity term. The latter reflects 

the amount of information gain afforded by the data.  

Four resting state networks were analysed: three resting state networks (RSNs; namely 

somatomotor, saliency, and default mode network) and an additional larger network comprising all 

three networks. To allow for sufficient generalizability, and ensure a comprehensive examination of 

how GSR affects connectivity, we performed analyses using two different designs; namely, longitudinal 

and cross-sectional designs. For the former, we used four longitudinal datasets (see Almgren et al., 

2018), to which a hierarchical approach was applied (i.e., from sessions to subjects, and from subjects 

to group). The benefits of such a hierarchical analysis are that: (a) the total variance is captured by 

multiple variance components (e.g., between-session variance, between-subject variance), hence 

rendering parameter estimates potentially more precise, (b) within-subject effects (e.g., fluctuations 

in the amount of noise) are mitigated, and (c) conclusions are not limited to one acquisition protocol 

or dataset. The second design was cross-sectional, for which we used the human connectome project’s 

dataset. The benefits of this dataset are that (a) data are preprocessed by a standardized HCP pipeline, 

(b) the sample size is large (361 unrelated subjects), hence mitigating subject-specific effects.  
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2. Methods 

2.1 Datasets and subjects 

The longitudinal datasets were acquired by four different research institutions (see, Choe et al., 

2015, Filevich et al., 2017, Gordon et al., 2017, and Laumann et al., 2015). Together they comprised 20 

subjects (11 females, mean and standard deviation of age at onset study: 30.1 ± 5.2) and contained a 

total of 653 rsfMRI sessions (at the least 10 for each subject). For a further description of the 

longitudinal datasets, see Almgren et al. (2018).  

In addition, the Human Connectome Project’s 900 subject release (HCP; Van Essen et al., 2012) was 

analysed as cross-sectional dataset. To avoid issues arising with data from related subjects, we only 

modelled data from 361 unrelated subjects (194 females; mean and standard deviation age: 28.7 ± 

3.7). Only the first session of all subjects was analysed.  

2.2 Data Analyses 

All analyses were performed using the SPM12 software package (revision 6906; Wellcome Centre 

for Human Neuroimaging; www.fil.ion.ucl.ac.uk/spm/software/spm12), including DCM for resting 

state fMRI (DCM12; revision 6801), and parametric empirical Bayes (PEB; revision 6778).  

2.2.1 Preprocessing. Concerning the longitudinal datasets, the same preprocessing and time series 

extraction steps were used as in Almgren et al. (2018). In short, the initial five images for each resting 

state fMRI session were discarded, then rsfMRI data were corrected for differences in slice time (using 

the central slice as a reference), realigned to the first volume of each session, coregistered to an 

anatomical image (anatomical image prior to first functional scan session), normalized to MNI space 

and smoothed using a Gaussian kernel (FWHM = 6mm). Three sessions (across all subjects and 

datasets) were discarded because of insufficient quality. Concerning the cross sectional data from HCP 

dataset, the minimally preprocessed rsfMRI data of the first scanning session of each subject were 

used (see, Glasser et al., 2013). These data were additionally smoothed using a Gaussian kernel of 6mm 

FWHM.  

2.2.2 Time-series extraction. Extraction of regional time-series was the same for both types of 

datasets – and is described in detail in Almgren et al. (2018). In short, voxels showing low frequency 

fluctuations were identified using a GLM with a discrete cosine basis set as regressor of interest (0.0078 

– 0.1Hz; where the number of components was a function of the number of scans and TR) and eight 

nuisance regressors (six head motion regressors, CSF signal from 5mm ROI in circulatory system, WM 

signal from 7mm ROI in brainstem). For the analyses with GSR the average time-series across the whole 

brain (using spm_global.m) were included as a nuisance regressor (see paragraph 2.2.5). The SPM 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/634063doi: bioRxiv preprint 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://doi.org/10.1101/634063
http://creativecommons.org/licenses/by/4.0/


6 
 

produced by specifying and estimating an F-contrast across all DCT components was masked with ROIs 

from template ICA maps (Smith et al., 2009). Table 1 shows the exact coordinates for each region; 

Figure 1 shows the regions superimposed on a template brain. Time-series were computed as the 

principal eigenvariate of signals centred on the peak voxel of the SPM (sphere radius = 8mm) in each 

ROI. This procedure allowed for subject-specific peak locations of low-frequency fluctuations within 

the boundaries of the (subject independent) template ROIs. The somatomotor network (SMR), salience 

network (SAL), and default mode network (DMN), comprised respectively three, five, and four regions.  

The same time-series were also included in the combined network (excluding mPFC because of its 

proximity to ACC).  

 

 

Network Region Coordinates 

Somatomotor Supplementary motor area 0 -12 50 

 Right precentral gyrus 44 -16 48 

 Left postcentral gyrus -38 -26  56 

Figure 1. Location of regions included in the present study. Colors of spheres represent the 

network from which they were taken (blue represents salience network, red represents default 

mode network, and green represents somatomotor network). Anatomical labels: PRC = 

precuneus; l/rIPC = left/right intraparietal cortex; mPFC = medial prefrontal cortex; SMA = 

supplementary motor area; l/rSMR = left/right somatomotor region; l/rINS = left/right insula; 

ACC = anterior cingulate cortex; l/rMFG = left/right middle frontal gyrus. 
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Salience Anterior cingulate cortex 0  3 22 

  Left middle frontal gyrus -28 54  14 

 Right middle frontal gyrus 30 52 14 

 Left insula -36 12 -2 

 Right insula 32 20 4 

Default mode Precuneus 2 -58 30 

 Medial prefrontal cortex* 2 56 -4 

 Left inferior parietal cortex -44 -60 24 

 Right inferior parietal cortex 54 -62 28 

Table 1. ROI regions and coordinates. Coordinates were adopted from template ICA images (Smith et 
al., 2009). *Not included in combined network. 

2.2.3 Dynamic Causal Modelling for resting state fMRI. Fully-connected DCMs without exogenous 

inputs were created and inverted for each session and subject separately (DCM12; DCM for resting 

state fMRI revision 6801). Four DCMs were estimated for each session: a DCM for each network 

separately and a DCM for the combined network. Default shrinkage priors - not informed by functional 

connectivity - were used for all networks. For each network (both separate and combined) sessions 

were excluded from further analyses if they did not meet all acceptance criteria (see also, Almgren et 

al., 2018) for both analysis types (i.e., with and without GSR). The acceptance criteria were: explained 

variance above 60%, at least one (extrinsic) connection strength greater than 1/8Hz, at least one 

effectively estimated parameter, maximum frame-wise displacement (FD) across all scans lower than 

1.5mm, and a maximum alpha-threshold of 5% (i.e., type-I error rate; uncorrected for multiple 

comparisons) for which significant voxels were found in all regions of the specific network. For the 

longitudinal datasets; subjects were rejected if they had less than 8 sessions after diagnostic checks. 

This criterion excluded three subjects (i.e., S13, S18, and S19) for all networks, S14 was excluded for 

SMR, SAL and the combined network, and S4 was excluded for SMR. Additionally, 100, 77, 42, and 82 

sessions were excluded (across subjects and datasets) for the SMR, SAL, DMN, and combined networks, 

respectively. For the HCP dataset, a total of 74, 65, 67, and 58 subjects were excluded because of 

failure to reach acceptance criteria for the SMR, SAL, DMN, and combined networks, respectively. 

Table 2 gives an overview of the sessions and subjects that were included for each dataset type.  

2.2.4 Parametric Empirical Bayes (PEB). Connectivity at the subject or group level was modelled 

using a Parametric Empirical Bayesian (PEB; Friston et al., 2016) model, with a single regressor to model 

average connectivity across sessions or subjects. For the longitudinal datasets, two-level hierarchical 

PEB models were constructed. First, connectivity over sessions was estimated at the subject-level (i.e., 

average connectivity over sessions was computed for each subject separately). Then, subject-level PEB 
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models were subsequently included in a group-level model; modelling average connectivity across 

subjects. Default PEB settings were used for estimation at the subject and group level (see, Almgren et 

al., 2018). Concerning the cross-sectional HCP dataset, connectivity was only estimated at the group 

level (i.e., across subjects), since only a single session was included for each subject. For both datasets, 

PEB models - equipped with a single between-session (or between-subject) precision component - 

were specified and estimated separately for connectivity and (spectral) noise. Spectral noise 

parameters represented three types of noise: global state noise (i.e., across-region neural 

fluctuations), global observation noise, and local (i.e., region-specific) observation noise.  

 

Dataset Type Number sessions and/or subjects 

 Total sample SMR SAL DMN Combined 

Longitudinal 653 sessions 

(20 subj) 

499 sessions 

(76%; 15 subj) 

533 sessions 

(82%; 16 subj) 

578 sessions 

(89%; 17 subj) 

528 sessions 

(81%; 16 subj) 

HCP 361 subj 287 subj 

 (80%) 

296 subj 

(82%) 

294 subj 

(81%) 

303 subj 

(84%) 

Table 2. Number of included sessions and subjects for each network and dataset type. Abbreviations: 
HCP = Human Connectome Project, SMR = somatomotor network, SAL = salience network, DMN = 
default mode network; combined = combined network, subj = subjects. 

2.2.5 Global signal regression (GSR). Dynamic causal modelling was performed with and without 

GSR. GSR was performed by adding a regressor representing the average signal intensity across the 

whole brain to the GLM model used to extract time-series (in addition to regressors representing 

motion, low-frequency fluctuations, white matter, and CSF signals). Time-series extracted from 

preprocessed images and were corrected for the effect of all regressors except the effect of low-

frequency fluctuations. Analyses without global signal regression were performed in the same way, 

but excluding the regressor representing the average global signal.  

2.2.6 Assessing the quality of data features. In this work we wanted to compare the quality of 

different data features (i.e., time-series extracted with or without GSR), under the same model. For 

this, we adopted the Bayesian data comparison (BDC) approach described in Zeidman et al. (2019). 

This assesses the relative usefulness of data features (e.g., multiband factor of an fMRI acquisition 

scheme) in terms of making inferences about (group-level) parameters and models. The approach can 

be summarised as follows: usually, the approximate log model evidence (i.e., variational free energy), 

is used to assess the evidence for different models of the same data. The log evidence can always be 

decomposed into accuracy minus complexity (Penny, Stephan, Mechelli, & Friston, 2004). The 
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complexity term represents the Kullback-Leibler divergence of the posterior density from the prior 

density. In other words, it scores the relative entropy or information gain afforded by the data. This is 

usually construed in terms of the number of degrees of freedom or parameters used to explain the 

data. However, it also reflects the reduction in uncertainty about model parameters after having seen 

the data. We therefore can use the decomposition of free energy into accuracy and complexity to ask 

whether different data features are more or less salient. In other words, we can quantify the reduction 

in uncertainty about model parameters afforded by one sort of data feature, relative to another – by 

simply looking at the differences in complexity. Generally speaking, we would consider data that were 

more informative (i.e., have a greater complexity) to be better than uninformative data. We therefore 

evaluated the complexity with and without GSR at the first level (i.e. after estimating DCMs at the 

session-level). To pool evidence across subjects, we assumed that the relative informative value of the 

data would be similar for all sessions and subjects. Therefor a fixed-effects approach was conducted 

to pool evidence across sessions (for the longitudinal datasets) and subjects (for the human 

connectome data). Practically, we computed the sum of the (log) complexities over sessions for both 

models for each subject separately. The difference between the present study and the empirical part 

of Zeidman et al. (2019) are the data features (i.e., data with or without GSR vs multiband factor) and 

the level at which usefulness of data was assessed (1st level DCM vs group-level). Additionally, we also 

compared the certainty of posterior estimates for both analysis types.  

3. Results 

Detailed results for the longitudinal and cross-sectional datasets are outlined (separately) in 

subsections 3.1 and 3.2, respectively. Table 3 gives a summary of the main results.  

Influence of GSR on: Longitudinal analysis Cross-sectional analysis (HCP dataset)  

Within-network connectivity 
(small RSNs) 

- Network-level:  
 
➔ RMSD1: small (≤ 0.1Hz) 
 
 
➔ HA2: no difference in 
hemispheric dominance 
 
- Connection-level:  
 
➔ negligible difference 
 

- Network-level:  
 
➔ RMSD1: small (≤ 0.1Hz), except 
SMR (0.18Hz) 
 
➔ HA2: no difference in hemispheric 
dominance 
 
- Connection-level:  
 
➔ some important differences, 
except for DMN 

Between-network (BN) 
connectivity 

- Network-level:  
 
➔RMSD1: small (0.05Hz) 
 

- Network-level:  
 
➔ RMSD1: acceptable (≈ 0.1Hz) 
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➔ Negligible influence on 
BN3 connectivity 
 
- Connection-level: 
  
➔ Excitatory influences of 
SMR4 and DMN5 on SAL6, 
insignificant after GSR 
 
➔ Additional inhibitory 
influence after GSR 

➔ Negligible influence on BN3 
connectivity 
 
- Connection-level: 
 
➔ Excitatory influences became 
inhibitory after GSR (from SMR4 and 
DMN5 on SAL6) 
 
➔ Additional inhibitory influences 
after GSR (from SAL6 and SMR4 on 
DMN5) 
 

Global observation noise 
parameters 

- No influence - Significant influence, but not specific 
to observation noise parameters 

Optimal data features - Small networks, 
separate estimates:  
Data without GSR more 
informative, but less 
precise estimates 
- Combined network: 
Data without GSR more 
informative, and more 
precise estimates 

- Small networks, separate estimates:  
Data without GSR more informative, 
but less precise estimates 
 
- Combined network: Data without 
GSR more informative, and more 
precise estimates 

Table 3. Summary of the results. Abbreviations: 1Root mean squared error, 2Hemispheric Asymmetry, 
3Between-network, 4somatomotor network, 5default mode network, 6salience network.  

 

3.1 Longitudinal Datasets 

This section describes the results concerning the analysis using longitudinal datasets. 

3.1.1 The influence of GSR on within-network connectivity 

Figure 2 shows the effect of global signal regression on effective connectivity within the three 

networks separately (i.e., SMR, SAL, and DMN). Estimated connectivity was remarkably similar for 

analyses with versus without GSR. Across connections, the average root mean squared difference 

(RMSD) between connectivity with and without GSR (self-connections converted to Hz) was 0.08, 0.05, 

and 0.04Hz for SMR, SAL, and DMN networks, respectively, which is smaller than the heuristic 

threshold of 0.1Hz usually used in DCM studies (see, e.g., Razi, Kahan, Rees, & Friston, 2015). On 

average, connectivity was slightly closer to the prior mean after GSR, however the effect was small 

(average difference in deviation from the prior mean was 0.06, 0.02, and 0.02Hz for SMR, SAL, and 

DMN, respectively).  

Global signal regression also had little effect on patterns of hemispheric asymmetry: the salience 

network showed higher outgoing influence from regions located in the right compared to the left 
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hemisphere (without GSR: asymmetry = -0.14Hz, SD = 0.03Hz, posterior probability (PP) < 0.01 and 

with GSR: asymmetry = -0.08Hz, SD = 0.02Hz, PP < 0.01), while no hemispheric asymmetry concerning 

outgoing connectivity was found within the SMR in both cases (without GSR: asymmetry = 0.03Hz, SD 

= 0.06Hz, PP = 0.68; with GSR: asymmetry = 0.02Hz, SD = 0.05Hz, PP = 0.67). Results for asymmetry in 

the default mode network showed a higher influence from the left compared to the right hemisphere 

without and with GSR, although less evidence for asymmetry was observed for the latter (without GSR: 

asymmetry = 0.13Hz, SD = 0.05, PP = 0.99; with GSR: asymmetry = 0.07Hz, SD = 0.04Hz, PP = 0.93). In 

general, asymmetry was smaller for all networks after GSR.  

At the connection-level, only three extrinsic connections (8% of a total of 38 extrinsic connections) 

showed a practically relevant change after GSR (i.e., difference > 0.1Hz; see also, Razi et al., 2015), 

namely the connection from lIPC to mPFC (part of DMN; see Figure 2: panel C), the connection from 

rSMC to SMA, and the connection from lSMC to rSMC (both part of the SMR network; see Figure 2: 

panel A). Additionally, an inhibitory connection emerged, and an excitatory connection disappeared 

after GSR (using a threshold of PP = 0.90).  
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A 

Figure 2. The effect of GSR on effective connectivity – using the longitudinal datasets – within 
three resting state networks: (A) SMR, (B) SAL, and (C) DMN. The color of the squares indicates 
the MAP connection strength for the respective connection (all in linear scale). Thresholding for 
inference was done using a posterior probability of 90%. Values in smaller fonts represent 
connections with a posterior probability smaller than 90%. Anatomical Abbreviations: SMA = 
supplementary motor area, l/r SMR = left/right somatomotor region, ACC = anterior cingulate 
gyrus, l/r INS: left/right insula, l/r MFG: left/right middle frontal gyrus, PRC = precuneus, l/r IPC = 
intraparietal cortex, mPFC = medial prefrontal cortex.  

C 

B 

Without GSR With GSR 
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3.1.2 The influence of GSR on between-network connectivity 

Figure 3 shows the effect of GSR on connectivity in the large combined network, which includes 

within- and between-network connectivity. Row A shows the connection-specific estimates, Row B 

shows the average connectivity between networks. Note the high similarity in within-network 

connectivity in the combined network compared to networks that were estimated separately (see, 

Figure 2).  

Across between-network connections, the effect of GSR was small: The root mean squared 

difference between connectivity with and without GSR was 0.05Hz across all between-network 

connections. Between-network connectivity was smaller in magnitude compared to within-network 

Figure 3. Group-level between-network connectivity without GSR (left column) and with GSR 
(right column). Row A shows estimates for individual connections. Red, green, and blue empty 
squares indicate connectivity within SAL, SMR, and DMN, respectively. Values in smaller fonts 
represent connections with a posterior probability smaller than 90%. Row B shows average 
connectivity between networks (across connections). Dimmed arrows and values depict 
connections with a posterior probability < 90%. 
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connectivity (difference in average between-network connectivity was 0.06Hz both with and without 

GSR, excluding self-connections). The mean influence networks had on each other (panel B) was 

negligible (< 0.05Hz) both with and without GSR.  

For individual connections, we found small excitatory reciprocal connectivity between all three 

networks without GSR, with weak inhibitory connectivity from rINS to lIPC and from SMA to ACC. After 

GSR reciprocal connectivity between SAL and SMR networks disappeared, and weak inhibitory 

influence was found from rINS (salience network) on all regions of the DMN. The ACC had an excitatory 

influence on the DMN both with and without GSR.  

 

3.1.3 The influence of GSR on noise parameters 

To have sufficient spatially distributed information to allow robust estimates of (global) spectral 

noise components - and their average across sessions or subjects - we only analysed the combined 

network here. The noise here is modelled by using power law distribution having two parameters – 

amplitude and an exponent – to characterize their cross spectral density. Figure 4 shows the effect of 

GSR on parameters representing (spectral) noise, which include endogenous fluctuations that drive 

Figure 4. The effect of GSR on (spectral) noise parameters within the combined network. Bar 
heights depict the group-level maximum a posteriori (MAP) estimates for the respective 
parameter, small circles depict subject-specific estimates (not empirically optimized). The color of 
the bars depict the parameter type (i.e., amplitude and frequency). Lightness of the bars and 
markers depicts connectivity without or with GSR (darker and lighter, respectively). Red lines 
depict 90% credibility intervals for the posterior estimates (PEB.Cp). Parameters are shown in log-
scale and are relative to the prior mean.  
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the system (i.e., state-noise) and global measurement (or observation) noise. The first parameter of 

each noise-component represents the amplitude of fluctuations, while the second parameter 

represents the shape (exponent) of the noise spectrum. Clearly, GSR did not have an effect on any of 

the (global) noise components.  

3.1.4 Identifying data features 

To identify the most informative data features, we decomposed free energy into accuracy and 

complexity, where accuracy is the expected likelihood of the data under posterior beliefs and 

complexity is the Kullback-Leibler divergence between the posterior and prior densities. Complexity 

can thus be considered as a measure of the informative value of the data (Zeidman et al., 2019). 

Therefore, we compared the estimated complexity with and without GSR at the session-level, which is 

directly dependent on the data. We used a fixed-effect approach to pool complexity over sessions for 

each subject separately (see, e.g., Stephan, Penny, Daunizeau, Moran, & Friston, 2009). DCM 

estimation without GSR was found to have the highest complexity in 93.3% of subjects for the SMR 

network, in 94.0% of subjects for the SAL network, 88.2% of participants for the DMN, and for 100% 

of subjects in the combined network, with strong evidence in all but one subject (Bayes factor greater 

than 20; Kass & Steffey, 1989). However, the certainty of posterior estimates (computed as the 

negative entropy of the posterior distribution) was greater for the data with GSR in 60.0%, 82.4%, 

87.5% of subject for SMR, DMN, SAL, respectively. For the combined network, the opposite pattern 

was observed: 81.2% of subjects showed more precise estimates without GSR.  

3.2 Cross-sectional Dataset 

This section outlines the results concerning the HCP dataset. 

3.2.1 The influence of GSR on within-network connectivity 

Figure 5 shows estimated effective connectivity in the three resting-state networks, both with and 

without GSR. Across all connections, the average root mean squared difference (RMSD) between 

connectivity with and without GSR was 0.18, 0.10, and 0.07Hz for SMR, SAL, and DMN networks, 

respectively. The average decrease in deviation from the prior mean with GSR (compared to without 

GSR) was 0.08, 0.04, 0.05Hz for SMR, SAL, and DMN, respectively. Global signal regression had little 

effect on patterns of hemispheric asymmetry: the salience network showed higher outgoing 

connectivity from regions located in the left compared to the right hemisphere (without GSR: 

asymmetry = 0.10Hz, SD = 0.02Hz, PP > 0.99; with GSR: asymmetry = 0.06Hz, SD = 0.01Hz, PP > 0.99), 

right hemispheric dominance was found within the SMR for both cases (without GSR: asymmetry = -

0.47Hz, SD = 0.04, PP < 0.01; with GSR: asymmetry = -0.16Hz, SD = 0.03Hz, PP < 0.01), and left 

dominance was found for the DMN with and without GSR (without GSR: asymmetry = 0.15Hz, SD = 
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0.03Hz, PP > 0.99; with GSR: asymmetry = 0.11Hz, SD = 0.02Hz, PP > 0.99). As with the analysis of 

longitudinal designs, asymmetry decreased for all networks after GSR.  

At the connection-level, nine extrinsic connections (24% of extrinsic connections) showed a 

practically significant change after GSR (i.e., difference > 0.1Hz): two connections in SMR, four 

connections in SAL, and three connections in DMN. In all except two connections these were outgoing 

connections from the (network-specific) dominant region. Seven extrinsic connections (18%) emerged 

or disappeared (threshold PP = 0.90) after GSR (although they were all small in magnitude). 

Additionally, one extrinsic connection changed sign (from excitatory to inhibitory or vice versa) after 

GSR.  
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Without GSR With GSR 
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B 

Figure 5. The effect of GSR on effective connectivity – using the HCP data – within three resting 
state networks: (A) SMR, (B) SAL, and (C) DMN. The color of the color of the squares indicates the 
MAP connection strength for the respective connection (all in linear scale). Thresholding for 
Inference was done using a posterior probability of 90%. Values in smaller fonts represent 
connections with a posterior probability smaller than 90%. Anatomical Abbreviations: SMA = 
supplementary motor area, l/r SMR = left/right somatomotor region, ACC = anterior cingulate 
gyrus, l/r INS: left/right insula, l/r MFG: left/right middle frontal gyrus, PRC = precuneus, l/r IPC = 
intraparietal cortex, mPFC = medial prefrontal cortex. 
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3.2.2 The influence of GSR on between-network connectivity 

Figure 6 shows the between- and within network connectivity for the combined network. Row A 

shows the separate connectivity estimates, Row B shows the average connectivity between networks.  

 

Across connections, the root mean squared difference between connectivity with and without GSR 

was 0.10Hz across all between-network connections, with larger within-network connectivity 

compared to between-network connectivity (difference in mean magnitude of connection was 0.08Hz 

without GSR and 0.03Hz with GSR, excluding self-connections). Note again the striking similarity in 
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Figure 6. Group-level between-network connectivity without GSR (left column) and with GSR 
(right column). Row A shows estimates for each connection separately. Red, green, and blue empty 
squares indicate connectivity within SAL, SMR, and DMN, respectively. Values in smaller fonts 
represent connections with a posterior probability smaller than 90%. Row B shows average 
connectivity between networks. Dimmed arrows and values depict connections with a posterior 
probability < 90%. 
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connectivity compared to the separately estimated networks (see, Figure 5). The average influence 

networks had on each other (Figure 6; Row B) was negligible irrespective of processing method, 

although some small excitatory influences became slightly inhibitory after GSR.  

At the level of individual connections, the influence of GSR was larger compared to the average 

between-network connectivity: without GSR we mainly observe excitatory influence from SMR and 

DMN on SAL, which becomes mainly inhibitory after GSR (although some inhibitory connectivity from 

SMA on most regions of SAL was found even without GSR). Additionally, after GSR we observe 

inhibitory connectivity from SAL on DMN, and from rSMC on all DMN regions, which was not found 

without GSR.  

 

3.2.3 The influence of GSR on noise parameters 

Figure 7 shows the effect of GSR on parameters representing (spectral) noise, which include 

endogenous fluctuations that drive the system (i.e., state-noise) and global measurement (or 

observation) noise. Clearly, GSR had an effect on both estimated endogenous fluctuations and global 

measurement (observation) noise, showing that the effect of GSR is not specific to the parameter 

representing global measurement noise. Note that the exponent components (i.e. parameters that 

Figure 7. The effect of GSR on (spectral) noise parameters within the combined network. Bar 
heights depict the group-level maximum a posteriori estimates for the respective parameter, 
small circles depict subject-specific estimates. The color of the bars depict the parameter type 
(i.e., amplitude and exponent). Lightness of the bars and markers depicts connectivity without or 
with GSR (darker and lighter, respectively). Red lines depict 90% credible intervals for the 
posterior estimates (PEB.Cp). Parameters are shown in log-scale and are relative to the prior 
mean.  
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model the shape of the spectrum) of group-effects yielded in some cases unintuitive results (i.e., group 

estimates at lower end of subject-specific estimates), which most likely arise from complex covariance 

structures between these components (see, Kasess et al., 2010 for similar unintuitive results using 

Bayesian parameter averaging in DCM).  

 

3.2.4 Identifying data features 

A fixed-effect approach was used to pool complexity over subjects (see, e.g., Stephan, Penny, 

Daunizeau, Moran, & Friston, 2009). For all networks, DCM estimation without GSR was found to have 

greater complexity – or information gain – compared to estimation with GSR, with strong evidence in 

all cases (Bayes factor greater than 20; Kass & Steffey, 1989). However, again the certainty of the 

estimates (i.e., negative entropy) was greater for the data with GSR for SMR, DMN, SAL, respectively, 

but the opposite pattern was found for the combined network. 

 

4. Discussion 

In this study we investigated the effect of GSR on effective connectivity and parameters 

representing global observation noise, estimated with spectral DCM. Additionally, we investigated 

which data (i.e., data extraction with or without GSR) were most informative (i.e., have the largest 

complexity) for estimation of DCM parameters. We focused on both within- and between-network 

connectivity in two different designs (longitudinal and cross-sectional). The use of different designs 

allowed us to investigate the generalizability of our conclusions, and to discover divergent effects of 

GSR in different designs. 

In general, we found negligible to small effects of GSR on connectivity within small (separately 

estimated) RSNs. At the network-level the effect was very small, both in terms of root-mean-squared 

deviation as well as hemispheric asymmetry. Additionally, the majority of individual connections did 

not change sign. These results show that GSR in small RSNs should not constitute a major concern in 

future research using resting state DCM. Our results agree with studies of functional connectivity, 

showing that connections with functionally related areas mostly remain significantly positive after GSR 

(e.g., Chang & Glover, 2009; Weissenbacher et al., 2009). However, a few connections became 

inhibitory after GSR, which was more observable in the HCP dataset. Although these effects were fairly 

small, they might be important to consider in future research.  
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Concerning between-network connectivity, we found two important effects: the effect of GSR on 

the between-network connectivity across connections (i.e., net influence between networks and root-

mean-squared difference) was negligible to small, while the effect of GSR on individual connections 

was non-negligible. At the level of individual connections many connections between DMN and SAL 

were excitatory when GSR was not applied, most prominently for the HCP dataset (unidirectional 

influence from DMN in case of HCP), while most connections were inhibitory (and slightly more 

bidirectional) after GSR. Furthermore, we found both excitatory and inhibitory influence from SMR on 

SAL, which became mainly inhibitory or non-existent after GSR. The general decrease in excitatory (and 

increase in inhibitory) between-network connectivity after GSR has also been found in studies focusing 

on functional connectivity (see, Murphy & Fox, 2017). In conclusion, the robustness of network-level 

effects, in contrast to connection-level effects, with respect to GSR shows that DCM connections are 

best interpreted jointly (which has been argued in other studies, e.g., Almgren et al., 2018). 

The between-network results are somewhat in contrast to the DCM study of Zhou et al. (2018), 

which found inhibitory influence from the salience network on the core DMN, but not vice versa, 

without GSR (which we found in the opposite direction after GSR in the HCP dataset). There are three 

important differences in results between Zhou et al. (2018) and the result we obtained in the present 

study that should be explained. First, Zhou et al. found inhibitory between-network connectivity in the 

absence of GSR. This is probably explained by their use of a wide set of motion-related regressors (24 

regressors coding both instant as preceding motion, as well as their squares). Since GSR is closely linked 

to motion (Liu et al., 2017), these motion parameters might have a similar effect as GSR, hence 

excluding spurious positive connectivity. Second, for the HCP data we found mainly inhibitory 

connectivity (after GSR) from DMN to SAL, while Zhou et al. (2018) found inhibitory connectivity in the 

opposite direction. This might be explained by a difference in subject characteristics: Subjects in our 

study were mainly young adults (mean age was 30.1 and 28.7 years respectively, for longitudinal and 

cross-sectional design), while the age-group included in Zhou et al. (2018) was on average younger 

(mean age = 17.4 years). However, note that very small inhibitory connectivity from specific regions of 

SAL on DMN without GSR, but this did not reach our threshold (posterior probability < 90%). Third, 

Zhou et al. (2018) found important between-network connectivity when averaged across connections, 

while we only found effects at the connection-level (see, e.g., Figure 6). This might be explained by 

their use of functional connectivity to inform priors: between-network effects might be more coherent 

when connectivity parameters are informed by FC, hence increasing detection of between-network 

effects. In our study we did not use FC-informed priors for two reasons: (1) Bayesian model comparison 

showed strong evidence in favour of the use of standard (i.e., shrinkage) priors, (2) the use of group-

specific (across-subject) FC-priors at higher levels in our hierarchical design might have obscured 
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results. Additionally, the difference in sample size and specific ROI specification method might also 

have had an effect on the divergent results. 

On average, connectivity was closer to the prior mean after GSR. Moreover, hemispheric 

asymmetry (difference between left and right outgoing connectivity) also decreased after GSR. For 

extrinsic connectivity, this is in line with multiple studies showing that the connectivity decreases after 

GSR (e.g., Chang & Glover, 2009; Fox et al., 2009; Weissenbacher et al., 2009). The deviation from the 

prior mean has also influence on the informative value of the data, which is discussed further in this 

discussion. Notably, hemispheric asymmetry also decreased after GSR. Hemispheric asymmetry was 

here defined as the (network-specific) outgoing connectivity from regions in one hemisphere relative 

to the outgoing connectivity from regions in the other hemisphere. Hence, a change in hemispheric 

asymmetry would mean that the magnitude of the decrease in connectivity is different for regions in 

both hemispheres. Possibly the extent to which certain regions contribute to the global signal differed 

between hemispheres. This explanation is in line with McAvoy et al. (2016) who found an asymmetric 

contribution of regions to the global signal. However, a direct comparison with the functional 

connectivity literature concerning the size of the effect of GSR is difficult given the differences in 

models, difference in statistical framework (Bayesian vs frequentist), and specific networks under 

investigation. It is also important to note that our conceptualization of hemispheric asymmetry differs 

from that in functional connectivity studies, since DCM estimates directed influences.  

Remarkably, the within-network connectivity was very similar when networks were estimated 

separately compared to networks as a whole (compare e.g., Figure 5 and 6). This was also found by 

Ushakov et al. (2016), who showed that connectivity within the core DMN was very similar when either 

left or right hippocampus was included in the network. This shows that group-level resting-state DCM 

results are quite robust against addition of extra networks and regions.  

Contrary to our expectations, we either found no effect (longitudinal designs) or an unspecific effect 

(cross sectional design) on measurement noise parameters. Several explanations can be put forward 

to account for these counter-intuitive results, and the explanations might be different between both 

designs. Concerning the absence of effect in the longitudinal designs, it might be that the effect of GSR 

was captured by the between-subject components of the hierarchical Bayesian model. This is possible, 

since the datasets differed in terms of scanner type, pulse sequence parameters, and subject 

characteristics, which might cause divergent effects on noise parameters. Therefore, it is possible that 

the effect of GSR was cancelled out at the group-level, while captured by parameters representing 

between-subject variance. Indeed, we found an important effect (i.e., increase vs decrease in 

parameters) of GSR on noise parameters for some individual subjects, but not for others. Concerning 
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the cross-sectional HCP dataset, the effect was captured by multiple noise parameters. This unspecific 

effect is possible, since resting state fMRI has no explicit exogenous input (e.g., an experimental design) 

that could inform more precise estimation. Noise parameters that are shared across regions (e.g., 

global state and measurement noise) might therefore be all sensitive to the global signal.  

Additionally, we asked whether data was more informative for 1st level parameter estimation (i.e., 

had the highest complexity) with or without GSR. Connectivity estimation using data without GSR was 

found to yield the greatest complexity for all datasets and networks. The complexity term is the 

Kullback-Leibler divergence between the prior and posterior density, which can be interpreted as the 

increase in information after updating the prior with the data. Complexity essentially depends on (1) 

divergence of the mean of the posterior from the mean of the prior density, (2) precision of the 

posterior density compared to the precision of the prior, and (3) change in covariance patterns 

between posterior and prior densities of parameters. The observations of higher complexity without 

GSR in most cases probably is for a great part attributable to a greater divergence from the posterior 

mean. The few (subject-specific) observations of higher complexity with GSR are at odds with this 

explanation, since after GSR a smaller deviation from the prior mean was observed. However, the 

precision of the parameter estimates also has an influence on the KL-divergence. Therefore, we 

compared the precision of estimations (computed as the negative entropy) for data with versus 

without GSR. Here we found that for small networks, data with GSR was found to yield greatest 

precision. However, for the combined network, data without GSR was found to yield most precise 

estimates. This might be associated with the (potentially spurious) inhibitory connectivity that was 

found for estimation with GSR in the combined network.  

In general, we can thus conclude that data without GSR are more informative for estimation of 

effective connectivity. One should note that this complexity was computed at the session-level, and 

that this level is directly dependent on the data. For the other levels (i.e., subject- and group-level), 

the complexity term includes the Kullback-Leibler divergence of second-level parameters (e.g., 

between-session variance; group-level effective connectivity) from their prior density, which depends 

on the estimated parameters at lower levels, and not directly on the data. Possibly, between-session 

(between-subject) differences and subject (group) level estimates are less informed by the estimates 

based on data without GSR.  

In this work we assessed the (practical) effects of GSR on parameters estimated with DCM for 

resting state fMRI. However, multiple alternative methods exist to eliminate (global) noise from fMRI 

data, including temporal ICA (Glasser et al., 2018), dynamic global signal regression based on blood 

arrival time (dGSR; Erdoğan, Tong, Hocke, Lindsey, & deB Frederick, 2016), and corrections for 
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respiratory and cardiac signals (Chang, Cunningham, & Glover, 2009). Although these alternatives are 

less extensively studied in fMRI research compared to ‘canonical’ GSR, they have certain features that 

might make them superior to GSR. These methods are outside of the scope of the present study, which 

was to assess the effect of the (widely studied) ‘canonical’ GSR on DCM parameters. However, we also 

checked the consistency of our results compared to the effects of global signal normalization (dividing 

timeseries by the global signal instead of regressing out), and we found quite similar results.  

In conclusion, GSR is a minor concern in DCM studies. However, individual between-network 

connections (as opposed to average between-network connectivity) should be interpreted with some 

caution. Additionally, we suggest the use of the complexity term – in combination with the certainty 

of estimation - to assess the relative informative value of the data with versus without GSR.  

 

Software availability 

Code to reproduce analyses, results and figures is available at: 

https://github.com/halmgren/Pipeline_effect_GSR_effective_connectivity_rsfMRI. 
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