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Wasserman9, Laurent Bréhélin1,3,11 & Charles-Henri Lecellier1,2,11

1Institut de Biologie Computationnelle, Montpellier, France
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Abstract

Using the Cap Analysis of Gene Expression technology, the FANTOM5 consortium provided

one of the most comprehensive maps of Transcription Start Sites (TSSs) in several species.

Strikingly, ∼ 72% of them could not be assigned to a specific gene and initiate at unconven-

tional regions, outside promoters or enhancers. To determine whether these unconventional

TSSs, sometimes referred to as ’transcriptional noise’ or ’junk’, are relevant nonetheless,

we look for novel and conserved regulatory motifs located in their vicinity. We show that,

in all species studied, a significant fraction of CAGE peaks initiate at short tandem repeats

(STRs) corresponding to homopolymers of thymidines. Biochemical and genetic evidence

further demonstrate that several of these CAGEs correspond to TSSs of mostly sense and

intronic non-coding RNAs, whose transcription rate can be predicted with ∼ 81% accuracy

by a sequence-based deep learning model. Excitingly, our model further predicts that genetic

variants linked to human diseases affect this STR-associated transcription. Together, our re-

sults extend the repertoire of non-coding transcription and provides a valuable resource for

future studies of complex traits.
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Introduction

RNA polymerase II (RNAP-II) transcribes many loci outside annotated protein-coding gene (PCG)

promoters 1, 2 to generate a diversity of RNAs, including for instance enhancer RNAs 3 and long

non-coding RNAs 4. Non-coding transcription is far from being fully understood 5 and some

authors suggest that many of these transcripts, often faintly expressed, can simply be ’noise’ or

’junk’ 6. On the other hand, many non annotated RNAP-II transcribed regions correspond to open

chromatin 1 and cis-regulatory modules (CRMs) bound by transcription factors (TFs) 7. Besides,

genome-wide association studies showed that trait-associated loci, including those linked to human

diseases, can be found outside canonical gene regions 8–10. Together, these findings suggest that

the non-coding regions of the human genome harbor a plethora of functionally significant elements

which can drastically impact genome regulations and functions 10, 11. Notably, short tandem repeats

(STRs), which constitute one of the most polymorphic and abundant repetitive elements 12, have

been shown to widely impact gene expression and to contribute to expression variation 13, 14. At

the molecular level, STRs affect transcription by inducing inhibitory DNA structures 15 and/or by

modulating the binding of transcription factors 16, 17. Provided that a growing number of regulatory

elements is associated with non-coding transcription 5, we looked at STRs from another perspective

and asked whether local transcription can be detected at these repetitive elements.

Using the Cap Analysis of Gene Expression (CAGE) technology 18, 19, the FANTOM5 con-

sortium provided one of the most comprehensive maps of TSSs in several species 2. Integrating

multiple collections of transcript models with FANTOM CAGE datasets, Hon et al. built an at-
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las of 27,919 human lncRNAs, among them 19,175 potentially functional RNAs, and provided a

new annotation of the human genome (FANTOM5 CAGE Associated Transcriptome, FANTOM

CAT) 4. Despite this annotation, many CAGE peaks cannot be assigned to a specific gene and/or

initiate at unconventional regions, outside promoters or enhancers, providing an unprecedented

mean to further characterize non-coding transcription within the genome ’dark matter’ 11 and to

decode part of the transcriptional noise.

Here, we probed CAGE data collected by the FANTOM5 consortium 2 and specifically

looked for repeating DNA motifs around CAGE peak summits. In all species studied, we showed

that a fraction of CAGE peaks (between 2.22% in rat and 6.45% in macaque) initiate at repeats

of thymidines (Ts) i.e. STRs of Ts. Biochemical and genetic evidence demonstrate that many

of these CAGEs do not correspond to technical artifacts 20 but rather exhibit genuine features of

TSSs. Using sequence-based Convolutional Neural Network (CNN), we were able to predict this

transcription with high accuracy (∼ 81% in human) and to reveal that many genetic variants linked

to human diseases potentially affect this STR-associated transcription. Together, our results ex-

tend the repertoire of non-coding transcription and advance the capacity to interpret regulatory

variants 13.

Results

A significant fraction of CAGE peaks initiates at polyT repeats in various species. Using the

motif enrichment tool HOMER 21, we looked at repeating DNA motifs in 21bp-long sequences
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centered around the FANTOM5 CAGE peak summits. As shown in Figure 1, the first motif iden-

tified in both human and mouse is the canonical initiator element INR 22, 23, demonstrating the

relevance of our strategy to unveil specific sequence-level and TSS-associated features. A second

motif corresponding to a polyT repeat starting at -2 bases (0 being the summit of the CAGE peak) is

identified. This motif is present in 61,907 human and 8,274 mouse CAGE peaks, thereafter called

polyT CAGEs (Figure 1A and B). In human, the median size of CAGE-associated polyT repeats

is 17 bp with a minimum of 9 bp and a maximum size of 64 bp. Similar results are obtained in

mouse (median = 21 bp, minimum = 8 bp and maximum = 58 bp). Looking directly at the number

of polyT repeats of > 9 Ts in the human genome, we found that 63,974 T repeats out of 1,337,561

exhibit a CAGE peak located at their 3’end + 2bp. Thus, the vast majority of polyT-associated

CAGEs are identified by motif enrichment and not all T repeats are associated with CAGE peaks.

In mouse, only 8,825 T repeats out of 834,954 are associated with a CAGE peak but, compared to

human CAGE data, mouse data are small-scaled in terms of number of reads mapped and diversity

in CAGE libraries 2.

We further looked at CAGE peaks in dog, chicken, macaque and rat (Supplementary Figure

S1) and polyT repeat is invariably detected by HOMER (sometimes even before INR motif). The

position of the CAGE summit at -2 is presumably artificially introduced by the hybridization step

on the flow cell (Supplementary Figure S2) : sequencing of any CAGE tags initiating within T

repeats will preferentially start just after the T repeats. The motif enrichment is therefore more

indicative of transcription initiation at T repeats than of the existence of a true motif located pre-

cisely 2bp after T repeats (only 216 CAGE summits fall into a repeat of > 9Ts in human). In line
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with this, a small fraction of Start-seq 24 and DECAP-seq 25 TSSs can also initiate in sequences

with a preference for T and this clearly does not represent a genuine motif (Supplementary Fig-

ure S3A and B). Note that the number of mouse CAGE summits 2 located within a 10bp window

around Start-seq 24 and DECAP-seq 25 TSSs is low: ∼ 34.7% of CAGE TSSs have same coordi-

nates as Start-seq TSSs but only ∼ 6.8% of CAGE TSSs share coordinates with DECAP-seq TSSs

and ∼ 7.2% of Start-seq TSSs share coordinates with DECAP-seq TSSs. However, we noticed

that mouse repeats of > 9Ts associated with CAGE peaks are more associated with Start-seq and

DECAP-seq peaks than T repeats not associated with CAGE peaks: ∼ 2% of CAGE-associated T

repeats are also associated with Start-seq peaks (94 out of 4,600 T repeats considering only forward

data) with only ∼ 0.3% T repeats not associated with CAGE but associated with Start-seq peaks

(1256 out 413475, Fisher’s exact test p-value < 2.2e-16). Likewise, ∼ 0.36% of CAGE-associated

T repeats are also associated with DECAP-seq peaks (32 out 8825) with only ∼ 0.03% T repeats

not associated with CAGE but associated with DECAP-seq peaks (307 out 826129, Fisher’s exact

test p-value < 2.2e-16). TSS-seq data collected in Arabidopsis thaliana 26 indicate that some plant

TSSs can also initiate at repeats of Ts (Supplementary Figure S4, motif #2). As observed in animal

FANTOM CAGE data, these TSS-seq peak summits never map a T (Supplementary Figure S4).

Heliscope sequencing used by FANTOM5 can be internally primed at polyT repeats (Sup-

plementary Figure S2), thereby questioning the relevance of CAGE peaks at T repeats 20. Several

features are indeed in agreement with the idea that polyT CAGEs could for instance arise from

internal priming within introns of messenger RNAs (Supplementary Figures S5 to S9 and Supple-

mentary Tables S1 and S2). However, the artifact scenario could not explain all polyT CAGEs as
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4,098 (out of 63,974, > 6%) are not located within one of the 53,220 genes of the FANTOM CAT

annotation, one of the largest gene annotations so far. Besides, we observed some concordance be-

tween several technologies (Supplementary Figures S3 and S4). Together these observations raise

the possibility that at least a fraction of polyT CAGEs represent genuine TSSs. The corresponding

RNAs appear stable 28 according to the CAGE exosome sensitivity score previously computed by

FANTOM 4 (median sensitivity score = 0.08, Supplementary Figure S6B), suggesting that they

do not correspond to cryptic transcription 5. To clarify the existence of these TSSs, we further

investigated whether some polyT CAGEs exhibit canonical TSS features.

Several polyT CAGE tags are truly capped. We used a strategy described by de Rie et al. 29,

which compares CAGE sequencing data obtained by Illumina (ENCODE) vs. Heliscope (FAN-

TOM) technologies. Briefly, the 7-methylguanosine cap at the 5’ end of CAGE tags produced

by RNA polymerase II can be recognized as a guanine nucleotide during reverse transcription.

This artificially introduces mismatched Gs at Illumina tag 5’ end, which is not detected with Helis-

cope 29. Although such G bias is not clearly observed when considering the whole CAGE peak, it is

readily detectable when considering the 3’ end of polyT repeat (position -2 from FANTOM CAGE

summit) using Illumina ENCODE CAGE data produced in Hela-S3 nuclei (Figure 2A). This bias

is also observed in other cell types and is comparable to that observed with CAGE tags assigned to

gene TSSs (Figure 2B and Supplementary Figure S10). In the case of assigned CAGEs, the G bias

is observed in all reads mapping to the CAGE tags. Conversely, most CAGE tag 5’ ends perfectly

match the sequences of pre-miRNA 3’end, as previously reported 29, or that of 61,907 randomly

chosen genomic positions (Figure 2B and Supplementary Figure S10). Mismatched Gs at the 3’
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end of all T repeats located within the same genes as polyT CAGEs are also detected (Figure 2B

and Supplementary Figure S10), though the abundance of tags is higher at polyT CAGEs (Fig-

ure 2B), suggesting the potential existence of false negatives (see below). Overall, these analyses

show that polyT CAGEs are truly capped as opposed to post-transcriptional cleavage products of

pri-mRNAs 29 or to random genomic positions.

Many polyT CAGEs are associated with transcription-related epigenetic marks. Because

CAGE technology can capture not only TSSs but also the 5’ ends of post-transcriptionally pro-

cessed RNAs 30, we determined whether polyT CAGEs are associated with typical epigenetics

marks associated with transcription at the chromatin level. Using the ENCODE DNaseI Hyper-

sensitive Site (DHS) Master list, we noticed that ∼ 11% of polyT CAGEs (7028 out of 63,974)

lie in DHSs, while this is true for only ∼ 6% of T repeats without CAGE peaks (76,616 out of

1,273,587, Fisher’s exact test p-value < 2.2e-16). We next investigated potential transcription at T

repeats at the gene level and library-wise in order to preclude the effect of global chromatin/gene

environment. To limit the influence of genomic context and associated epigenetics modifications,

we created two sets of ’expressed’ and ’non-expressed’ polyT CAGEs : polyT CAGEs are consid-

ered as ’expressed’ if (i) associated with a detectable CAGE signal in the sample considered (TPM

> 0) and (ii) located in a gene containing at least one ’non-expressed’ polyT CAGEs. Conversely,

’non-expressed’ polyT CAGEs are (i) not detected in the sample considered but detected in other

samples and (ii) located in a gene containing at least one ’expressed’ polyT CAGEs. Genome

segmentation provided by combined ChromHMM and Segway 31, 32 shows that ’expressed’ polyT

CAGEs are systematically more enriched in regions corresponding to predicted transcribed regions
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than ’non expressed’ polyT CAGEs (Figure 3A, Fisher’s exact test p-value < 2.2e-16 in HeLa-S3

(CNhs12325) and in GM12878 (CNhs12331), p-value = 2.053e-13 in K562 (CNhs12334)), despite

being in the same genes and chromatin environment. Using the same comparison, transcription at

T repeats was also confirmed with GRO-seq data (Figure 3B and Supplementary Figures S11 and

S12).

We then looked at epigenetics marks individually and used data collected by the Roadmap

Epigenome consortium in H1 embryonic stem cells to compare the epigenetics status of ’ex-

pressed’ vs. ’non-expressed’ polyT CAGEs. In three replicates of untreated H1 cells CAGE li-

braries, H3K36me3 and H3K4me3 peaks are invariably enriched in ’expressed’ polyT CAGEs

(Figure 3C and Supplementary Figure S11). Similar profiles are obtained with ENCODE ChIP-

seq data, although less pronounced in GM12878 (Supplementary Figure S14). H3K4me3 levels

at polyT CAGEs are low (Supplementary Figures S13 and S14), as observed with lncRNAs 33.

H3K36me3 is a histone modification mark enriched in the gene body region and associated with

transcription elongation 33. H3K4me3 is a mark classically associated with active or poised tran-

scription start sites 33. Hence, ’expressed’ polyT CAGEs , as opposed to ’non-expressed’ ones,

are associated with H3K4me3/H3K36me3 domains. Interestingly, this type of ’K4-K36’ domains

have been previously used to characterize lncRNAs 34. Figure 3C also shows an enrichment in

H3K4me2 (see also Supplementary Figure 13 and S14), which was previously associated with

intragenic cis-regulatory 35 and TF binding 36 regions. We concluded that, overall, detection of

CAGEs at polyT repeats is associated with transcription-related chromatin marks.
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Several polyT CAGEs correspond to annotated transcript and enhancer TSSs. We further

assessed the presence of polyT-associated transcription among annotated TSSs. Motif enrich-

ment around FANTOM CAT TSSs 4 shows that ∼ 1.5% of them initiate downstream T repeats

(Figure 4A). Looking directly at TSS coordinates of FANTOM CAT robust transcripts 4, we no-

ticed that 6,734 TSSs corresponding to 10,606 robust transcripts (out of 525,237, ∼ 2%) initiate

2bp after a T repeat, with a clear enrichment in lncRNA intergenic, lncRNA sense intronic or

sense overlap RNA (hypergeometric test p-values < 2.2e-16 for the 3 RNA classes). A list of

these TSSs is provided in Supplementary Table S3A. Similar results were obtained for 5,889 strin-

gent transcripts (n = 402,813) 4. Importantly, transcript models in FANTOM CAT combine various

independent sources (GENCODE release 19, Human BodyMap 2.0, miTranscriptome, ENCODE

and an RNA-seq assembly from 70 FANTOM5 samples) and FANTOM CAT TSSs were validated

with Roadmap Epigenome DHS and RAMPAGE data sets 4. As expected, these TSSs only moder-

ately contribute to gene expression (Supplementary Figure S15). No specific Open Reading Frame

could be detected 2kb downstream polyT CAGEs (Supplementary Figure S16).

PolyT motif is also observed for ∼ 4% of FANTOM enhancer TSSs 3 (Figure 4B), though

no enrichment in enhancer epigenetic marks are predicted by chromHMM/Segway (Figure 3A).

Looking directly at genomic coordinates, 4,976 enhancers (out of 65,423,∼ 7.6%) are defined with

at least one polyT-associated CAGE (Supplementary Table S3B) and 173 enhancers are defined by

two polyT-associated CAGEs 3. Hence, enhancer TSSs are more often associated with polyT that

transcript TSSs (∼ 7.6% and ∼ 2% respectively, Fisher’s exact test p-value < 2.2e-16). Similar

results were obtained with mouse enhancers (Supplementary Figure S17) with 1,171 enhancers
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(out of 44,459, ∼ 2.6%) involving at least one polyT-associated CAGE. These results reinforce the

idea that a number of polyT CAGEs correspond to genuine TSSs.

PolyT CAGEs interact with gene TSSs. We used ENCODE Chromatin Interaction Analysis by

Paired-End Tag Sequencing (ChIA-PET) directed against RNAP-II in K562 cell line 38 to better

characterize the elements interacting with polyT CAGEs thanks to DNA looping. As in Figure 3,

we used the sets of ’expressed’ and ’non-expressed’ polyT CAGEs in K562 cells. The ’expressed’

polyT CAGEs are enriched in ChIA-PET data compared to ’non-expressed’ polyT CAGEs (Fig-

ure 5A), confirming the results depicted in Figure 3. Second, using combined chromHMM/Seg-

way, we observed that regions interacting with ’non-expressed’ polyT CAGEs mostly correspond

to ’Predicted Repressed or Low Activity’ region (Figure 5B and Supplementary Figure S18). On

the other hand, regions interacting with ’expressed’ polyT CAGEs mostly correspond to ’Pre-

dicted promoter region including TSS’ regions (Figure 5B and Supplementary Figure S18). Third,

we used the FANTOM5 CAGE TSS classification 2 and showed that CAGEs interacting with

’expressed’ polyT CAGEs mostly correspond to ’strict’ and ’weak’ TSSs, while ’non-expressed’

polyT CAGEs preferentially interact with ’no’ TSSs (Figure 5C and Supplementary Figure S19).

Transcription at T repeats is triggered by sequence-level instructions. We built a deep Con-

volutional Neural Network (CNN) model to predict the transcription at T repeats. We considered

CNN as a regression problem and decided to predict the mean raw tag count of each T repeat

across all FANTOM libraries (Supplementary Figure S20). Plotting the densities of mean raw tag

counts at T repeats associated or not with CAGE peaks shows the existence of potential false neg-
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atives i.e. T repeats not associated with CAGE peaks but associated with CAGE tags nonetheless

(Supplementary Figure S21), likely explaining results depicted in Figure 2B and Supplementary

Figure S10. CNN model architecture and the constructions of the different sets used for learning

are shown Supplementary Figure S22. As input, we used sequences spanning ± 50bp around the

3’ end of each T repeat. Longer sequences were tested without improving the accuracy of the

model (Supplementary Figure S23). The accuracy of our model, computed as Spearman correla-

tion between the predicted and the observed tag counts, is remarkably high (median Spearman r

over 10 trainings = 0.81, Supplementary Figure S24A) and the error low (median absolute error for

one model = 1.82, Supplementary Figure S24B). This demonstrates that transcription at T repeats

is mainly directed by sequence-level instructions.

Probing sequence-level instructions for transcription at T repeats. We further used our deep

CNN model to probe these instructions. Because the length of the T repeats associated with CAGE

peaks is greater than that of T repeats not associated with CAGE peaks but located within the same

genes (Figure 6A), we first compared predictions with varying lengths of polyT track. We chose a

T repeat with a low error and increased the length of its polyT repeat ranging from 9 to 51. The pre-

dicted tag count increases with the length of the polyT track (Figure 6B). We next tested whether

our model captures additional instructions, lying downstream the T repeat. The accuracy of our

model increases considering increasing lengths of sequence located downstream T repeat with a

plateau at 40-50 bp (Figure 6C). We further considered two specific T repeats, one, A, with a low

predicted tag count (0.9, observed tag count = 1.0) and another, B, with a high predicted tag count

(39.37, observed tag count = 39.44) (Supplementary Figure S25). Sequences located downstream
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each T repeat were swapped and the prediction was assessed in each case. The prediction of the

artificial sequence A drastically increased while the prediction of the artificial B decreased (Sup-

plementary Figure S25), strengthening the existence of sequence-level instructions downstream T

repeats. To more precisely characterize these instructions, we considered 50 sequences with low

error and high tag count (set ’high’) and 50 sequences with low error and low tag count (set ’low’).

For all pairs of ’high’ and ’low’ sequences, we sequentially replaced 5-mers from one sequence

with 5-mers from the other. We then predicted the tag count of the 2 new sequences for each 5-mer

swapping and assessed transcription change as the difference between tag counts before and after

5-mer swapping. Inserting 5-mers of ’high’ sequences in ’low’ sequences induces overall positive

changes (i.e. increased transcription) (Figure 6D), while inserting 5-mers of ’low’ sequences in

’high’ sequences overall decreases transcription (Figure 6E). Besides, these 5-mer segmentation

reveals that the instructions located near the end of T repeats (i.e. close to the CAGE peak summit)

are crucial (i.e. can induce more change in the prediction) compared to the rest of the sequence

(Figures 6D and E). However, except their lengths (Figure 6A), no specific motif clearly distin-

guished T repeats with high tag count (top 5,000) from T repeats with low tag count (top 5,000)

(Supplementary Figure S26). Moreover, we randomly modified sequences in order to maximize

their predicted tag count and to computationally generate an optimized sequence (see methods).

Pairwise comparisons of these optimized sequences (2,000 comparisons) reveal that the only fea-

ture common to all optimized sequences is the length of the T repeat and no specific and unique

subsequence (i.e. motif) could be identified by this approach (Supplementary Figure S27). Motif

search indeed confirms the importance of T repeat length and absence of a single motif able to dis-
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tinguish ’high’ and ’low’ sequences (Supplementary Figure S26). As expected, a simple 1-layer

CNN, which is similar to finding enriched k-mers or motifs, poorly performed (median Spearman r

= 0.2). Together these results show that a single representation cannot model the intricate structure

of the features captured by CNN.

Alternative methods were tested, namely LASSO 39 and Random Forest 40, using, as pre-

dictive variables, mono-, di- and tri-nucleotides rates in the region located upstream (-50bp) or

downstream (+50bp) T repeat ends, the T repeat lengths and the first nucleotide (A,C,G or T)

downstream the T repeats (-1 when considering 0 as the CAGE summit). In that case, the model

accuracies are 51% and 61% for LASSO and Random Forest respectively. These models are not

as accurate as CNN but they confirm that T repeat length is the main feature being used from the

sequence located upstream T repeat end, while other features lie downstream the T repeat (Supple-

mentary Table S4 and Supplementary Figure S28).

Predicting transcription at T repeats in other species. Deep CNN could also predicts transcrip-

tion at mouse T repeats (Spearman r = 0.77 and median absolute error = 1.82). We then asked

whether the human and mouse models (i.e. learned features) were similar. While the human

model can predict transcription at mouse T repeats (Spearman r = 0.72), the mouse model poorly

performs on human CAGE data (Spearman r = 0.39). However, compared to human CAGE data,

mouse data are small-scaled in terms of number of reads mapped and diversity in CAGE libraries 2,

making the signal in mouse less accurate than in human. It is therefore possible that a CNN trained

on human data will learn more features than a model learned on mouse data.
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We also tried to build a model in chicken, human’s most distant species considered in FAN-

TOM5 CAGE data. The prediction, though not null, is much less accurate than in human or in

mouse (Spearman r = 0.61 and median absolute error = 1.09). Only 58 libraries are available in

chicken and the mean signal across these library may not be as robust as in mouse or in human.

To confirm that the robustness of the CAGE signal is directly linked to the number of libraries

considered, we computed the mean raw tag count in only 58 randomly chosen human libraries and

learned a new model using the same architecture as in Supplementary Figure S22. In that case, the

signal appears very sparse compared to a signal computed on 988 libraries (Supplemental Figure

S29) and the model accuracy falls to 0.61. These results reveal that the CAGE signal at T repeats

is noisy when considered library-wise but becomes robust when averaged on numerous libraries.

Clinically relevant variants are predicted to impact transcription at T repeats. Previous stud-

ies showed that genomic variations at polyT repeats can impact gene expression. For instance,

the variant rs10524523, located in TOMM40 intron 6, which corresponds to a T repeat associ-

ated with a CAGE signal in several FANTOM libraries, is linked to the age of onset of cog-

nitive decline, Alzheimer’s disease and sporadic inclusion body myositis 41–46. The TOMM40

mRNA brain expression appears to be linked to the length of the polyT repeat with the longer

variant the higher expression 41, 42. Conversely, the KIAA0800/ENSG00000145041 promoter is

repressed by an upstream element involving a polyT repeat and two Alu repeats 47. In that

case, the CAGE signal detected at this particular polyT repeat has been annotated as one TSS

of KIAA0800/ENSG00000145041 in FANTOM CAT 4. More widely, STRs of T homopolymers

have been reported to impact gene expression in a directional and strand-specific manner 48.
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We used our model to predict the effects of genomic variations located within sequences sur-

rounding T repeats (end of T repeat ± 50bp). First, we observed, in the case of TOMM40 intron 6

variant, that transcription is positively correlated to the length of the T repeat (Figure 7A). Second,

we compared the effect of variants listed in dbSNP, the world’s largest database for nucleotide

variations 49, and variants listed in ClinVar, which pinpoints medically important variants 50. Al-

most all T repeats harbor variations listed in dbSNP (962,241 out of 1,169,145), while 2,577 T

repeats are associated with variations listed in ClinVar. Strikingly, these T repeats tend to be as-

sociated with high tag counts compared to T repeats with dbSNP variants (Figure 7B), indicative

of potential clinical relevance of transcription at T repeats. The ClinVar variants were not equally

distributed around T repeats (Figure 7C). Overall, ClinVar variants are frequently found around T

repeats, with a peak at position 0 and +1 (0 being the end of T repeat), close to the CAGE summit

(+2 in that case). This particular distribution was not observed when considering all permissive

CAGE peak summits (Supplementary Figure S30). The variants located at the vicinity of T repeats

are predicted by our model to induce extensive changes in transcription, being overall positive (i.e.

transcription increase) when located on both sides of T repeat while negative (i.e. transcription

decrease) when located within T repeat (Figure 7D). These differential effect are not linked to the

nature of the variants (i.e. SNP or insertion/deletion) as both types of variants can have positive

and negative effects on transcription with insertions/deletions having broader effects (Supplemen-

tal Figure S31). In fact, genomic variations within a T repeat will more likely disrupt the repeat

and decrease its length, thereby inducing an overall decrease in transcription prediction. Variations

linked to certain diseases were enriched in the 101bp-long regions centered around T repeat ends,
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although no clear enrichment for specific types of diseases was noticed (Supplementary Table S5).

Discussion

We looked at recurring DNA motifs associated with FANTOM CAGE peaks 2 and showed that

a significant portion of them initiate at polyT repeats in several species. We do not exclude that

some CAGE peaks initiating at polyT repeats are generated by internal priming during Heliscope

sequencing. Yet we provide evidence that a fraction represents genuine TSSs as (i) polyT CAGEs

are truly capped and associated with typical epigenetic marks, (ii) several of them correspond to

annotated long non-coding transcripts and enhancer RNAs detected by various technologies in dif-

ferent laboratories and (ii) their expression can be predicted by a deep learning model, which uses

features located downstream T repeats. We show that GRO-seq coincides with CAGE at T repeats

(Figure 3B and Supplementary Figures S11 and S12). Li et al. suggested that CAGEs detected

at polyA/T repeats may correspond to technical artifacts because they are not detected by a GRO-

seq method that enriches for 5’-capped RNAs (GRO-cap) 20. However, in comparison to CAGE,

GRO-cap generates fewer reads mapping to introns 51, making hard to confirm the existence of

faintly expressed and intronic CAGEs, such as polyT CAGEs, with GRO-cap. In fact, non-coding

transcription appear overall much less efficient than that of mRNAs 5 (Supplementary Figure 7A).

It is also worth noticing that several features insinuating that polyT CAGEs are technical artifacts

may constitute specific properties of lncRNAs. For instance, the majority of lncRNAs are enriched

in the nucleus 52–54.
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The human genome is scattered with repetitive sequences, and the vast majority of the ge-

nomic DNA is supposed to be transcribed 1. Implicitly, the human transcriptome should contain

a large portion of RNAs derived from repetitive elements (called repeat-derived RNAs, repRNAs

in 58). We provide here an example of such repRNAs. Homopolymers of > 10 Ts appear at fre-

quencies well above chance in the non-coding regions of several organisms, suggesting selective

advantages that lead to their overrepresentation 59. In human and mouse genomes, polyT repeats

can correspond to the polyA tails of short interspersed nuclear elements (SINEs) 60. However,

according to RepeatMasker, only a fraction of human T repeats associated with CAGE peaks cor-

respond to SINEs (∼ 37% vs. ∼ 50% for T repeats without CAGE peak, Supplementary Table

S6). PolyT-CAGEs are also detected in chicken (Supplementary Figure S1) where SINE elements

are rare 61 (Repeats of > 9 Ts represent 0.04% of the chicken genome, akin to human). These

observations argue against the existence of a link between polyT CAGEs and SINEs but rather

reinforce the intrinsic relevance of these homopolymers 59.

Whether polyT-associated non-coding RNAs or the act of transcription per se is functionally

important 5 remain to be clarified. This is all the more warranted as T repeat transcription is

associated with clinically relevant genomic variations (Figure 7B). This non-coding transcription,

mostly sense and intronic, may specifically regulate certain coding - as opposed to non-coding -

genes (Supplementary Figure 7B, Supplementary Tables S1 and S2). In line with this idea, we

show here that polyT CAGEs preferentially interact with gene TSSs (Figure 5).

PolyT repeats have been shown to act as promoter elements favoring transcription by deplet-
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ing repressive nucleosomes 62, specifically by orientating the displacement of nucleosomes 63. As

a consequence, polyT repeats can increase transcription of reporter genes in similar levels to TF

binding sites 64.

Besides, eSTRs located within the gene body are more likely to have T on the template strand

and show higher gene expression with increasing repeat number 48. This directional and strand-

specific bias 48 can be molecularly explained by transcription at T repeats. These observations,

in addition to overrepresentation of long T repeats in eukaryotic genomes 59, suggest functional

role(s) for transcription at T repeats but dedicated experiments are required to formally assess its

contribution in gene expression.
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Methods

Datasets and online resources. Publicly availble data used in this study can be found at the urls

provided in Supplementary Table S7. The genome assemblies considered are human hg19, mouse

mm9, chicken galGal5, dog canFam3, rat rn6, rhesus macaque rheMac8. Intron coordinates were

downloaded from UCSC table browser. Human RepeatMasker coordinates were downloaded from

UCSC table browser.

Motif analyses. The HOMER motif analysis tool 21 was used to find 21bp long-motifs in regions

spanning 10bp around CAGE peakmax (findMotifsGenome.pl with options -len 21, -size given, -

noknown and -norevopp). HOMER was further used to identify, CAGEs harboring specific motifs

(annotatePeaks.pl with option -m) in particular INR motif (motif1 in Figure 1) and polyT repeat

(motif2 in Figure 1).

Characterization of T repeats in human and mouse. T repeats of more than 9Ts were identified

in the human, mouse and chicken genome using the tool developed by Martin et al. 65. The human,

mouse and chicken coordinates are provided as supplementary bed files.

Bioinformatics tools. Intersections between genomic coordinates were computed with BEDTools 66.

Signal were extracted from bigwig files using bwtool (agg and extract subcommands) 67 and deep-

Tools 68. Statistical tests were done using R 69 (fisher.test, wilcox.test, cor) or Python (fisher exact,

mannwhitneyu, spearmanr from scipy.stats (http://www.scipy.org/)). Graphs were made using gg-

plot2 R package 70 or Python matpotlib library (https://matplotlib.org/api/pyplot api.html). All

scripts are available upon request.
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Evaluating mismatched G bias at Illumina 5’end CAGE reads. Comparison between Helis-

cope vs. Illumina CAGE sequencing was performed as in de Rie et al. 29. Briefly, ENCODE

CAGE data were downloaded as bam file (Supplementary Table S7) and converted into bed file

using samtools view 71 and unix awk as follow:

samtools view file.bam | awk ’{FS="\t"}BEGIN{OFS="\t"}{if($2=="0") print $3,

$4-1,$4,$10,$13,"+"; else if($2=="16") print $3,$4-1,$4,$10,$13,"-"}’ >

file.bed

. The bedtools intersect 66 was further used to identify all CAGE reads mapped at a given

position (see Figure 2B and C). The unix awk command was used to count the number and type of

mismatches as follow:

intersectBed -a positions_of_interest.bed -b file.bed -wa -wb -s |

awk ’{if(substr($11,1,6)=="MD:Z:0" && $6=="+") print substr($10,1,1)}’ | grep

-c "N"

with N = {A, C, G or T}, positions of interest.bed being for instance polyT-associated CAGE

coordinates and file.bed being the Illumina CAGE tag coordinates.

Absence of mismatch focusing on the plus strand were counted as:

intersectBed -a positions_of_interest.bed -b file.bed -wa -wb -s |

awk ’{if(substr($11,1,6)!="MD:Z:0" && $6=="+") print $0}’ |wc -l

As a control, 61,907 random positions were generated with bedtools random (-l 1 and -n

61907). We also used the 3’ end of the pre-miRNAs, which were defined, as in de Rie et al. 29,

as the 3’ nucleotide of the mature miRNA on the 3’ arm of the pre-miRNA (miRBase V21, see

Supplementary Table S7), the expected Drosha cleavage site being immediately downstream of
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this nucleotide (pre-miR end + 1 base).

Epigenetic marks at T repeats. Average chromatin CAGE signal around polyT CAGEs (Fig-

ure ??D) were computed using the agg subcommand of the bwtool 67. For RNAP-II ChIA-PET,

interacting regions within the same chromosome were extracted using the column name $4 of the

bed file. Roadmap and GENCODE ChIP-seq as well as GROseq data were extracted from URLs

indicated in Supplementary Table S7. To look at epigenetic marks around T repeats into H1-hESC

cell line, the coordinates of ’expressed’ and ’non-expressed’ T repeats ends+2 bp (see results for

details) were intersected with Roadmap bedfiles using bedtools intesect 66.

intersectBed -wb -a epigenetic_mark.bed -b expressed_polyT_CAGEs.bed | sort -u

| wc -l

The fractions of intersecting T repeats within each set were compared for each available

epigenetic mark and each of the 3 H1-hESC samples using Fisher’s exact test. The same proce-

dure was used in other cell lines with ENCODE broadpeaks data for the H3K4me1, H3K4me2,

H3K4me3 and H3K36me3.

For GRO-seq data, we used bigwig files from the ’gro-seq.colorado’ repository (Supplemen-

tary Table S7). In H1-hESC cell line, we compared the fraction of intersecting ’expressed’ and

’non-expressed’ T repeats similar to the procedure used for GENCODE and Roadmap data. The

GRO-seq signal around these two sets was also compared as the mean signal into a 100 bp window

centered on the T repeat end using deeptools multiBigwigSummary 68.

multiBigwigSummary BED-file -b CellLine_Nascent_RNAseq_files_forward/*.bw

-o out.npz --BED sample_polyT.end_minus.plus50_coordinates_plusStrand.bed --

outRawCounts sample_polyT.end_minus.plus50_meanSignal_plusStrand.txt

multiBigwigSummary BED-file -b CellLine_Nascent_RNAseq_files_backward/*.bw
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-o out.npz --BED sample_polyT.end_minus.plus50_coordinates_minusStrand.bed --

outRawCounts sample_polyT.end_minus.plus50_meanSignal_minusStrand.txt

We compared the fractions of T repeats with a no-null signal into both ’expressed’ and ’non-

expressed’ sets using Wilcoxon test. We also calculated the sum of these mean signals across all

the samples for each T repeat with similar results.

Convolutional Neural Network. A Zenbu 72 xml custom script was used to calculate the mean

tag count of each base genome-wide in 988 FANTOM libraries. We then summed these means

along each T repeat + 5bp. This values were used as predicted variables in a CNN model built on

sequences centered around each T repeat end (n = 1,169,236). The same procedure was repeated

with mouse (397 libraries) and chicken data (58 libraries) using the same architecture. The coordi-

nates of the T repeats with the mean tag count values (score column) used to train our models are

provided as supplementary bed files. The fasta file corresponding to T repeats sequences with their

tag count was parsed using Biopython 73 library. To build the convolutional neural network, we

used Keras 74 library in Python with Tensorflow 75 backend. The subsequent analyses of altering

length of T repeats and swapping downstream sequence was performed by treating sequences as

strings. The complete code can be found at https://gite.lirmm.fr/ibc/t-repeats.

Feature extraction. We looked at motif by random optimization of the CNN prediction using

the following algorithm : first, two sequences are randomly chosen in the test set. For each se-

quence, the effect of changing one nucleotide at a random position into A,T, C or G is assessed.

The nucleotide with the maximum predicted tag count is kept and the procedure continues testing
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another position. This procedure is repeated until no further increase of predicted tag count is ob-

served over 3,500 randomly selected positions. The two optimized sequences are then compared

position-wise in order to return 1 for each position with the same nucleotide in both sequences

and 0 otherwise. This process was repeated for 2,000 pairs of random sequences. Same proce-

dure was applied minimizing the tag count for each sequence. The complete code can be found at

https://gite.lirmm.fr/ibc/t-repeats.

Predicting impact of ClinVar variants ClinVar and dbSNP vcf files were downloaded and then

converted to bed files.They were intersected with coordinates of all T repeats using bedtools inter-

sect 66 as follows:

bedtools intersect -a clinvar_mutation.bed -b t_repeats.bed -wa -wb >

t_repeats_clinvar.bed

bedtools intersect -a db_snp_mutation.bed -b t_repeats.bed -wa -wb >

t_repeats_dbSNP.bed

The bed files generated above were then converted into Pandas 76 dataframe in python and

variants were introduced in T repeats sequences.The CNN model developed previously was then

used to predict the mean tag count of the mutated sequences. The change was computed using the

following formula:

(a− b)

b
× 100

where a is the predicted tag count after variation and b the predicted tag count before variation.

The complete code can be found at https://gite.lirmm.fr/ibc/t-repeats.
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Comparison with other models. To compare our deep learning regression model with other

parametric and non parametric approaches, we used linear regression with l1-norm penalty via

LASSO 39 and Random Forest 40 to predict the mean tag count signal. For both approaches, the

predictive variables are the nucleotide, dinucleotide and trinucleotide content computed into the 50

bp downstream the polyT end and 50 bp upstream the polyT end excluding the T repeat. We also

integrated the length of the T repeat and the nature of the nucleotide following the T repeat end

(A, C or G at position -1 referring to the CAGE summit at 0). LASSO inference was performed

using the function cv.glmnet from the R package glmnet and Random Forest was performed us-

ing the randomForest R package. To compute the distribution of the minimal depth we used the

min depth distribution function from the R package randomForestExplainer.
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Figure 1 Motif discovery around CAGE peakmax. HOMER 21 was used to find 21bp-

long motifs in 21bp-long sequences centered around the peak max of FANTOM5 CAGEs.

A. 1,048,124 human permissive CAGEs were used. The top 5 is shown. 61,907 CAGEs

are associated with polyT repeat starting at -2 (0 being the peakmax). B. Among 158,966

mouse CAGEs, 8,274 are associated with polyT repeat. Note that another repeat of 2-5

Gs is also identified in FANTOM CAGE data with strong similarities in both human and

mouse (A and B). However, this repeat is less strict and is not conserved in dog, chicken,

macaque and rat (Supplementary Figure S1) and is absent in Start-seq and DECAP-seq

data (Supplementary Figure S3). Though this motif may represent a biologically relevant

signal in human and mouse, these features make it less relevant for our study. We then

focused our analyses on polyT CAGEs .

Figure 2 polyT CAGEs are 5’-capped. A. G bias in ENCODE CAGE reads was as-

sessed at the indicated positions (x-axis) around polyT CAGEs (0 corresponds to end of

poly repeat + 2bp, n = 63,974). The number of intersecting reads on the positive strand is

indicated. B. Same analyses as in A but considering position -2 only and other CAGEs/po-

sitions indicated in x-axis: CAGE peaks assigned to gene, pre-microRNA 3’ ends, 61,907

random positions, T repeat without CAGE. Note that the number of polyT CAGEs on +

strand is 33,209 and that of T repeats without CAGE 636,993 indicating that the number

of reads at T repeats with CAGE is relatively higher than that at T repeats without CAGE.
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Figure 3 Several polyT CAGEs are associated with promoter-related epigenetics

marks A. Distribution of ChromHMM/Segway genome segments containing ’expressed’

or ’non-expressed’ polyT CAGEs (see text for definitions) in HeLa-S3, GM12878 and

K562. 61,907 random position were also considered for comparison. Note the absence

of ’Predicted promoter flanking region’ class in K562. B. Fraction of polyT CAGEs ’ex-

pressed’ (blue) or not (red) in H1 embryonic stem cells (CNhs13964 FANTOM library)

and intersecting with nascent RNAseq signal from 26 gro-seq colorado H1-ESC samples

(SRR*) (considering a window of 101bp centered around T repeat end). Boxplots show

the results of the intersection for 26 samples (see Supplementary Table S7 for individ-

ual analyses). Fisher’s exact test indicates that the fraction of polyT CAGEs with no-null

GROseq signal obtained for ’expressed’ polyT CAGEs is higher than that obtained for

’non expressed’ polyT CAGEs (p-value < 2.2e-16). C. Intersection of ’expressed’/’non

expressed’ polyT CAGEs coordinates with that of Roadmap epigenetics data collected in

H1 embryonic stem cells. The fraction obtained for ’expressed’ and ’non expressed’ polyT

CAGEs were compared using Fisher’s exact test. The color correspond to p-value < 5e-3

(green) or > 5e-3 (grey).

Figure 4 Motif discovery around FANTOM CAT transcript and enhancer TSSs.

HOMER 21 was used to find 21bp-long motifs in 21bp-long sequences centered around

TSSs of FANTOM CAT robust transcripts (A) or enhancers (B). A. 525,237 transcript starts

as defined in 4 were used. The top 5 is shown. B. 65,423 enhancers defined in 3 were

used corresponding to 130,846 TSSs. Only 5 motifs were identified by HOMER.
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Figure 5 polyT CAGEs interact with gene TSSs A. The number of polyT CAGEs as-

sociated with a CAGE signal (’expressed’) or not (’non-expressed’) in K562 cells located

(red) or not (green) in ChIA-PET interacting regions was calculated intersecting their ge-

nomic coordinates. Results are shown in the case of CNhs12334 CAGE and RNAP-II

ENCODE K562 ChIA-PET replicate 2 data. Other replicates are shown Supplementary

Figure S16. A Fisher’s exact test was computed to assess the statistical significance of

the results (p-value = 1.166e-05). Similar results were observed with other CAGE and

/or ChIA-PET replicates. B. The coordinates of the regions interacting with ’expressed’

or ’non-expressed’ polyT CAGEs as defined by ChIA-PET were intersected with that of

the genome segments provided by combined chromHMM/Segway in K562. Fisher’s ex-

act tests were performed to assess potential enrichments in the indicated segments (**,

< 0.001). Similar results were observed with other CAGE and /or ChIA-PET replicates. E,

’Predicted enhancer’ ; R, ’Predicted Repressed or Low Activity region’ ; T, ’Predicted tran-

scribed region’ ; TSS, ’Predicted promoter region including TSS’. C. The coordinates of

the regions interacting with ’expressed’ or ’non-expressed’ polyT CAGEs were FANTOM5

CAGE coordinates and the number of CAGEs in each class was calculated. Fisher’s

exact tests were performed to assess potential enrichments in the indicated classes (**,

< 0.001).

Figure 6 Probing sequence-level instructions of transcription at T repeats A. Length

of polyT repeat associated (blue) or not (red) with CAGE peaks. For sake of comparison,

only T repeats without CAGE peak and located within the same genes as T repeats with
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CAGE peaks were considered. B. T repeat whose transcription is predicted with low error

was chosen and its length was gradually increased from 9 to 51. The prediction was as-

sessed at each step. C. Deep CNN models were trained using 50 bp upstream T repeat

ends and varying lengths of sequences located downstream, ranging from 0 to 50 bp (x-

axis). For each trained model, the Spearman correlation was computed on the test set

(30% of entire set of T repeats i.e. 350,770 sequences) between the prediction vector and

that of observed tag counts (i.e. accuracy of the model, x axis). D and E. 50 sequences

with low error and high tag count (set ’high’) and 50 sequences with low error and low

tag count (set ’low’) were chosen. For all pairs of ’high’ and ’low’ sequences, we sequen-

tially replaced 5-mers from one sequence with 5-mer from the other and predicted the tag

count of the 2 new sequences for each 5-mer. Transcription change was assessed as

the difference between tag counts before and after 5-mer swapping. D shows the results

of insertions of 5-mers of ’high’ sequences in ’low’ sequences, while E shows the results

obtained inserting 5-mers of ’low’ sequences in ’high’ sequences.

Figure 7 Evaluating the effect of genetic variants on transcription at T repeats A.

Increasing the length of the T repeat located in TOMM40 intron 6 as in Figure 6B increases

the predicted tagcount. B. Tag count distribution of all T repeats (black), T repeats with

dbSNP variants (red) and T repeats associated with ClinVar variants (green). textbfC.

Frequency of ClinVar variants around T repeat ends (position 0). The y-axis shows the

fraction of all ClinVar variants located at the position indicated on the x-axis. Low variant

frequency within T repeats is presumably due to mapping issues. D. Effect of prediction
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changes induced by ClinVar variants (see methods for details). The changes are shown

as percentages of the original tag count in a position-wise manner (see ’methods’ section).
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Figure S1: Motif discovery around CAGE summit. The procedure described in Figure 1 was repeated
with CAGE peak summits collected in chicken, dog, macaque and rat.
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Figure S2: Internal priming at internal polyT tracts. In the HeliScopeCAGE protocol, capped RNA will
be randomly primed and the RNA/DNA duplex will be captured on beads by the CAP Trapper reaction.
The first-strand cDNAs are then released and a poly-A tail is added to prepare them for sequencing. The
HeliScope platform primes the sequencing reactions with poly-dT oligonucleotides grafted to the surface
of its flow cells. In the HeliScope CAGE, it is intended that the sequencing reactions will start after the
poly-A tail added to the first-strand cDNA, thus producing reads that align at the TSS. If the first-strand
cDNA contains internal A-rich regions, the priming can also happen internally and yield CAGE peaks at
internal poly-T tracts.
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Figure S3: Motif discovery around Start-seq and DECAP-seq peak summits. A. The procedure
described in Figure 1 was repeated on TSSs detected by Start-seq [1] (forward data, n = 1,086,787)
normalizing by total GC-content with -gc option. B. Same procedure applied on DECAP-seq TSSs [2]
(n = 106,742). GSM2422532 and GSM2422533, which are not stranded data, were merged. Note that
the INR motif is not detected with this procedure and that motif 4 (poly tract) is labelled as possible
false positive.

Figure S4: Motif discovery around TSS-seq peak summits collected in Arabidopsis thaliana. The
procedure described in Figure 1 was repeated on TSS-seq peaks [3] normalizing by total GC-content with
-gc option.
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AAAAAAAAAA (-)
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B

Figure S5: Distribution of CAGE peaks at homopolymers of A/T A. 81,080 STRs from STR
reference catalog [4] are associated with a CAGE peak (considering a window of 5bp around the STR)
: 36,062 correspond to homopolymers of Ts and 33,802 to homopolymers of As. Most CAGE peaks
associated with STRs of T are on the ’+’ strand (35,653 out of 36,185), while CAGE peaks associated
with homopolymers of As are on the ’-’ strand (33,313 out of 33,922) B. CAGE peaks are not equally
distributed around polyA/T STRs with 35,974 and 686 located respectively downstream and upstream of
polyT STRs (CAGE tags within STRs are here counted in both cases explaining why 35,974+686 > 36062)
and 679 and 33,723 located respectively downstream and upstream of polyA STRs. Hence, CAGE peaks
are almost exclusively located downstream polyT STRs. Since no amplification is involved in CAGE
sequencing [5], imbalance for polyT vs. polyA supports the idea of internal priming (note that FANTOM
CAT genes contain 628,762 T repeats and 499,419 A repeats).
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Figure S6: polyT CAGEs harbor specific features. A. Directionality, extracted from [6], of all CAGEs
(red) and that of 10,926 polyT CAGEs (blue) are shown as boxplots. Directionality close to 1 indicates
that sense transcription is more abundant than antisense transcription within a region of -800bp/+200bp
centered around the CAGE summit while directionality of -1 indicates that antisense transcription is
more abundant. These results argue against the presence of divergent (i.e. upstream antisense) RNAP-
II transcription associated with polyT CAGEs , as widely observed for canonical TSSs [7] B. Exosome
sensivity score were extracted from [6]. Exosome sensitivity of a CAGE cluster is measured as the relative
fraction of CAGE signal observed after exosome knockdown in HeLa-S3 cells as previously described in [8].
The exosome sensitivity of all CAGEs (red) and that of 10,926 polyT CAGEs are shown as boxplots.
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gene class CAGE-associated T repeats (63,480) all T repeats (699,048)
coding mRNA 51,774 (81.55%) 486,730 (69.62%)
lncRNA_antisense 604 (0.95%) 13,407 (1.92%)
lncRNA_divergent 1,921 (3.02%) 40,295 (5.76%)
lncRNA_intergenic 5,704 (8.98%) 117,056 (16.74%)
lncRNA_sense_intronic 1,744 (2.74%) 11,067 (1.58%)
pseudogene 808 (1.27%) 16991(2.43%)
sense_overlap_RNA 386 (0.61%) 1,940 (0.28%)
short_ncRNA 18 (0.03%) 241 (0.03%)
small_RNA 169 (0.27%) 1,838 (0.26%)
structural_RNA 4 (0.006%) 121 (0.02%)
uncertain_coding 347 (0.55%) 9,362 (1.34%)

Table S1: CAGE-associated T-repeats are preferentially located in coding genes. The coordinates of
CAGE-associated T repeats (n = 63,974) and that of all repeats of more than 9 Ts (n = 1,337,561) were
intersected with the annotation provided by the FANTOM5 CAGE Associated Transcriptome (CAT).
The total number of intersections obtained with CAGE-associated T repeats and T repeatss is 63,480
and 699,048 respectively. The location of all T repeats are shown for comparison. For each gene class,
the number of intersections and the corresponding percentage is shown. The median number of CAGE-
associated T repeats per gene is 2. In contrast, ∼ 47% of all T repeats are located in FANTOM CAT
genes with a median number of T repeats per gene of 7. 45,058 out of 63,974 CAGE-associated T repeats
are located in introns (> 70%), while only 34% of all T repeats are intronic (453,428 out of 1,337,561,
Fisher’s exact test p-value < 2.2e-16). Likewise, in mouse, 6,500 out of 8,825 CAGE-associated T
repeats (∼ 74%) but 204,328 out of 834,954 T repeats (∼ 24%) are located in introns.

gene_class CAGE-associated T repeats (49,312) T repeats (477,492)
3prime_overlapping_ncrna 7 (0.014%) 65 (0.014%)
TR_C_gene 1 (0.002%) 9 (0.002%)
TR_V_gene 1 (0.002%) 6 (0.001%%)
antisense 1,270 (2.57%) 26,135 (5.48%)
lincRNA 2,059 (4.17%) 43,120 (9.03%)
miRNA 2 (0.004%) 27 (0.005%)
polymorphic_pseudogene 21 (0.04%) 508 (0.11%)
processed_transcript 592 (1.20%) 6,986 (1.46%)
protein_coding 44,682 (90.61%) 386,036 (80.85%)
pseudogene 379 (0.77%) 11,801 (2.47%)
sense_intronic 168 (0.34%) 1,225 (0.26%)
sense_overlapping 130 (0.26%) 1,503 (0.31%)
snRNA 0 (0%) 7 (0.001%)
snoRNA 0 (0%) 6 (0.001%)

Table S2: CAGE-associated T-repeats are preferentially located in coding genes. The coordinates
of polyT CAGEs (n = 63,947) and that of all repeats of more than 9 Ts (n = 1,337,561) were intersected
with the annotation provided by GENCODEv19. The total number of intersections polyT CAGEs and
polyT tracts is 49,312 and 477,492 respectively. The location of all T repeats are shown for comparison.
For each gene class, the number of intersections and the corresponding percentage is shown.
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Figure S8: polyT CAGEs are preferentially detected in the nuclear compartment. For each indicated
library, CAGE expression (RLE normalized) was measured in nuclear and cytoplasmic fractions. Each
CAGE was then assigned to nucleus, cytoplasm or both compartments. The number of CAGEs in each
class is shown for each sample as a fraction of all detected CAGEs. The sample Fibroblast_Skin_2
likely represents an outlier. A. 63,974 CAGEs associated with T repeats B. 1,048,124 CAGEs detected
C. 130,286 CAGEs assigned to PCGs D. 68,731 CAGEs harboring the third motif shown in Figure 1.
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Figure S7: polyT CAGEs are faintly expressed and detected in highly expressed genes. A. Expres-
sion medians were computed for each permissive CAGE, CAGE assigned to genes and polyT CAGEs
across 1,829 libraries. The Phase 1 and 2 combined Tag Per Million (TPM) normalized data were used
(Supplementary Table S7). The y-axis was limited to 20. Overall polyT CAGEs appear faintly expressed
(median of median CAGE TPM expression in all samples = 0.3347) compared to all CAGEs detected
(median = 1.117, Wilcoxon test p-value < 2.2e-16) or to CAGEs assigned to gene TSS (median = 2.396,
Wilcoxon test < 2.2e-16) B. polyT CAGEs are preferentially detected in highly expressed genes. Distribu-
tion of median expression was computed across 1,829 FANTOM5 libraries of genes containing T repeats
with (blue) or without (purple) CAGE (Wilcoxon test p-value < 2.2e-16). The median expressions of all
FANTOM CAT genes (green) and that of PCGs (red) are shown for sake of comparison. The y-axis was
limited to 40.

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/634261doi: bioRxiv preprint 

https://doi.org/10.1101/634261
http://creativecommons.org/licenses/by-nc/4.0/


25

50

75

-1000 -500 0 500 1000
distance to CAGE peakmax | T repeat end +2bp | miRNA 3' end

av
er

ag
e 

si
gn

al

class
Trepeats with CAGE

Trepeats without CAGE

K562 chromatin-associated RNAs restricted to expressed genes
plus strand

Figure S9: polyT CAGEs are associated with chromatin. Distribution of chromatin-associated RNAs
extracted from K562 cells around T repeats with (green) or without (blue). Total signal on + strand is
shown.
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Figure S10: G bias around polyT CAGEs . G bias in ENCODE CAGE reads was assessed at -2 of
CAGE peakmax as in Figure 3 in GM12878 (A), K562 (B) and A549 (C and D).
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Figure S11: Intersection with GRO-seq peaks. Intersection of ’expressed’ (CAGE+)/’non expressed’
(CAGE-) polyT CAGEs (end ± 50bp) with nascent RNAseq peaks from 3 ’gro-seq colorado’ samples
(SRR*) obtained in H1 embryonic stem cells (CNhs13964, CNhs14067 and CNhs14068 FANTOM li-
braries). Fisher’s exact tests indicate that the fraction of polyT CAGEs with no-null GROseq signal
obtained for ’expressed’ polyT CAGEs is invariably higher than that obtained for ’non expressed’ polyT
CAGEs (p-value < 2.2e-16).
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Figure S12: Intersection with GRO-seq signal. Intersection of ’expressed’ (CAGE+)/’non expressed’
(CAGE-) polyT CAGEs (end ± 50bp) with nascent RNAseq signal from 3 ’gro-seq colorado’ samples
(SRR*) obtained in H1 embryonic stem cells (CNhs13964, CNhs14067 and CNhs14068 FANTOM li-
braries). The sum of the mean signal for each of the ’expressed’ (CAGE+) and ’non expressed’ (CAGE-)
polyT CAGEs is represented on the y-axis. For instance, in CNhs13964, signal was computed for 2,013
’expressed’ polyT CAGEs and 2,001 ’non expressed’. Wilcoxon test was used to asses significant differ-
ence (p-value is indicated).
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Figure S13: Intersection with Roadmap epigenetics ChIP-seq data. Fraction of ’expressed’ / ’non ex-
pressed’ polyT CAGEs in H1-hESC cells intersecting with H3K4me1 (top), H3K4me2 (middle), H3K4me3
(middle) and H3K36me3 (bottom) Roadmap ChIP-seq data.

13

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/634261doi: bioRxiv preprint 

https://doi.org/10.1101/634261
http://creativecommons.org/licenses/by-nc/4.0/


Figure S14: Intersection with ENCODE epigenetics ChIP-seq data. A. Fraction of ’expressed’/’non
expressed’ polyT CAGEs within each library considered. B-E. Fraction of ’expressed’ / ’non expressed’
polyT CAGEs intersecting with H3K4me1, H3K4me3 and H3K36me3 ENCODE ChIP-seq data in H1-
hESC (B), Hela-S3 (C), GM12878 (D) and K562 (E). The 3 replicates of each cell line were considered
in each case.
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Figure S15: Usage and contribution of polyT-associated FANTOM CAT TSSs. We first assessed
the position of polyT-associated TSSs among each promoter: 937 TSSs out of 10,606 correspond to
the most upstream TSS, arguing against internal priming and artifact hypothesis in these cases. A.
We evaluate the usage of FANTOM CAT TSSs associated (red) or not (blue) with poly tract for each
gene with more than 1 TSS. For each assigned TSS, we counted the number of samples wherein the
considered TSS is expressed. We then sorted all TSSs for each gene according to this usage value and
divided the rank of each polyT-associated TSS by the length of the list of all TSS assigned to each gene
(usage ratio indicated in y-axis). TSSs associated with polyT repeats are slightly less used than TSSs not
associated with polyT repeat (Wilcoxon test p-value < 2.2e-16). However, the median usage ratio for
polyT-associated TSSs is 0.5, indicating that these TSSs are far from being the least used TSSs. B. We
further evaluated the contribution of polyT-associated TSSs in gene expression. For each gene in each
library, we divided the sum tag count (CPM RLE normalized) of all TSS associated (red) or not (blue)
with polyT tract by the sum tag counts of all TSSs assigned to the gene considered (contribution ratio
indicated in y-axis). As expected provided faint expression of polyT CAGEs , polyT-associated FANTOM
CAT TSSs contribute only poorly to gene expression with a median contribution ratio of 0 (the median
contribution of TSSs not associated with polyT repeat logically equals 1).
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Figure S17: Motif discovery around FANTOM mouse enhancer TSSs. HOMER [9] was used to
find 21bp-long motifs in 21bp-long sequences centered around TSSs of 44,459 mouse enhancers defined
in [10] and corresponding to 88,918 TSSs. Only the top 5 motifs are shown.

Figure S16: No specific Open Reading Frame could be detected 2kb downstream polyT CAGEs.
Stop codon distribution was assessed along 2,000 nt downstream polyT-associated CAGE summits (n =
63,974). The x-axis represents the distance to transcript start and the y-axis represents the frequency
of the three stop codons TAA, TAG and TGA. All possible 6 frames were considered (see y-axis labels).
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Figure S18: Regions interacting with polyT CAGEs . The coordinates of the regions interacting with
’expressed’ or ’non-expressed’ polyT CAGEs in CNhs12335 (A) and CNhs12336 (B) were intersected with
that of the genome segments provided by combined chromHMM/Segway in K562. Fisher’s exact tests
were performed to assess potential enrichments in the indicated segments (**, < 0.001). E, ’Predicted
enhancer’ ; R, ’Predicted Repressed or Low Activity region’ ; T, ’Predicted transcribed region’ ; TSS,
’Predicted promoter region including TSS’.
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Figure S19: TSSs interacting with polyT CAGEs . The coordinates of the regions interacting with
’expressed’ or ’non-expressed’ polyT CAGEs in CNhs12335 (A) and CNhs12336 (B) were FANTOM5
CAGE coordinates and the number of CAGEs in each class was calculated. Fisher’s exact tests were
performed to assess potential enrichments in the indicated classes (**, < 0.001 ; *, < 0.05)
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Figure S20: Example of signal used to train CNN. To compute the raw mean tag count of each T
repeat, we first calculated the mean tag count of each base genome-wide in 988 FANTOM libraries
(upper track). We then summed these values along the T repeat + 5bp (bottom track).
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Figure S21: Mean tag counts along T repeats. To compute the raw mean tag count of each T repeat,
we first calculated the mean tag count of each base genome-wide in 988 FANTOM libraries. We then
summed these values along the T repeat + 5bp. The distribution of these tag counts are plotted for
T repeats initially defined as associated (red) or not (blue) with CAGE peaks as defined in [11]. The
overlapping area likely represents the existence of potential false negatives i.e. T repeats not associated
with CAGE peaks but associated with CAGE tags nonetheless. The y-axis was limited to 100 for sake of
clarity.
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A

B

Figure S22: Deep learning to predict transcription at T repeats. A. CNN model architecture. B.
Constructions of the different sets for learning. Only T repeats with at least 1 tag and no undetermined
sequence (’N’) were considered (n = 1,169,145) because T repeats without tag may represent false
negatives.

19

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/634261doi: bioRxiv preprint 

https://doi.org/10.1101/634261
http://creativecommons.org/licenses/by-nc/4.0/


Figure S23: Finding the optimal sequence length for deep learning. The architecture depicted
Supplementary Figure S19 was used to learn features in increasing lengths of sequences centered around
T repeat ends (x-axis). The accuracy of each model is shown (y-axis).

A B

Figure S24: Predicting transcription at T repeats with CNN. A. Accuracy of the deep CNN model was
assessed as the Spearman correlation between observed and predicted tag counts of 1,169,145 considered
T repeats. Learning was repeated 10 times to ensure model robustness. Results are shown as boxplot
(median = 0.81). B. Error of one model was assessed as the difference between observed and predicted
tag counts. Results are shown for 1,169,145 T repeats as boxplots (median = 1.82).
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Figure S25: Instructions lie downstream T repeats. Two specific T repeats, one A with a low predicted
tag count (0.9, observed tag count = 1.0) and another B with a high predicted tag count (39.37, observed
tag count = 39.44). Sequences located downstream each T repeat were swapped and the prediction was
assessed in each case. The prediction of the artificial sequence C drastically increased while the prediction
of the artificial D decreased.

selected variables (top10)
T length
GAG downstream
AGC downstream
CTA downstream
GpA downstream
TpA downstream
T downstream
CCT downstream
TAG downstream
TGG downstream

Table S4: Predicting transcription at T repeats using LASSO. The predictive variables are the nu-
cleotide, dinucleotide and trinucleotide content computed into the 50 bp downstream the polyT end and
50 bp upstream the polyT end excluding the T repeat. We also integrated the length of the T repeat
and the nature of the nucleotide following the T repeat end (A, C or G at position -1 referring to the
CAGE summit at 0). The selected top 10 variables are shown.
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Figure S26: Motif enrichment comparing T repeats with high and low tag count. A. Tag count
distribution of the top 5,000 sequences with high (blue) and low (red) tag count. B. Motif enrichment
was computed with HOMER [9] considering 101bp-long sequences centered around T repeat ends with
high and low tag count (top 5,000). The top12 motifs out of 33 are shown.
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A B

C

Figure S27: Feature extraction. A. For each sequence, the effect of changing one nucleotide at
a random position into A,T, C or G was assessed. The nucleotide with the maximum predicted tag
count is kept and the procedure continues testing another position. This process is repeated over 3,500
randomly selected positions (x-axis) until no further increase of predicted tag count (y-axis) is observed .
B. Two sequences were randomly chosen in the test set. The two sequences optimized as in A are then
compared position-wise in order to return 1 for each position with the same nucleotide in both sequences
and 0 otherwise. This process was repeated for 2,000 pairs of random sequences. y-axis: fraction of
identical pairs ; x-axis: position (The end of T repeat is located at position 50 ; repeat of 9 Ts is indicated
by red vertical lines) B. Same procedure as in B minimizing the tag count for each sequence. The process
was repeated for 100 pairs of random sequences.
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Figure S28: Predicting transcription at T repeats using Random Forest. The predictive variables are
the nucleotide, dinucleotide and trinucleotide content computed into the 50 bp downstream the polyT
end and 50 bp upstream the polyT end excluding the T repeat. We also integrated the length of the T
repeat and the nature of the nucleotide following the T repeat end (A, C or G at position -1 referring to
the CAGE summit at 0). Variable importance was assessed computing the minimal node depth, which
reflects the predictiveness of a variable by a depth calculation relative to the root node of a tree (smaller
values correspond to more predictive variables). The distribution of minimal depth is represented for
top 10 variables according to mean minimal depth. The mean minimal depth was calculated using only
non-missing values.

Figure S29: Predicting transcription at human T repeats. The mean tag count of each base genome-
wide is computed from 988 (up) or 58 (bottom) FANTOM libraries. Arrows (middle panel) represent T
repeats.
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Figure S30: Distribution of ClinVar variants around permissive CAGE summit. Position 0 indicates
the CAGE summit.

Figure S31: ClinVar variants induce changes in transcription prediction at T repeats. Changes were
measured as the difference between models scores before and after variant insertion.
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repeat_class T repeats with CAGE (31,445) T repeats without CAGE (844,086)
DNA 651 13202
LINE 5611 151870
LTR 756 15182
Lowcomplexity 851 11705
Other 3 2090
RC 6 43
RNA 1 10
Low_complexity 851 11705
SINE 23418 642986
Satellite 4 874
Simple_repeat 99 4692
Unknown 6 112
rRNA 2 32
scRNA 18 201
snRNA 8 176
srpRNA 9 259
tRNA 2 5

Table S6: polyT CAGEs in repeat elements. The coordinates of repetitive elements, according to
RepeatMasker, were intersected with that of T repeats associated (n = 63,974) or not (n = 1,273,587)
with CAGE peaks. The total number of intersections is indicated in brackets.
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