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Abstract11

Phenology - the timing of cyclical and seasonal natural phenomena such as flowering12

and leaf out - is an integral part of ecological systems with impacts on human activities13

like environmental management, tourism, and agriculture. As a result, there are14

numerous potential applications for actionable predictions of when phenological events15

will occur. However, despite the availability of phenological data with large spatial,16

temporal, and taxonomic extents, and numerous phenology models, there has been no17

automated species-level forecasts of plant phenology. This is due in part to the18

challenges of building a system that integrates large volumes of climate observations19

and forecasts, uses that data to fit models and make predictions for large numbers of20

species, and consistently disseminates the results of these forecasts in interpretable21

ways. Here we describe a new near-term phenology forecasting system that makes22

predictions for the timing of budburst, flowers, ripe fruit, and fall colors for 78 species23

across the United States up to 6 months in advance and is updated every four days. We24

use the lessons learned in developing this system to provide guidance developing25

large-scale near-term ecological forecast systems more generally, to help advance the26

use of automated forecasting in ecology.27

Keywords: climate, budburst, flowering, phenophase, ecology, decision making28
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Introduction29

Plant phenology - the timing of cyclical and seasonal natural phenomena such as30

flowering and leaf out - influences many aspects of ecological systems (Chuine and31

Régnière 2017) from small scale community interactions (Ogilvie et al. 2017) to global32

scale climate feedbacks (Richardson et al. 2012). Because of the central importance of33

phenology, advanced forecasts for when phenological events will occur have numerous34

potential applications including: 1) research on the cascading effects of changing plant35

phenology on other organisms; 2) tourism planning related to flower blooms and36

autumn colors; 3) planning for sampling and application of management interventions37

by researchers and managers; and 4) agricultural decisions on timing for planting,38

harvesting, and application of pest prevention techniques. However, due to the39

challenges of automatically integrating, predicting, and disseminating large volumes of40

data, there are limited examples of applied phenology forecast systems.41

Numerous phenology models have been developed to characterize the timing of major42

plant events and understand their drivers (Chuine et al. 2013). These models are based43

on the idea that plant phenology is primarily driven by weather, with seasonal44

temperatures being the primary driver at temperate latitudes (Basler 2016, Chuine and45

Régnière 2017). Because phenology is driven primarily by weather, it is possible to46

make predictions for the timing of phenology events based on forecasted weather47

conditions. The deployment of seasonal climate forecasts (Weisheimer and Palmer48

2014), those beyond just a few weeks, provides the potential to forecast phenology49

months in advance. This time horizon is long enough to allow meaningful planning and50

action in response to these forecasts. With well established models, widely available51

data, and numerous use cases, plant phenology is well suited to serve as an exemplar for52

near-term ecological forecasting.53

For decision making purposes, the most informative plant phenology forecasts will54

predict the response of large numbers of species and phenophases, over large spatial55
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extents, and at fine spatial resolutions. The only regularly updated phenology forecast in56

current operation predicts only a single aggregated “spring index” that identifies when57

early-spring phenological events occur at the level of the entire ecosystem (not58

individual species) at a resolution of 1° lat/lon grid cells (Schwartz et al. 2013, Carrillo59

et al. 2018). Forecasting individual species and multiple phenological events at higher60

resolutions is challenging due to the advanced computational tools needed for building61

and maintaining data-intensive automatic forecasting systems (White et al. 2018, Welch62

et al. 2019). Automated forecasts requires building systems that acquire data, make63

model-based predictions for the future, and disseminate the forecasts to end-users, all in64

an automated pipeline (Dietze et al. 2018, White et al. 2018, Welch et al. 2019). This is65

challenging even for relatively small-scale single site projects with one to several66

species or response variables due to the need for advanced computational tools to67

support robust automation (White et al. 2018, Welch et al. 2019). Building an68

automated system to forecast phenology for numerous species at continental scales is69

even more challenging due to the large-scale data intensive nature of the analyses.70

Specifically, because phenology is sensitive to local climate conditions, phenology71

modeling and prediction should be done at high resolutions (Cook et al. 2010). This72

requires repeatedly conducting computationally intensive downscaling of seasonal73

climate forecasts and making large numbers of predictions. To make 4 km resolution74

spatially explicit forecasts for the 78 species in our study at continental scales requires75

over 90 million predictions for each updated forecast. To make the forecasts actionable76

these computational intensive steps need to be repeated in near real-time and77

disseminated in a way that allows end-users to understand the forecasts and their78

uncertainties (Dietze et al. 2018).79

Here we describe an automated near-term phenology forecast system we developed to80

make continental scale forecasts for 78 different plant species. Starting December 1st,81

and updated every 4 days, this system uses the latest climate information to make82
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forecasts for multiple phenophases and presents the resulting forecasts and their83

uncertainty on a dynamic website, https://phenology.naturecast.org/. Since the majority84

of plants complete budburst and/or flowering by the summer solstice in mid-June, this85

results in lead times of up to six months. We describe the key steps in the system86

construction, including: 1) fitting phenology models, 2) acquiring and downscaling87

climate data; 3) making predictions for phenological events; 4) disseminating those88

predictions; and 5) automating steps 2-4 to update forecasts at a sub-weekly frequency.89

We follow Welch et al. (2019)’s framework for describing operationalized dynamic90

management tools (ie. self-contained tools running automatically and regularly) and91

describe the major design decisions and lessons learned from implementing this system92

that will guide improvements to automated ecological forecasting systems. Due to the93

data-intensive nature of forecasting phenology at fine resolutions over large scales this94

system serves as a model for large-scale forecasting systems in ecology more broadly.95

Forecasting Pipeline96

Welch et al. (2019) break down the process of developing tools for automated prediction97

into four stages: 1) Acquisition, obtaining and processing the regularly updated data98

needed for prediction; 2) Prediction, combining the data with models to estimate the99

outcome of interest; 3) Dissemination, the public presentation of the predictions; and 4)100

Automation, the tools and approaches used to automatically update the predictions101

using the newest data on a regular basis. We start by describing our approach to102

modeling phenology and then describe our approach to each of these stages.103

Phenology Modeling104

Making large spatial scale phenology forecasts for a specific species requires species105

level observation data from as much of its respective range as possible (Taylor et al.106
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2019). We used data from the USA National Phenology Network (USA-NPN), which107

collects volunteer based data on phenological events and has amassed over 10 million108

observations representing over 1000 species. The USA-NPN protocol uses status-based109

monitoring, where observers answer ‘yes,’ ‘no,’ or ‘unsure’ when asked if an individual110

plant has a specific phenophase present (Denny et al. 2014). Phenophases refer to111

specific phases in the annual cycle of a plant, such as the presence of emerging leaves,112

flowers, fruit, or senescing leaves. We used the “Individual Phenometrics” data product,113

which provides pre-processed onset dates of individually monitored plants, for the114

phenophases budburst, flowering, and fall colors for all species with data between 2009115

and 2017 (USA National Phenology Network 2018). We only kept “yes” observations116

where the individual plant also had a “no” observation within the prior 30 days and117

dropped any records where a single plant had conflicting records for phenotype status or118

more than one series of “yes” observations for a phenophase in a 12 month period. We119

built models for species and phenophase combinations with at least 30 observations120

(Figure 1, B) using daily mean temperature data at the location and time of each121

observation from the PRISM 4km dataset (PRISM Climate Group 2004). We also122

included contributed models of budburst, flowering, and/or fruiting for 5 species which123

were not well represented in the USA-NPN dataset (see Appendix S1: Table S2; Janet S.124

Prevéy, unpublished data, 2018, Prevéy et al. (In revision); Biederman et al. (2018)).125

For each species and phenophase we fit an ensemble of four models using daily mean126

temperature as the sole driver (Figure 1, C). The general model form assumes a127

phenological event will occur once sufficient thermal forcing units accumulate from a128

specified start day (Chuine et al. 2013, Chuine and Régnière 2017). The specification of129

forcing units are model specific, but all are derived from the 24-hour daily mean130

temperature. In a basic model a forcing unit is the maximum of either 0 or the mean131

temperature above 0°C (ie. growing degree days). The amount of forcing units required,132

and the date from which they start accumulating are parameterized for each species and133
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phenophase (see Appendix S1: Table S1). Ensembles of multiple models generally134

improve prediction over any single model by reducing bias and variance, and in a135

phenology context allow more accurate predictions to be made without knowing the136

specific physiological processes for each species (Basler 2016, Yun et al. 2017,137

Dormann et al. 2018). We used a weighted ensemble of four phenology models. We138

derived the weights for each model within the ensemble using stacking to minimize the139

root mean squared error on held out test data (100 fold cross-validation) as described in140

Dormann et al. (2018) (see Appendix S1: Sec. S1). After determining the weights we141

fit the core models a final time on the full dataset. Since individual process based142

phenology models are not probabilistic they do not allow the estimation of uncertainty143

in the forecasts. Therefore, we used the variance across the five climate models to144

represent uncertainty (see Prediction). Finally, we also fit a spatially corrected Long145

Term Average model for use in calculating anomalies (see Dissemination). This uses the146

past observations in a linear model with latitude as the sole predictor (see Appendix S1:147

Table S1).148

In our pipeline 190 unique phenological models (one for each species and phenophase149

combination, see see Appendix S1: Table S2) needed to be individually parameterized,150

evaluated, and stored for future use. To consolidate all these requirements we built a151

dedicated software package written in Python, pyPhenology, to build, save, and load152

models, and also apply them to gridded climate datasets (Taylor 2018). The package153

also integrates the phenological model ensemble so that the four sub-models can be154

treated seamlessly as one in the pipeline. After parameterizing each model, its155

specifications are saved in a text based JSON file that is stored in a git repository along156

with a metadata file describing all models (Figure 1, D). This approach allows for the157

tracking and usage of hundreds of models, allowing models to be easily synchronized158

across systems, and tracking versions of models as they are updated (or even deleted).159
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Acquisition and Downscaling of Climate Data160

Since our phenology models are based on accumulated temperature forcing, making161

forecasts requires information on both observed temperatures (from Nov. 30 of the prior162

year up to the date a forecast is made) and forecast temperatures (from the forecast date163

onward). For observed data we used 4km 24-hour daily mean temperature from PRISM,164

a gridded climate dataset for the continental U.S.A. which interpolates on the ground165

measurements and is updated daily (PRISM Climate Group 2004). These observed data166

are saved in a netCDF file, which is appended with the most recent data every time the167

automated forecast is run. For climate forecasts we used the Climate Forecast System168

Version 2 (CFSv2; a coupled atmosphere-ocean-land global circulation model) 2-m169

temperature data, which has a 6-hour timestep and a spatial resolution of 0.25 degrees170

latitude/longitude (Saha et al. 2014). CFSv2 forecasts are projected out 9 months from171

the issue date and are updated every 6 hours. The five most recent climate forecasts are172

downloaded for each updated phenology forecast to accommodate uncertainty (see173

Prediction).174

Because the gridded climate forecasts are issued at large spatial resolutions (0.25175

degrees), this data requires downscaling to be used at ecologically relevant scales (Cook176

et al. 2010). A downscaling model relates observed values at the smaller scale to the177

larger scale values generated by the climate forecast during a past time period. We178

regressed these past conditions from a climate reanalysis of CFSv2 from 1995-2015179

(Saha et al. 2010) against the 4km daily mean temperature from the PRISM dataset for180

the same time period (PRISM Climate Group 2004) to build a downscaling model using181

asynchronous regression (Figure 1, E-G). The CFSv2 data is first interpolated from the182

original 0.25 degree grid to a 4km grid using distance weighted sampling, then an183

asynchronous regression model is applied to each 4km pixel and calendar month184

(Stoner et al. 2013, see see Appendix S1: Sec. S2). The two parameters from the185

regression model for each 4 km cell are saved in a netCFD file by location and calendar186
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month (Figure 1, H). This downscaling model, at the scale of the continental U.S.A., is187

used to downscale the most recent CFSv2 forecasts to a 4km resolution during the188

automated steps.189

We used specialized Python packages to overcome the computational challenges190

inherent in the large CFSv2 climate dataset (Python Software Foundation 2003). The191

climate forecast data for each phenology forecast update is 10-40 gigabytes, depending192

on the time of year (time series are longer later in the year). While it is possible to193

obtain hardware capable of loading this dataset into memory, a more efficient approach194

is to perform the downscaling and phenology model operations iteratively by subsetting195

the climate dataset spatially and performing operations on one chunk at a time. We used196

the python package xarray (Hoyer and Hamman 2017), which allows these operations197

to be efficiently performed in parallel through tight integration with the dask package198

(Dask Development Team 2016). The combination of dask and xarray allows the199

analysis to be run on individual workstations, stand alone servers, and high performance200

computing systems, and to easily scale to more predictors and higher resolution data.201

Prediction202

The five most recent downscaled climate forecasts are each combined with climate203

observations to make a five member ensemble of daily mean temperature across the204

continental USA (Figure 1, L). These are used to make predictions using the phenology205

model for each species and phenophase (Figure 1, M). Each climate ensemble member206

is a 3d matrix of latitude × longitude × time at daily timesteps extending from Nov. 1207

of the prior year to 9 months past the issue date. The pyPhenology package uses this208

object to make predictions for every 4 km grid cell in the contiguous United States,209

producing a 2d matrix (latitude × longitude) where each cell represents the predicted210

Julian day of the phenological event. This results in approximately half a million211

predictions for each run of each phenology model and 90 million predictions per run of212
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the forecasting pipeline. The output of each model is cropped to the range of the213

respective species (US Geological Survey 1999) and saved as a netCDF file (Figure 1,214

N) for use in dissemination and later evaluation.215

An important aspect of making actionable forecasts is providing decision makers with216

information on the uncertainty of those predictions (Dietze et al. 2018). One major217

component of uncertainty that is often ignored in near-term ecological forecasting218

studies is the uncertainty in the forecasted drivers. We incorporate information on219

uncertainty in temperature, the only driver in our phenology models, using the CFSv2220

climate ensemble (Figure 1, I; see Acquisition). The members of the climate ensemble221

each produce a different temperature forecast due to differences in initial conditions222

(Weisheimer and Palmer 2014). For each of the five climate members we make a223

prediction using the phenology ensemble, and the uncertainty is estimated as the224

variance of these predictions (see see Appendix S1: Sec. S1). This allows us to present225

the uncertainty associated with climate, along with a point estimate of the forecast,226

resulting in a range of dates over which a phenological event is likely to occur.227

Dissemination228

To disseminate the forecasts we built a website that displays maps of the predictions for229

each unique species and phenophase (https://phenology.naturecast.org/; Figure 1 Q;230

Figure 2). We used the Django web framework and custom JavaScript to allow the user231

to select forecasts by species, phenophase, and issue date (Figure 2D). The main map232

shows the best estimate for when the phenological event will occur for the selected233

species (Figure 2A). Actionable forecasts also require an understanding of how much234

uncertainty is present in the prediction (Dietze et al. 2018), because knowing the235

expected date of an annual event such as flowering isn’t particularly useful if the236

confidence interval stretches over several months. Therefore we also display a map of237

uncertainty quantified as the 95% prediction interval, the range of days within which the238
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phenology event is expected to fall 95% of the time (Figure 2C). Finally, to provide239

context to the current years predictions, we also map the predicted anomaly (Figure 2B).240

The anomaly is the difference between the predicted date and the long term, spatially241

corrected average date of the phenological event (Figure 1, O; see see Appendix S1:242

Table S1).243

Automation244

All of the steps in this pipeline, other than phenology and downscaling model fitting, are245

automatically run every 4 days. To do this we use a cron job running on a local server.246

Cron jobs automatically rerun code on set intervals. The cron job initiates a python247

script which runs the major steps in the pipeline. First the latest CFSv2 climate248

forecasts are acquired, downscaled, and combined with the latest PRISM climate249

observations (Figure 1, I-L). This data is then combined with the phenology models250

using the pyPhenology package to make predictions for the timing of phenological251

events (Figure 1, M-N). These forecasts are then converted into maps and uploaded to252

the website (Figure 1, O-Q). To ensure that forecasts continue to run even when253

unexpected events occur it is necessary to develop pipelines that are robust to254

unexpected errors and missing data, and are also informative when failures inevitably255

do happen (Welch et al. 2019). We used status checks and logging to identify and fix256

problems and separated the website infrastructure from the rest of the pipeline. Data are257

checked during acquisition to determine if there are data problems and when possible258

alternate data is used to replace data with issues. For example, members of the CFSv2259

ensemble sometimes have insufficient time series lengths. When this is the case that260

forecast is discarded and a preceding climate forecast obtained. With this setup261

occasional errors in upstream data can be ignored, and larger problems identified and262

corrected with minimal downtime. To prevent larger problems from preventing access263

to the most recent successful forecasts the website is only updated if all other steps run264
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successfully. This ensures that user of the website can always access the latest forecasts.265

Software packages used throughout the system include, for the R language, ggplot2266

(Wickham 2016), raster (Hijmans 2017), prism (Hart and Bell 2015), sp (Pebesma and267

Bivand 2005), tidyr (Wickham and Henry 2018), lubridate (Grolemund and Wickham268

2011), and ncdf4 (Pierce 2017). From the python language we also utilized xarray269

(Hoyer and Hamman 2017), dask, (Dask Development Team 2016), scipy (Jones et al.270

2001), numpy (Oliphant 2006), pandas (McKinney 2010), and mpi4py (Dalcin et al.271

2011). All code described is available on a GitHub repository272

(https://github.com/sdtaylor/phenology_forecasts). The code as well as 2019 forecasts273

and observations (see Evaluation) are also permanently archived on Zenodo274

(https://doi.org/10.5281/zenodo.2577452).275

Evaluation276

A primary advantage of near-term forecasts is the ability to rapidly evaluate forecast277

proficiency, thereby shortening the model development cycle (Dietze et al. 2018).278

Phenological events happen throughout the growing season, providing a consistent279

stream of new observations to assess. We evaluated our forecasts (made from Dec. 1,280

2018 thru May 1, 2019) using observations from the USA-NPN from Jan. 1, 2019281

through May 8, 2019 and subset to species and phenophases represented in our system282

(Figure 3; USA National Phenology Network (2019)). This resulted in 1581283

phenological events that our system had forecasts for (588 flowering events, 991284

budburst events, and 2 fall coloring across 65 species, see see Appendix S1: Table S3).285

For each forecast issue date we calculated the root mean square error (RMSE) and286

average forecast uncertainty for all events and all prior issue dates. We also assessed the287

distribution of absolute errors (D̂OY − DOY ) for a subset of issue dates288

(approximately two a month).289
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Forecast RMSE and uncertainty both decreased for forecasts with shorter lead time290

(i.e. closer to the date the phenological event occurred), also known as the forecast291

horizon (Fig. 4; Petchey et al. (2015)). Forecasts issued at the start of the year (on Jan.292

5, 2019) had a RMSE of 20.9 days, while the most recent forecasts (on May 5, 2019)293

had an RMSE of only 18.8 days. The average uncertainty for the forecasts were 7.6 and294

0.2 days respectively for Jan. 5, and May 5. Errors were normally distributed with a295

small over-prediction bias (MAE values of 6.8 - 12.1, Fig. 5). This bias also decreased296

as spring progressed. These results indicate a generally well performing model, but also297

one with significant room for improvement that will be facilitated by the iterative nature298

of the forecasting system.299

Discussion300

We created an automated plant phenology forecasting system that makes forecasts for301

78 species and 4 different phenophases across the entire contiguous United States.302

Forecasts are updated every four days with the most recent climate observations and303

forecasts, converted to static maps, and uploaded to a website for dissemination. We304

used only open source software and data formats, and free publicly available data.305

While a more comprehensive evaluation of forecast performance is outside the scope of306

this paper, we note that the majority of forecasts provide realistic phenology estimates307

across known latitudinal and elevational gradients (Figure 2), and forecast uncertainty308

and error decreases as spring progresses (Figure 4). While there is a bias from309

over-estimating phenological events, estimates were on-average within 2-3 weeks of the310

true dates throughout the spring season.311

Developing automated forecasting systems in ecology is important both for providing312

decision makers with near real-time predictions and for improving our understanding of313

biological systems by allowing repeated tests of, and improvements to, ecological314

models (Dietze et al. 2018, White et al. 2018, Welch et al. 2019). To facilitate the315
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development of ecological forecasts, we need both active development, descriptions,316

and discussion of a variety of forecasting systems. These discussions of the tools,317

philosophies, and challenges involved in forecast pipeline development will advance our318

understanding of how to most effectively build the systems, thereby lowering the entry319

barrier of operationalizing ecological models for decision making. Active development320

and discussion will also help us identify generalizable problems which can be solved321

with standardized methods, data formats, and software packages. Tools such as this can322

be used to more efficiently implement new ecological forecast systems, and facilitate323

synthetic analyses and comparisons across a variety of forecasts.324

Automated forecasting systems typically involve multiple major steps in a combined325

pipeline. We found that breaking the pipeline into modular chunks made maintaining326

this large number of components more manageable (White et al. 2018, Welch et al.327

2019). For generalizable pieces of the pipeline we found that turning them into software328

packages eased maintenance by decoupling dependencies and allowing independent329

testing. Packaging large components also makes it easier for others to use code330

developed for a forecasting system. The phenology modelling packge, pyPhenology,331

was developed for the current system, but is generalized for use in any phenological332

modelling study (Taylor 2018). We also found it useful to use different languages for333

different pieces of the pipeline. Our pipeline involved tasks ranging from automatically334

processing gigabytes of climate data to visualizing results to disseminating those results335

through a dynamic website. In such a pipeline no single language will fit all336

requirements, thus we made use of the strengths of two languages (Python and R) and337

their associate package ecosystems. Interoperability is facilitated by common data338

formats (csv and netCDF files), allowing scripts written in one language to339

communicate results to the next step in the pipeline written in another language.340

This phenology forecasting system currently involves 190 different ensemble models,341

one for each species and phenological stage, each composed of 4 different phenology342
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sub-models and their associated weights for a total of 760 different models. This343

necessitates having a system for storing and documenting models, and subsequently344

updating them with new data and/or methods over time. We stored the fitted models in345

JSON files (a open-standard text format). We used the version control system git to346

track changes to these text based model specifications. While git was originally347

designed tracking changes to code, it can also be leveraged for tracking data of many348

forms, including our model specifications (Ram 2013, Bryan 2018, Yenni et al. 2019).349

Managing many different models, including different versions of those models and their350

associate provenance, will likely be a common challenge for ecological forecasting351

(White et al. 2018) as one of the goals is iteratively improving the models.352

The initial development of this system has highlighted several potential areas for353

improvement. First, the data-intensive nature of this forecasting system provides354

challenges and opportunities for disseminating results. Currently static maps show the355

forecast dates of phenological events across each species respective range. However this356

only answers one set of questions and makes it difficult for others to build on the357

forecasts. Additional user interface design, including interactive maps and the potential358

to view forecasts for a single location, would make it easier to ask other types of359

questions such as “Which species will be in bloom on this date in a particular location?”.360

User interface design is vital for successful dissemination, and tools such the python361

package Django used here, or the R packages Shiny and Rmarkdown provide flexible362

frameworks for implementation (White et al. 2018, Welch et al. 2019). In addition it363

would be useful to provide access to the raw data underlying each forecast. The sheer364

number of forecasts makes the bi-weekly forecast data relatively large, presenting some365

challenges for dissemination through traditional ecological archiving services like366

Dryad (https://datadryad.org) and Zenodo (https://zenodo.org). If stored as csv files367

every forecast would have generated 15 GB of data. We addressed this by storing the368

forecasts in compressed netCDF files, which are optimized for large-scale369
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mutli-dimensional data and in our case are 300 times smaller than the csv files (50370

MB/forecast).371

In addition to areas for improvement in the forecasting system itself, its development372

has highlighted areas for potential improvement in phenology modeling. Other373

well-known phenological drivers could be incorporated into the models, such as374

precipitation and daylength. Precipitation forecasts are available from the CFSv2375

dataset, though their accuracy is considerably lower than temperature forecasts (Saha et376

al. 2014). Other large-scale phenological datasets, such as remotely-sensed spring377

greenup could be used to constrain the species level forecasts made here (Melaas et al.378

2016). Our system does not currently integrate observations about how phenology is379

progressing within a year to update the models. USA-NPN data are available in near380

real-time after they are submitted by volunteers, thus there is opportunity for data381

assimilation of phenology observations. Making new forecasts with the latest382

information not only on the current state of the climate, but also on the current state of383

the plants themselves would likely be very informative (Luo et al. 2011, Dietze 2017).384

For example, if a species is leafing out sooner than expected in one area it is likely that385

it will also leaf out sooner than expected in nearby regions. This type of data386

assimilation is important for making accurate forecasts in other disciplines including387

meteorology (Bauer et al. 2015, Carrassi et al. 2018). However, process based plant388

phenology models were not designed with data assimilation in mind (Chuine et al.389

2013). Clark et al. (2014) built a bayesian hierarchical phenology model of budburst390

which incorporates the discrete observations of phenology data. This could serve as a391

starting point for a phenology forecasting model that incorporates data assimilation and392

allows species with relatively few observations to borrow strength from species with a393

large number of observations. The model from Clark et al. (2014) also incorporates all394

stages of the bud development process into a continuous latent state, thus there is also395

potential for forecasting the current phenological state of plants, instead of just the396
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transition dates as is currently done in this forecast system.397

Using recent advances in open source software and large-scale open data collection we398

have implemented an automated high resolution, continental scale, species-level399

phenology forecast system. Implementing a system of this scale was made possible by a400

new phenology data stream and new computational tools that facilitate large scale401

analysis with limited computing and human resources. Most recent research papers402

describing ecological forecast systems focus on only the modelling aspect (Chen et al.403

2011, Carrillo et al. 2018, Van Doren and Horton 2018), and studies outlining404

implementation methods and best practices are lacking (but see White et al. 2018,405

Welch et al. 2019). Making a forecast system operational is key to producing applied406

tools, and requires a significant investment in time and other resources for data logistics407

and pipeline development. Major challenges here included the automated processing of408

large meteorological datasets, efficient application of hundreds of phenological models,409

and stable, consistently updated, and easy to understand dissemination of forecasts. By410

discussing how we addressed these challenges, and making our code publicly available,411

we hope to provide guidance for others developing ecological forecasting systems.412
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Figure Legends574

Figure 1: Flowchart of initial model building and automated pipeline steps. Letters575

indicate the associate steps discussed in the main text.576

Figure 2: Screenshot of the forecast presentation website577

(http://phenology.naturecast.org) showing the forecast for the leaf out of Acer578

saccharinum in Spring, 2019, issued on Feburary 21, 2019. The maps represent the579

predicted date of leaf out (A), the anomaly compared to prior years (B), and the 95%580

confidence interval (C). In the upper right is the interface for selecting different species,581

phenophases, or forecast issue dates via drop down menus (D).582

Figure 3: Locations of phenological events which have occurred between Jan. 1, 2019583

and May 5, 2019 obtained from the USA National Phenology Network (blue circles),584

and all sampling locations in the same dataset (red points). Four individual plants are585

highlighted, with numbers indicating the USA National Phenology Network database586

ID. The solid line indicates the predicted event date as well as the 95% confidence587

interval for a specified forecast issue date, and the dashed line indicates the observed588

event date. The x-axis corresponds to the date a forecast was issued, while the y-axis is589

the date flowering or budburst was predicted to occur. For example: on Jan. 1, 2019 the590

P. tremuloides plant was forecast to flower sometime between March, 29 and April, 24591

(solid lines). The actual flowering date was March 18 (dashed line).592

Figure 4: The root mean square error and the average uncertainty of forecasts issued593

between Dec. 2, 2018 and May 5, 2019 for 1581 phenological events representing 65594

species.595

Figure 5: Distribution of absolute errors (prediction - observed) for 1581 phenological596

events for 11 selected issue dates. Labels indicate the mean absolute error (MAE).597
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