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List of abbreviations 

SV: structural variation bp: base pair TR: tandem repeat 

Abstract 

Accurate detection and genotyping of structural variations (SVs) from short-read data is a 

long-standing area of development in genomics research and clinical sequencing pipelines. We 

introduce Paragraph, a fast and accurate genotyper that models SVs using sequence graphs 

and SV annotations produced by a range of methods and technologies. We demonstrate the 

accuracy of Paragraph on whole genome sequence data from a control sample with both short 

and long read sequencing data available, and then apply it at scale to a cohort of 100 samples 

of diverse ancestry sequenced with short-reads. Comparative analyses indicate that Paragraph 

has better accuracy than other existing genotypers. The Paragraph software is open-source and 

available at https://github.com/Illumina/paragraph 

Keywords 

Sequence graphs, Targeted variant calling, Structural variation, Population studies 

Background 

Structural variants (SVs) contribute to a large fraction of genomic variation and have long been 

implicated in phenotypic diversity and human disease 1–3. Whole-genome sequencing (WGS) is a 

common approach to profile genomic variation, but compared to small variants, accurate 

detection and genotyping of SVs still remains a challenge 4,5. This is especially problematic for a 
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large number of SVs that are longer than the read lengths of short-read (100-150 bp) 

high-throughput sequence data, as a significant fraction of SVs have complex structures that 

can cause artifacts in read mapping and make it difficult to reconstruct the alternative 

haplotypes6,7. 

 

Recent advances in long read sequencing technologies, (e.g. Pacific Biosciences and Oxford 

Nanopore Technologies), have made it easier to detect SVs, including those in low complexity 

and non-unique regions of the genome. This is chiefly because, compared to short reads, long 

(10-50kbp) reads can be more reliably mapped to such regions and are more likely to span 

entire SVs8–10. These technologies combined with data generated by population studies using 

multiple sequencing platforms, are leading to a rapid and ongoing expansion of the reference 

SV databases in a variety of species11–13. 

 

Currently, most SV algorithms analyze each sample independent of any prior information about 

the variation landscape. The increasing availability and completeness of a reference database 

of known SVs, established through long read sequencing and deep coverage short-read 

sequencing, makes it possible to develop methods that use prior knowledge to genotype these 

variants. Furthermore, if the sequence data for the samples remains available they can be 

re-analyzed using new information as the reference databases are updated. Though the 

discovery of de novo germline or somatic variants will not be amenable to a genotyping 

approach, population studies that involve detection of common or other previously known 

variants will be greatly enhanced by the improved detection of the variants that are added to 

these reference databases. 
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Targeted genotyping of SVs using short-read sequencing data still remains an open problem. 

Most targeted methods for genotyping are integrated with particular discovery algorithms and 

require the input SVs to be originally discovered by the designated SV caller14–16. In addition, 

insertions are generally more difficult to detect than deletions using short-read technology, and 

thus are usually genotyped with lower accuracy or are completely excluded by these 

methods17,18. Finally, consistently genotyping SVs across many individuals is difficult because 

most existing genotypers only support single-sample SV calling. 

 

Here, we present a fast graph-based genotyper, Paragraph, that is capable of genotyping SVs 

in a large population of samples sequenced with short reads. The use of a graph for each 

variant makes it possible to evaluate systematically how reads align across the breakpoints of 

the candidate variant relative to the reference sequence. Unlike many existing genotypers that 

require the input SV to have a specific format or to include additional information produced by a 

specific de novo caller, Paragraph can be universally applied to different methods and the 

different sequence data types used for constructing the input SV set. Furthermore, compared to 

alternate linear-reference based methods, the sequence graph approach minimizes the 

reference allele bias and enables the representation of pan-genome reference structures (e.g. 

small variants in the vicinity of the SV) so that variants can be accurate even when variants are 

clustered together19–22. 

 

We compare Paragraph to several popular SV detection and genotyping methods and show that 

the performance of Paragraph is an improvement over the other methods tested, in terms of 

accuracy. Paragraph is able to genotype over 17,000 SVs in a deep coverage (~35x) short-read 

whole genome dataset, containing approximately equal numbers of deletions and insertions, 
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while achieving recall over 0.80 and precision over 0.95. By comparison the best genotyping 

method we tested achieved just 0.68 recall and 0.92 precision and only genotyped deletions. 

The only discovery-based SV caller we tested that could identify both insertions and deletions, 

had a recall of 0.39. Finally, we showcase the capability to genotype on a population-scale 

using 100 deep-coverage WGS samples, from which we detect signatures of purifying selection 

of SVs in functional genomic elements. Combined with a growing and improving catalog of 

population-level SVs, Paragraph will deliver more complete SV calls and also allow researchers 

to revisit and improve the SV calls on historical sequence data. 

Results 

Graph-based genotyping of structural variations 

For each SV defined in an input variant call format (VCF) file, Paragraph constructs a directed 

acyclic graph containing paths representing the reference sequence and possible alternative 

alleles (Figure 1). Each node represents a sequence that is at least one nucleotide long. 

Directed edges define how the node sequences can be connected together to form complete 

haplotypes. The sequence for each node can be specified explicitly or retrieved from the 

reference genome. In the sequence graph, a branch is equivalent to a variant breakpoint in a 

linear reference. In a graph-based approach, these breakpoints are genotyped independently 

and the genotype of the SV can be inferred from the genotypes of the individual breakpoints 

(see Methods ). Besides genotypes, several graph alignment summary statistics, such as 

coverage and mismatch rate, are also computed which are used to assess quality, filter and 

combine breakpoint genotypes into the final SV genotype. Genotyping details are described in 

the Methods section. 
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Figure 1. Overview of the SV genotyping workflow implemented in Paragraph. The 
illustration shows the process to genotype a blockwise sequence swap. Starting from an entry in 
a VCF file that specifies the SV breakpoints and alternative allele sequences, Paragraph 
constructs a sequence graph containing all of the paths in the graph (here the reference bases 
can be replaced with an alternative sequence). Sequence nodes of the graph are shown as the 
colored rectangles labeled FLANK, ALTERNATIVE and REFERENCE and the edges are shown 
as the solid arrows that connect the nodes. All reads from the original, linear alignments that 
aligned near or across the breakpoints are then realigned to the constructed graph. From these 
alignments, the SV is genotyped as described in the Methods. 
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Recall of Insertions and Deletions 

First, we calculated the genotyping performance of Paragraph using sequencing data and SVs 

from the individual HG002 (also known as NA24385) from Genome in a Bottle (GIAB)11,23. We 

used the short-read sequence data to run Paragraph as well as other methods, and used SVs 

from long read sequence data as the ground truth. The short-read data were generated on an 

Illumina HiSeqX system to 34.5-fold depth using 150bp paired-end reads. The long read data 

were generated on a Pacific Biosciences (PacBio) Sequel system using the Circular Consensus 

Sequencing (CCS) technology24, to 28-fold coverage with an average read length of 13,500 bp. 

Previous evaluations showed high recall (0.91) and precision (0.94) for SVs called from PacBio 

CCS HG002 against the GIAB benchmark dataset11,24, indicating SVs called from CCS data can 

be effectively used as ground truth to evaluate the performance of SV genotypers and callers. 

This long read ground truth (LRGT) set of SVs, all of which are expected to be present in 

HG002, includes 8,355 deletions and 8,956 insertions. Using this LRGT set, we estimated the 

performance of Paragraph and two widely-used SV genotypers, SVTyper15 and Delly 

Genotyper16, as well as three methods that independently discover SVs (i.e. de novo callers), 

Manta 17, Lumpy25 and Delly16. 

 

   
Type 

Deletion  Insertion 

Paragraph Delly 
Genotyper 

SVTyper 
(100+ bp) Manta Lumpy 

(100+ bp) 
Delly 

(100+ bp) 
 Paragraph Manta 

#Tested SVs 8,355 8,355 5,372 8,355 5,372 5,372  8,956 8,956 

Recall 0.82 0.68 0.35 0.45 0.36 0.21  0.82 0.33 
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Table 1. Recall for different genotypers and de novo callers measured against HG002 
LRGT.  Genotyping/calling was evaluated using a dataset of HG002 with 150 bp paired-end 
reads sequenced to 34.5-fold depth on an Illumina HiSeqX. Note that SVTyper, Lumpy, and 
Delly are limited to deletions 100bp or larger so have fewer tested SVs than the other methods. 
 

Paragraph has the highest recall when measured using the LRGT calls: 0.82 for deletions and 

0.82 for insertions (Table 1). Since recall performance is often associated with SV length (e.g. 

depth-based genotypers usually perform better on larger SVs than smaller ones), and some of 

the methods only work for SVs above certain deletion/insertion sizes, we partitioned the SVs by 

length and further examined the recall performance (Figure 2). Excluding the largest deletions 

(>2,500bp), the genotypers (Paragraph, SVTyper, and Delly Genotyper) have better recall than 

the de novo callers (Manta, Lumpy, and Delly). SVTyper and Paragraph have comparable recall 

for larger (>300bp) deletions, and Delly Genotyper has lower recall than these two. For smaller 

deletions (<300 bp), the recall for Paragraph (0.85) remains high while we observe a large drop 

in recall for SVTyper (0.12). We speculate that this is because SVTyper mainly relies on 

paired-end (PE) and read-depth (RD) information and will therefore be less sensitive for smaller 

events. Only Paragraph and Manta were able to call insertions and while Paragraph has 

consistently high recall across all SV lengths Manta has a much lower recall which drops further 

for larger insertions. 
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Figure 2. Comparison of recall, partitioned by SV length.  HG002 LRGT was used as the 
input for genotypers and also as the ground truth for estimating recall for all methods. A 
negative SV length indicates a deletion. Colored lines in (a) show recall of different methods 
evaluated; Solid grey bars in (b) represent the count of SVs in each size range. The center of 
the plot is empty since SVs must be at least 50 bp in size. 
 

We tested the recall using high depth data (>30x) with 150bp reads but some studies may use 

shorter reads and/or lower depths. To quantify how either shorter reads or lower depth will 

impact genotyping performance, we simulated data of different read lengths and depths by 

downsampling and trimming reads from the short-read data of HG002. Generally, shorter read 

lengths are detrimental to recall; reductions in depth have less of a deleterious effect until the 

depth is below ~20x (Supplementary Figure 2).  
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Genotyping with breakpoint deviations 

The LRGT data used above will be both costly and time-consuming to generate in the near term 

because generating long read CCS data is still a relatively slow and expensive process. An 

alternative approach for SV discovery to build up a reference catalog would be to sequence 

many samples (possibly at lower depth) using contiguous long reads (CLR) rather than CCS 

technology and derive consensus calls across multiple samples. The high error rates (~10-15%) 

of CLR may result in errors in the accuracy of the SV descriptions especially in low complexity 

regions where just a few errors in the reads could alter how the reads align to the reference. 

Since Paragraph realigns the reads to a sequence graph using stringent parameters, 

inaccuracies in the breakpoints may decrease recall. 

 

To understand how Paragraph performs with prior SVs that have incorrect breakpoints, we 

constructed SV calls on HG002 using CLR data that was generated on the PacBio RS II 

platform. Most (13,058) of the SVs in our LRGT data closely match those generated from the 

CLR data (see Methods). Of these, 29% (3,801) SVs were called identically in both CCS and 

CLR data but the remaining 2,461  deletions and 6,796  insertions, although in approximately 

correct locations, had different representations (breakpoints and/or insertion sequence). We 

made the assumption that CCS breakpoints of our LRGT data are correct, and defined any 

deviations in the SV descriptions as errors in the CLR breakpoints. For the deletions with 

different breakpoints, the recall decreased from 0.81 to 0.57 using the breakpoints defined by 

CCS or CLR breakpoints, respectively. Overall, there is a clear negative trend between recall 

and the degree of breakpoint deviation: the larger the deviation, the less likely the variant can be 

genotyped correctly. While deviations of a few base pairs can generally be tolerated without 
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issue, deviations of 20 bp or more reduce recall to around 0.50 (Figure 3). For the insertions 

with differences in breakpoints and/or insertion sequences, the recall decreased from 0.85 to 

0.60 using the breakpoints and insertion sequences defined by CCS and CLR data, 

respectively. We also investigated how inaccurate breakpoints impact insertion genotyping, but 

there was no clear trend between recall and base-pair deviation in breakpoints. 

 

 

 

Figure 3. Demonstration of the impact of recall when the SVs include errors in their 
breakpoints. Breakpoint deviation measures the difference in position between the CLR and 
CCS based deletion calls. The recall is calculated using the deletions defined by the CLR data. 
For clarity, breakpoint deviations were binned at 1bp for deviations less than 20bp and at 2bp 
for deviations larger or equal to 20bp. Solid bars show the number of deletions in each size 
range (left axis). Points and the solid line show the recall for individual size and the overall 
regression curve (right axis). 
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Genotyping in tandem repeats 

We identified that most of the SVs showing breakpoint deviations between the CCS and CLR 

calls were within tandem repeats: of the 2,530 deletions with breakpoint deviations, 77% (1,966) 

were in tandem repeats (TRs). Additionally, the percentage of the deviant variants in TRs 

increases with increasing deviation in breakpoints: 47% of the SVs with smaller (<=10 bp) 

deviations are in TRs while 95% of the SVs with larger breakpoint deviations (>20 bp) are in 

TRs. 

 

To further understand the impact that TRs have on the overall performance we categorized SVs 

from the CCS data according to repeat context (Figure 4a) and found that 76% of Paragraph’s 

false negative deletions and 78% of false negative insertions occur in TRs. Additionally, shorter 

(<200bp) SVs are much more likely to be TR-originated (>70%) than larger (>1,000bp) SVs 

(<20%). Separating SVs inside and outside of TRs, we found that the recall is improved for 

non-TR SVs: 0.89 for deletions and 0.90 for insertions, compared to SVs in TRs that had 0.77 

recall for both deletions and insertions.  

 

We then analyzed the TRs by grouping them according to their average in-repeat mismatch 

rate, which measures the differences between the repeat units within each TR. A lower 

in-repeat mismatch rate means the TR is composed of highly similar repeated units and 

indicates a lower sequence complexity, e.g. 0% mismatch rate indicates the repeat is identical 

through the entire TR. Binned by the in-repeat mismatch rate, we examined the call for deletions 

and insertions for Paragraph and the de novo caller, Manta (Figure 4b,c ). For deletions, the 

in-repeat mismatch rate does not have a significant impact on recall for Paragraph but has a 
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negative effect on the recall for Manta (Figure 4b). For insertions, as the in-repeat mismatch 

rate becomes lower, meaning the individual repeat units become more similar to each other, the 

recall of Paragraph decreases from 0.82 to 0.56 (Figure 4c). 

 

 

Figure 4. The impact of TRs on SV genotyping performance.  (a) SV counts (bars, left axis) 
and recall (lines, right axis) from HG002 LRGT, binned by SV length. Bars are colored according 
to SV type (blue for deletions and orange for insertions) and TR status (solid and outlined bars 
indicate SVs outside of TRs and inside of TRs, respectively). Lines are colored by SV type (blue 
for deletions and orange for insertions) and TR status (solid and dashed lines indicate SVs 
outside of TRs and inside of TRs, respectively). Lower panels show comparisons of recall for 
Paragraph (solid line) and Manta (dashed line) for (b) deletions and (c) insertions within TRs 
binned according to in-repeat mismatch rate. 
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Calculating precision 

So far, we have measured recall against our LRGT data in the test sample, and investigated the 

factors that affect genotyping performance. However, applying Paragraph to a sample using 

SVs identified from a large population will also include genotyping variants that are not present 

in the test sample. To define such positions, we considered SVs identified from a second 

sample, ENC002, that was sequenced on PacBio RS II platform as part of the ENCODE 

project26. SVs that were called in ENC002 but are not in our HG002 LRGT data were defined as 

confident reference positions (Supplementary Figure S1). The precision of Paragraph and 

other genotypers was estimated by genotyping these confident reference positions in the 

short-read HG002. 

 

Incorporating the 2,366 deletions and 2,855 insertions that occur in ENC002 but not HG002, the 

precision for Paragraph was estimated as 0.92 for deletions and 0.90 for insertions 

(Supplementary Table 1 ). Notably, the precision for deletions was 0.10 higher than that of 

Delly Genotyper (0.80). SVTyper is limited to deletions longer than 100bp, and when estimating 

precision just on the deletions longer than 100bp, Paragraph has a slightly lower precision 

(0.96) than SVTyper (0.98) though the recall is much higher for Paragraph (0.89 vs 0.35). 

Combining recall and precision, Paragraph has the highest F-score for deletions in all of the 

tested genotypers (0.89 vs 0.78 for Delly Genotyper and 0.52 for SVTyper), and also has a high 

F-score for insertions (0.89). Nearly all (97%) of false positive (FP) deletions and the majority 

(78%) of FP insertions are completely within TRs. Of the 48  FP insertions that are outside of 

TRs: 32 have one or more indels (longer than 10 bp) in the target region; 9 have two or more 

supporting reads for the insertion in HG002 CCS data and those could be false negatives in SV 
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calling from the CCS data; 7 have no evidence of variants in the CCS alignments in the target 

region, and these FPs are likely to come from alignment artifacts in short-read mapping. 

Population-scale genotyping across 100 diverse human genomes 

A likely use case for Paragraph will be to genotype SVs from a reference catalog for more 

accurate assessment in a population or association study. To further test and demonstrate 

Paragraph in this application, we genotyped our LRGT variants in 100 unrelated individuals (not 

including HG002 or ENC002) from the publicly-available Polaris sequencing resource 

(https://github.com/Illumina/Polaris). This resource consists of a mixed population of 46 

individuals from Africa (AFR), 34 from East Asia (EAS) and 20 from Europe (EUR). All of these 

samples were sequenced with Illumina HiSeq X 150 bp paired-end reads to at least 30x depth.  

 

The population allele frequencies (AFs) for deletions show that most of them occur at a low AF 

in this sample set, whereas there is a gradually decreasing number of deletions at progressively 

higher AF. For insertions, most are also found at low AF, but some appear to be fixed in the 

population. These high-AF insertions are likely to represent defects and/or rare alleles in the 

reference human genome, as has been reported previously12. An interesting feature of the 

frequencies for both insertions and deletions is a peak around 50% AF that is inconsistent with 

population genetics expectations (dashed lines in Figure 5a). This peak likely indicates 

genotyping errors such as additional mutations in the population and/or false positives in 

variable-length TRs that were not detected in our single sample analysis. Filtering the 

population calls based on Hardy-Weinberg Equilibrium (HWE) p-values, we removed 4,429 

(26%) variants, chiefly from the unexpected peak. Interestingly, 79% of these HWE-failed 

variants lie in TRs, which are likely to have higher mutation rates and be more variable in the 
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population 27,28. Because these samples are derived from different populations, the HWE test can 

be overly conservative, although only 8% (358) of the HWE-failed SVs have significantly 

different allele frequencies between populations as measured by their Fixation Index (Fst)
29. In 

contrast, 5% of the HWE-passing SVs had significant Fst scores. Genotyping more samples in 

each of the three populations will allow better filtering of the data without the confounding factor 

of subpopulations that could lead to erroneous HWE deviations. After filtering out the 

HWE-failed variants, the samples clearly cluster by population when we used the remaining SVs 

in a principal component analysis (PCA) (Figure 5b). Interestingly, using just the HWE-failed 

variants, the samples also cluster by population (Supplementary Figure S3) indicating that we 

are filtering some variants based on population substructure rather than poor genotyping 

performance. 

 

The population AF can reveal information about the potential functional impact of SVs on the 

basis of signals of selective pressure. By checking the AFs for SVs in different genomic 

elements, we found that SVs within exons, pseudogenes and untranslated regions (UTRs) of 

the coding sequences, in general, have lower AFs than those in intronic and intergenic regions 

(Figure 5c ). The set of SVs in introns and intergenic regions have more uniform AF 

distributions, while a larger fraction of SVs in functional elements (UTRs, exons) have AF of 

zero or one. This suggests a purifying selection against SVs with potentially functional 

consequences, as has been seen in other studies20. Common SVs are more depleted in 

functional regions than rare SVs, although we do see a few common SVs within the exons of 

genes including TP73 (AF=0.09, tumor suppressor gene), FAM110D (AF=0.60, functions to be 

clarified, possibly related with cell cycle) and OVGP1 (AF=0.18, related to fertilization and early 

embryo development). As HG002 is an apparently healthy individual, and these variants are 
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found at a high frequency in the population, we expect that these variants are unlikely to have 

functional significance.  

 

We also observed 7 exonic insertions fixated (AF=1) in the population in the following genes: 

FOX06 , UBE2QL1, KMT5A , FURIN , ZNF523 , SAMD1 , EDEM2  and RTN4R. Since these 

insertions are present and homozygous in all 100 genotyped individuals, the reference 

sequence reflects either rare deletion or errors in GRCh38 30. Specifically, the 1,638 bp exonic 

insertion in UBE2QL1 was also reported at high frequency in two previous studies 31,32. 

Particularly, a recent study by TOPMed 32 reported this insertion in all 53,581 sequenced 

individuals from mixed ancestries. Applying Paragraph to population-scale data will give us a 

better understanding of common, population-specific, and rare variations and aid in efforts to 

build a better reference genome. 
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Figure 5. Population information and function annotation of SVs in HG002 LRGT. (a) The 
AF distribution of these SVs in the 100-individual population, dashed lines for all variants, and 
solid lines for variants that pass the HWE filter. (b) PCA biplot of individuals in the population, 
based on genotypes of HWE-passing SVs. (c) The AF distributions of HWE-passing SVs in 
different functional elements. 

Discussion 

Here we introduce Paragraph, a fast and accurate graph-based SV genotyper for short-read 

sequencing data. Using variants discovered from high-quality long read sequencing data, we 

demonstrate that Paragraph achieves substantially higher recall (0.81) compared to two other 

commonly used genotyping methods and three commonly used de novo SV callers (0.21 and 
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0.68). Of particular note, Paragraph and Manta were the only two methods that worked for both 

deletions and insertions and based on our test data. Paragraph achieved substantially higher 

recall for insertions compared to Manta (0.92 vs 0.49). 

 

As highlighted above, a particular strength of Paragraph is the ability to genotype both deletions 

and insertions genome-wide, including those within complicated regions such as tandem 

repeats. While we expect that there are as many insertions as there are deletions in the human 

population, the majority of the commonly used methods either do not work for insertions or 

perform poorly with the inserted sequence. In particular, because insertions are poorly called by 

de novo variant calling methods, currently the most effective method to identify them is through 

discovery with long reads. Once a reference database of insertions is constructed, they can 

then be genotyped with high accuracy in the population using Paragraph. We expect this will be 

especially helpful to genotype clinically relevant variants as well as to assess variants of 

unknown significance (VUS), by accurately calculating allele frequencies in healthy and 

diseased individuals. 

 

Existing population reference databases for SVs may include many variants that are incorrectly 

represented. Since errors in the breakpoints may be a limitation for population-scaled SV 

genotyping, we have quantified the genotyping performance of Paragraph and its relationship 

with breakpoint accuracy (Figure 3). Our analysis shows that Paragraph can generally tolerate 

breakpoint deviation of up to 10 base pairs in most genomic contexts, although the performance 

suffers as the breakpoints deviate by larger amounts. Undoubtedly, recent advances in long 

read accuracy will lead to more accurate SV reference databases and thus better performance 

for Paragraph as a population genotyper. 
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Paragraph works by aligning and genotyping reads on a local sequence graph constructed for 

each targeted SV. This approach is different from other proposed and most existing graph 

methods that create a single whole-genome graph and align all reads to this large graph 33. A 

whole-genome graph may be able to rescue reads from novel insertions that are misaligned to 

other parts of the genome in the original linear reference, however, the computational cost of 

building such a graph and performing alignment against this graph is very high. Adding variants 

to a whole genome graph is also a very involved process that typically requires all reads to be 

realigned. Conversely, the local graph approach applied in Paragraph is not computationally 

intensive and can easily be adapted into existing secondary analysis pipelines. The local graph 

approach utilized by Paragraph also scales well to population-level studies where large sets of 

variants identified from different resources can be genotyped rapidly and accurately in many 

samples. 

 

Paragraph does not solve the problem of SV calling across all applications so continued 

development and improvement of de novo methods is essential. For example, cancer genomes 

include mostly de novo SVs that will not be included in any variant catalog. The primary use 

case for Paragraph will be to allow investigators to genotype previously identified variants with 

high accuracy. This could be applied to genotype known, medically relevant SVs in precision 

medicine initiatives or to genotype SVs from a reference catalog for more accurate assessment 

in a population or association study. Importantly, the catalog of both medically important SVs 

and population-discovered SVs will continue to evolve over time and Paragraph will allow 

scientists to genotype these newly-identified variants in historical sequence date. Thus, the 

variant calls for both small (single sample) and large (population-level) sequencing studies can 
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continue to improve as our knowledge of population-wide variation becomes more 

comprehensive and accurate.  

Conclusions 

Paragraph is a fast and accurate SV genotyper for short-read sequencing data that scales to 

hundreds or thousands of samples. Moreover, Paragraph implements a unified genotyper that 

works for both insertions and deletions, and as independent of the method by which the SVs 

were discovered. Thus, Paragraph is a powerful tool for studying the SV landscape in 

populations (human or otherwise), in addition to analyzing SVs for clinical genomic sequencing 

applications. 

Online Methods 

Graph construction 

In a sequence graph, each node represents a sequence that is at least one nucleotide long and 

directed edges define how the node sequences can be connected together to form complete 

haplotypes. Labels on edges are used to identify individual alleles or haplotypes through the 

graph. Each path represents an allele, either the reference allele, or one of the alternative 

alleles. Paragraph currently supports three types of graphs for SVs: deletion, insertion, and 

blockwise sequence swaps. Since we are only interested in read support around SV 

breakpoints, any node corresponding to a very long nucleotide sequence (typically longer than 

two times the read length) is replaced with two shorter nodes with sequences around the 

breakpoints. 
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Graph alignment 

For each SV, Paragraph extracts reads, as well as their mates (for paired-end reads), from the 

flanking region of the targeted SV in a Binary Alignment Map (BAM) or CRAM file. The default 

target region is one read length upstream of the variant starting position to one read length 

downstream of the variant ending position, although this can be adjusted at runtime. The 

extracted reads are realigned to the pre-constructed sequence graph using a graph-aware 

version of a Farrar’s Striped Smith-Waterman alignment algorithm implemented in GSSW 

library. The algorithm extends the recurrence relation and the corresponding dynamic 

programming score matrices across junctions in the graph. For each node, edge, and graph 

path, the count of aligned reads, mismatch rate, gap rate, and graph mapping score are 

computed. 

 

Only uniquely mapped reads, meaning reads aligned to only one graph location with the best 

score, are used to genotype breakpoints. Reads used in genotyping must also contain at least 

one kmer that is unique in the graph. Paragraph considers a read as supporting a node if its 

alignment overlaps the node with a minimum number of bases (by default 10% of the read 

length or the length of the node, whichever is smaller). Similarly, for a read to support an edge 

between a pair of nodes means its alignment path contains the edge and supports both nodes 

under the above criteria. 

Breakpoint genotyping 

A breakpoint occurs in the sequence graph when a node has more than one connected edges. 

Considering a breakpoint with a set of reads with a total read count  and two connectingR  
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edges representing haplotype  and . We define the read count of haplotype  as  andh1 h2 h1 Rh1  

haplotype  as . The remaining reads in  that are mapped to neither haplotype areh2 Rh2 R  

denoted as .R=h1,h2/  

 

The likelihood of observing the given set of reads with the underlying breakpoint genotype 

 can be represented as:Gh1/h2  

 

                          (1)(R | G ) p(R ,  | G ) (R  | G )p h1/h2 =  h1 Rh2 h1/h2 × p =h1,h2/ h1/h2  

 

We assume that the count of the reads for a breakpoint on the sequence graph follows a 

Poisson-distribution with parameter . With an average read length , an average sequencingλ l  

depth , and the minimal overlap of  bases (default: 10% of the read length ) for the criteriad m l  

of a read supporting a node, the Poisson parameter can be estimated as 

 

                                                                   (2) d l ) / lλ =  × ( − m  

 

When assuming the haplotype fractions (expected fraction of reads for each haplotype when the 

underlying genotype is heterozygous) of and  are and , the likelihood under ah1 h2 μh1 μh2  

certain genotype,  , or the first term in equation (1), can be estimated from the(R ,  | G )p h1 Rh2 h1/h2  

density function  of the underlying Poisson distribution:pois()d  

 

                                (3)(R | G ) dpois(R , λ ) pois(R , λ )p h1/h2 =  h1  × μh1 × d h2  × μh2  
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If and are the same haplotypes, the likelihood calculation is simplified as:h1 h2  

 

                                                      (4)(R | G ) dpois(R , λ(1 ))p h1/h1 =  h1  − ε  

 

, where  is the error rate of observing reads supporting neither nor  given the underlyingε h1 h2  

genotype . Similarly, the error likelihood, , or the second term in equationGh1/h2 (R  | G )p =h1,h2/ h1/h2  

(1), can be calculated as 

 

                                           (5)(R  | G ) dpois(R , λ(1 ))p =h1,h2/ h1/h2 =  =h1,h2/  − ε  

 

Finally, the likelihood of observing genotype  under the observed reads  can beGh1/h2 R  

estimated under a Bayesian framework 

 

                                                  (6) | R) (G ) (R | G ) p(Gh1/h2 ~ p h1/h2 × p h1/h2  

 

The prior  can be pre-defined or calculated using a helper script in Paragraph(G )P h1/h2  

repository that uses the Expectation-Maximization algorithm to estimate genotype-likelihood 

based allele frequencies under Hardy-Weinberg Equilibrium across a population 34. 

SV genotyping 

We perform a series of tests for the confidence of breakpoint genotypes. For a breakpoint to be 

labeled as “passing”, it must meet all of the following criteria: 

 

1. It has more than one read aligned, regardless of which allele the reads were aligned to 
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2. The breakpoint depth is not significantly high or low compared to the genomic average 

(p-value is at least 0.01 on a two-sided Z-test) 

3. The Phred-scaled score of its genotyping quality (derived from genotype likelihoods) is at 

least 10. 

4. Based on the reads aligned to the breakpoint, regardless of alleles, the Phred-scaled 

p-value from FisherStrand 35 test is at least 30. 

 

If a breakpoint fails one or more of the above tests, it will be labeled as a failing breakpoint. 

Based on the test results of the two breakpoints, we then derive the SV genotype using the 

following decision tree: 

 

1. If two breakpoints are passing: 

a. If they have the same genotype, use this genotype as the SV genotype 

b. If they have different genotypes, pool reads from these two breakpoints and 

perform the steps in Breakpoint genotyping  section again using the pooled 

reads. Use the genotype calculated from the pooled reads as the SV genotype. 

2. If one breakpoint is passing and the other one is failing: 

a. use the genotype from the passing breakpoint as the SV genotype. 

3. If two breakpoints are failing: 

a. If the two breakpoints have the same genotype, use this genotype as the SV 

genotype 

b. If two breakpoints have different genotypes, follow steps in 1b. 
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Note that for 1b and 2b, as we pool reads from two breakpoints together, the depth parameter d  

in equation (2) needs to be doubled, and reads that span two breakpoints will be counted twice. 

We also set a filter label for the SV after this decision tree, and this filter will be labeled as 

passing only when the SV is genotyped through decision tree 1a. SVs that have filter labels 

other than “passing” were not excluded from the evaluation of Paragraph in the main text. 

Sequence data 

PacBio CCS reads for HG002 

(ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CC

S_15kb/) were sequenced to an approximate 30x depth with an average read length of 13.5 kb. 

We re-aligned the reads to the most recent human genome assembly, GRCh38 using 

NGMLR10. Pacbio CLR data from two samples, an Ashkenazi Jewish male, HG002, from 

Genome in a Bottle 11, and a Caucasian male, ENC002, from the ENCODE project (also 

identified as ENCDO451RUA; BAM available: 

http://labshare.cshl.edu/shares/schatzlab/www-data/encode/diploid/2017.10.26/enc002/ENC-00

2_all_ngm2.7.bam), were sequenced to 50x and 57x coverage, respectively, on an RS II 

platform. CLR data was aligned to GRCh38 using NGMLR as well. 

 

To test the performance of the methods on short-read data, we utilized an HG002 sample that 

was sequenced on an Ilumina HiSeq X platform to an average depth of 34.5x, with 150 bp 

paired-end reads. Reads were mapped to GRCh38 using the Issac aligner36. To assess lower 

sequence depths, we downsampled the short-read data to coverages of 5,10,15,20,25 and 30 

using samtools37. To obtain the recall of Paragraph in 100bp and 75bp reads, besides 

downsampling of depths, we trimmed the 150bp reads from their 3’ end. 

26 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/635011doi: bioRxiv preprint 

http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/
http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/
https://paperpile.com/c/PhaoWx/BNYt
https://paperpile.com/c/PhaoWx/31uV
http://labshare.cshl.edu/shares/schatzlab/www-data/encode/diploid/2017.10.26/enc002/ENC-002_all_ngm2.7.bam
http://labshare.cshl.edu/shares/schatzlab/www-data/encode/diploid/2017.10.26/enc002/ENC-002_all_ngm2.7.bam
https://paperpile.com/c/PhaoWx/kf8Q
https://paperpile.com/c/PhaoWx/QzbP
https://doi.org/10.1101/635011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Ground truth SVs and confident reference positions 

SVs were called from the PacBio CCS and CLR data using the long read SV caller, Sniffles10 

with parameters “--report-seq -n -1” to report all supporting read names and insertion 

sequences. Additional default parameters require 10 or more variant supporting reads to report 

a call, and require variants be at least 50 bp in length. Insertion calls were refined using the 

insertion refinement module of CrossStitch (https://github.com/schatzlab/crossstitch). This 

module uses FalconSense, an open-source method originally developed for the Falcon 

assembler38 and is also used as the consensus module for Canu 39. 

 

To estimate breakpoint deviation, we used a customized script to match calls between CLR and 

CCS data. A deletion from CLR data is considered to match a deletion from CCS data if their 

breakpoints are no more than 500 bp away and their reciprocal overlap length is no less than 

60% of their union length. An insertion from CLR data is considered to match an insertion from 

CCS data if their breakpoint on the reference sequence is no more than 500 bp away. Base pair 

deviations between insertion sequences were calculated from the pairwise alignment using the 

python module biopython pairwise2. 

 

Confident reference positions were defined using SVs from CLR ENC002 and CCS HG002. If a 

deletion is only observed in ENC002 and no deletion is observed 500 bp upstream or 

downstream in HG002 with at least 3 supporting reads, this deletion is defined as a confident 

reference position in HG002. Similarly, if an insertion is only observed in ENC002 and there is 

no insertion observed in upstream or downstream 200 bp regions in HG002 with at least 3 
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supporting reads, or there is an insertion in HG002 within 200 bp but their insertion sequences 

are than 25% concordant, this insertion is defined as a confident reference position in HG002. 

Calculations of recall and precision 

For each genotypers, the recall was calculated as the fraction of SVs in LRGT that were 

genotyped as non-reference, or the fraction of true positions (TP). The precision was estimated 

as the fraction of confident reference positions that were genotyped as reference genotypes. 

Naturally, the confident reference positions that were genotyped as non-reference are the false 

positions (FP). Thus, the precision is estimated as TP/(TP+FP). 

 

Variants identified by the de novo methods (Manta, Lumpy, and Delly) may not have the same 

reference coordinates or insertion sequences as the SVs in LRGT or confident reference 

positions. To account for this we matched variants called by de novo methods and those in 

LRGT or confident reference positions using Illumina’s large-variant benchmarking tool, Wittyer 

(v0.3.1). Wittyer matches variants using centered-reciprocal overlap criteria, similar to Truvari 

(https://github.com/spiralgenetics/truvari) but has better support for different variant types and 

allow stratification for variant sizes. We set parameters in Wittyter as “--em simpleCounting 

--bpd 500 --pd 0.2”, which means for two matching variants, their breakpoint distance needs to 

be no more than 500 bp and if they are deletions, their deleted sequences should have no more 

than 20% base pair discrepancies. 

Population-scale genotyping, filtering and annotation 

The 100 unrelated individuals from the Polaris sequencing resource were sequenced using 

Illumina HiSeq X platform with 150 bp paired-end reads. Each sample was sequenced at an 
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approximate 30-fold coverage. Using SV descriptions from the HG002 LRGT, we genotyped 

each individual using Paragraph with default parameters. 

 

For each SV, we used Fisher’s exact test to calculate its Hardy-Weinberg p-values40. SVs with 

p-value less than 0.001 were excluded from downstream analysis. To run PCA for individual 

samples, we used the dosage of the SVs, which means 0 for homozygous reference genotypes 

and missing genotypes, 1 for heterozygotes and 2 for homozygous alternative genotypes. 

 

To identify each SV’s overlapping status with TR and their functional impact, we used 

annotation tracks from the UCSC Genome Browser. We used Encode Exon and PseudoGene 

SupportV28 track for exons, IntronEst for introns and ENCFF824ZKD for UTRs. SVs that do not 

overlap with any of these tracks were classified as intergenic. To identify if an SV lies in TRs, we 

used the Tandem Repeat Finder (TRF) track and we define an SV as TR-originated only when 

its reference sequence overlaps 100% with one or more TRs. 
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