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Abstract 

Understanding genetic control of cell diversification is essential for establishing mechanisms controlling 
biological complexity. This study demonstrates that the a priori deposition of H3K27me3 associated with 
gene repression across diverse cell states provides a genome-wide metric that enriches for genes 
governing fundamental mechanisms underlying biological complexity in differentiation, morphogenesis, 
and disease. We use this metric in combination with more than 1 million genome-wide data sets from 
diverse omics platforms to identify cell type specific regulatory mechanisms underlying diverse organ 
systems from species across the animal kingdom. From this analysis, we identify and genetically validate 
multiple novel genes controlling development in diverse chordates including humans and the tunicate, 
Ciona robusta. This study demonstrates that the conservation of epigenetic regulatory logic provides an 
effective strategy for utilizing large, diverse genome-wide data to establish quantitative basic principles of 
cell states to infer cell-type specific mechanisms that underpin the complexity of biological systems. 
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Introduction 

Capturing the information basis of a cell through genome-wide sequencing is a powerful mechanism for 
understanding the complexities of development and disease. However, the information collated is often 
limited, reflecting only a snapshot of the steady state of the genome. Enhancing the strategies for 
predicting regulatory determinants of cell identity has proven to be essential for gleaning novel insights 
into developmental biology, disease mechanisms and cell reprogramming (Benayoun et al., 2014; Cahan 
et al., 2014; Rackham et al., 2016). Here, we demonstrate an approach to infer regulatory drivers of any 
cell state, without the requirement of external reference data or prior knowledge, by analyzing the 
landscape of diverse chromatin states for distinguishing features of cell specificity. We demonstrate that 
the a priori probability that the presence of a broad repressive H3K27me3 histone modification mark, 
which signifies the repressive tendency across a gene locus in diverse cell states, provides a quantifiable 
metric that strongly predicts regulatory genes governing mechanisms of cell differentiation and organ 
morphogenesis in health and disease. We show that the repressive tendency can be used to analyze 
individual transcriptomes of millions of heterogeneous cells simultaneously to infer the cell type-specific 
regulatory genes controlling somatic cell states across diverse species in the animal kingdom. With new 
capabilities in studying the genetic state of individual cells, these insights will potentially transform our 
capacity to understand the mechanistic basis of cellular heterogeneity in health and disease.  

Results 

Broad histone domains demarcate genes with distinct regulatory roles 

We took the approach that the genome is equivalent to an information source that can exist in a 
continuum to derive a theoretically infinite number of specific cell states. To predict the regulatory 
determinants of one state, information about the genome from diverse cell states is required to infer how 
variations in genome activity deliver biological complexity. We focused on the breadth of histone 
modifications (HMs) which has been shown to be structurally and functionally linked to cell-specific 
genome architecture and gene regulation (Barski et al., 2007). We used NIH Epigenome Roadmap data 
(Kundaje et al., 2015), which contains ChIP-seq data for H3K4me3, H3K36me3, H3K27me3, H3K4me1, 
H3K27ac and H3K9me3 for 111 tissue or cell types (Table S1). To associate HM domains with proximal 
regulatory functions governing gene expression, we linked HM domains within 2.5 kb to known 
transcriptional start sites of RefSeq genes. For each of the six HMs, genes were annotated based on the 
broadest HM domain linked to the gene. For each HM, we found that the top 100 genes with the broadest 
domain were remarkably consistent between cell types (Figure 1A), however, broad domains of different 
HMs marked distinct sets of genes (Figure S1A). We further noted that genes marked with broad 
repressive HMs (i.e. H3K9me3 or H3K27me3) were more consistently shared between cell types than 
genes marked by other HMs (Figure 1A, inset) suggesting that broad repressive chromatin domains 
comprise a common strategy for epigenetic control of cell diversification.  

We aimed to understand how the breadth of histone domains correlate with genes governing cell identity. 
To this end, we established a broadly applicable positive gene set for cell type-specific regulatory genes; 
this set is comprised of 634 variably expressed transcription factors (TFs) having a coefficient of variation 
greater than 1 (Table S2) and detected in 46 NIH Epigenome RNA-seq data sets (Perez-Lluch et al., 
2015). We used Shannon entropy to quantify cell type-specificity (Schug et al., 2005) and demonstrate 
that variably expressed TFs are significantly more cell type-specific, compared to non-variably expressed 
TFs or protein coding genes (Supplementary Methods). Analysis of RNA-seq data sets from diverse cell 
and tissue types show that variably expressed TFs in each sample reflect appropriate tissue or cell type-
specific regulatory functions (Figures 1B and 1C inset). Henceforth, variably expressed TFs provide a 
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positive gene set where their enrichment is a performance metric for identifying cell type-specific 
regulatory genes. 

We utilized variably expressed TFs to determine the relationship between cell type-specific regulatory 
genes and histone broad domains. To this end, all NIH Epigenome histone ChIP-seq data were ranked by 
domain breadth, comprising greater than thirteen million peaks, and analyzed using Fisher’s exact test to 
assess enrichment of variably expressed TFs. These data show that H3K27me3 uniquely and significantly 
enriches for variably expressed TFs within the top 5% of broad domains (Figures 1C, 1D and S1B). This 
demonstrates that quantification of H3K27me3 broad domains from diverse cell and tissue types provides 
a powerful metric to reproducibly enrich for cell type-specific regulatory genes governing the biological 
complexity of diverse cell states.  

To illustrate the distinctive enrichment of H3K27me3 in regulatory genes as opposed to structural or 
housekeeping genes (Eisenberg and Levanon, 2013), we extracted expression and chromatin data from 
cardiomyocytes (Figures 1E and 1F). We show that the transcript abundance of cardiac regulatory genes 
(i.e. GATA4, GATA6, NKX2-5, TBX5 and TBX20) and structural sarcomere genes (i.e. MYH6, MYH7, 
MYL2, MYL3 and TNNI3) are all significantly elevated in cardiac cells compared to other cell types, but 
cannot be distinguished as regulatory or structural genes except by differential expression (Figure 1E). 
Furthermore, focusing on H3K27me3 of only the cardiomyocyte samples is uninformative in 
distinguishing structural from regulatory genes because these genes all lack repressive chromatin. In 
contrast, in all cell types except the heart, H3K27me3 domains broader than 30kb consistently identify 
cardiac regulatory genes from structural genes (Figures 1E and 1F). No other HM analyzed demarcates 
cell type-specific regulatory genes from structural genes in this manner (Figures 1F and S1C), 
establishing the rationale that the frequency of H3K27me3 across heterogeneous cell types provides a 
novel strategy to infer the likelihood of a gene having cell type-specific regulatory function.  

Cell type-specific regulatory genes tend to be marked by broad H3K27me3 domains  

We established a simple, quantitative logic that leverages the significance of broad H3K27me3 domains 
for distinguishing regulatory genes. Deposition of broad H3K27me3 domains allows for setting the 
default gene activity state to “off” such that cell type-specific activity occurs by rare and selective 
removal of H3K27me3 while all other loci remain functionally repressed (Boyer et al., 2006; Lee et al., 
2006). Conversely, genes with housekeeping or non-regulatory roles rarely host broad H3K27me3 
domains. We calculated for each gene in the genome across 111 NIH epigenome cell and tissue types (i) 
the sum of breadths of H3K27me3 domains in base-pairs and multiplied this by (ii) the proportion of cell 
types in which the gene’s H3K27me3 breadth is within the top 5% of broad domains (Figure 2A). This 
approach quantifies a single value for every gene that defines its association with broad H3K27me3 
domains which we call its repressive tendency score (RTS) (Table S3). Using the NIH Epigenome 
Roadmap data, the RTS is calculated for 99.3% (or 26,833 genes) of all RefSeq genes. To demonstrate 
that our formulation is agnostic to the composition of cell types, we note that for all genes, the RTS is 
within one standard deviation of the mean of bootstrapping empirical distribution derived from 10,000 re-
samplings of cell types. Furthermore, we note that the 111 cell types provided sufficient sample size to 
calculate a stable RTS (Figures S2A and S2B), with a majority of assigned H3K27me3 domains (over 
85%) overlapping a single gene (Figures S2D, S2E, S3A and S3B). Importantly, the RTS only requires 
sufficient subsampling of H3K27me3 from any diverse collection of cell states to establish a stable 
metric.   

Using RTS values above the inflection point (RTS > 0.03022) of the interpolated RTS curve, we 
identified a priority set of 1,359 genes that show a significant enrichment for genes underlying cellular 
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diversification including organismal development, pattern specification and multicellular organismal 
processes (Figure 2B), and show they are cell type-specific (Figure 2C) and lowly expressed (Figure 
2D). Among the 1,359 priority genes, we identified 318 TFs, including variably expressed TFs which had 
a significantly higher RTS overall (mean=0.083) compared to the background (mean=0.006, Figure 2E) 
in addition to 155 homeobox proteins, 291 non-coding RNAs genes (e.g. FENDRR and HOTAIR (Grote 
and Herrmann, 2013; Rinn et al., 2007)), and 260 genes involved in cell signaling. We also demonstrate 
that genes with a high RTS are enriched in key regulators of processes underlying gastrulation and organ 
morphogenesis, comprise members of many of the major signaling pathways, as well as genes implicated 
in pathologies including cardiovascular disease, diabetes, neurological disorders and cancer (Figure 2F 
and Table S4). Taken together, these data indicated that ranking based on a gene’s repressive tendency 
generates a simple and effective strategy to enrich for fundamental genetic determinants of biological 
complexity of cell states underlying health and disease.  

Predicting cell type-specific regulatory genes based on H3K27me3 

The transcriptome of a cell comprises a small fraction of the genome and represents the signature of 
structural, housekeeping and regulatory genes underlying a cell state. Identifying the regulatory genes 
controlling the identity, fate and function of a particular cell state is difficult to determine from thousands 
of expressed genes. To address this, we established a mechanism for integrating genome-wide RTS values 
with cell type-specific transcriptomic data. Since every gene is assigned a fixed RTS value that 
hierarchically orders the genome based on regulatory likelihood, we devised a computational approach to 
integrate the distinctive signature of any cell’s transcriptomic data with the RTS, a method we call 
TRIAGE (Transcriptional Regulatory Inference Analysis from Gene Expression). TRIAGE theoretically 
provides a means to identify cell type-specific regulatory genes for any cell type (Figure 3A). For any 
gene i the product between a gene’s expression (𝑌𝑌𝑖𝑖) and repressive tendency (𝑅𝑅𝑖𝑖) gives rise to its 
discordance score (𝐷𝐷𝑖𝑖) as defined by:  

𝐷𝐷𝑖𝑖 = ln (𝑌𝑌𝑖𝑖 + 1) ∙ 𝑅𝑅𝑖𝑖 

The discordance score reflects the juxtaposition of a gene’s association with being epigenetically 
repressed and the observed transcriptional abundance of that gene in the input data. Collectively, 
TRIAGE introduces a non-linear, gene-specific weight that prioritizes cell type-specific regulatory genes 
based on the input expression signature of any cellular state. Of importance, this strategy does not require 
reference to any external data set, uses no arbitrary statistical cutoffs, does not require additional cell 
type-specific epigenetic data, does not focus on a specific gene type such as TFs, nor does it utilize 
external databases or prior knowledge to derive its prediction.  

To demonstrate TRIAGE, we identified known regulatory and structural genes from 5 tissue groups, 
analyzing H3K27me3 of cell-specific regulatory versus structural genes (Figures 3B). When applied to 
cell-specific transcriptional data, TRIAGE reduces the relative abundance of structural and housekeeping 
genes, while enriching for regulatory genes in a cell type-specific manner (Figure 3C). Taken to scale, 
TRIAGE transformation of all 46 Roadmap cell types results in enrichment of cell type-specific TFs 
among the top 1% in every cell type. Compared to the expression-based ranking, TRIAGE reduces the 
relative abundance of housekeeping genes (Figures 3D and S2C). Constructing a tanglegram based on 
the Pearson distances between Roadmap tissue types (Scornavacca et al., 2011), shows that relative to the 
total height of the dendrograms, TRIAGE increased the similarity between samples from the same tissue 
by ~29% when compared to distances calculated using absolute expression levels (Figure S4A).    

Previous work by Benayoun et al. ranked genes based on broad H3K4me3 domains to enrich for cell 
type-specific regulatory genes (Benayoun et al., 2014). Using diverse cell and tissue types in which 
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expression and H3K4me3 data are available, we demonstrate that TRIAGE outperforms original 
expression and H3K4me3 broad domains in both sensitivity and precision of identifying cell type-specific 
regulatory genes (Figures 3E, S4B and S4C).  

Identifying cell type-specific regulatory genes from any chordate somatic cell type 

Regulatory genes underlying cell identity during development are evolutionarily conserved. Using inter-
species gene mapping, we tested whether TRIAGE could identify regulatory drivers of heart development 
across diverse chordate species including mammals (i.e. Homo sapiens, Mus musculus, and Sus scrofa), 
bird (Gallus gallus), fish (Danio rerio) and invertebrate tunicate (Ciona robusta) (Figure 3F). In contrast 
to expression alone, TRIAGE recovered cardiac regulatory genes with high efficiency across all species. 
More broadly, we used TRIAGE to enrich for relevant tissue morphogenesis biological processes from 
diverse cell types and species including arthropods (Figure 3G). While TRIAGE is currently devised 
using human epigenetic data, this suggests that TRIAGE can be used to identify regulatory genes from 
cell types that are conserved across the animal kingdom.  

Dissecting the mechanistic basis of cell heterogeneity at single cell resolution  

Recent developments in barcoding and multiplexing have enabled scalable analysis of thousands to 
millions of cells (Cao et al., 2019). Determining mechanistic information from diverse cell states captured 
using single-cell analytics remains a challenge. TRIAGE is scalable for studies of cell heterogeneity 
because it requires no external reference points and therefore provides a distinctive advantage for 
identifying regulatory control mechanisms one cell transcriptome at a time.  

To illustrate this, we analyzed 43,168 cells captured across a 30 day time-course of in vitro cardiac-
directed differentiation from human pluripotent stem cells (hPSCs) (Friedman et al., 2018). Analysis of 
day-30 cardiomyocytes using standard expression data show that high abundance genes are dominated by 
housekeeping and sarcomere genes, whereas TRIAGE efficiently identifies regulatory genes governing 
cardiomyocyte identity including NKX2-5, HAND1, GATA4, IRX4 within the top 10 most highly ranked 
genes (Figures 4A and 4B). Importantly, TRIAGE retains highly expressed cell-specific structural genes 
providing an integrated readout of genes involved in cell regulation and function (Figure 4C). We used 
TRIAGE to convert the genes-by-cells matrix comprising ten different subpopulations spanning 
developmental stages including gastrulation, progenitor and definitive cell types (Figure 4D). In contrast 
to expression data, which significantly enriches for structural and housekeeping genes, TRIAGE 
consistently identifies gene sets associated with development of every subpopulation through 
differentiation (Figures 4E and Figure S5). Lastly, standard -omics analysis pipelines implement 
differential expression (DE) followed by gene ontology, pathway or network analysis. We show that DE 
results in variable outcomes depending on the comparison and consistently under-performs against 
TRIAGE, which identifies population-specific regulatory genes across diverse cell states without any 
external reference comparisons (Figure 4F). 

Predicting regulatory drivers of cell identity using any genome-wide analysis of gene expression 

The simplicity of TRIAGE facilitates its use as a scalable application. Variably expressed TFs (Figure 
1B) were used as a positive gene set to test enrichment of regulatory genes across diverse tissue types. For 
each tissue type we plotted the rank position of the peak significance (−log10𝑝𝑝) value in a Fisher’s exact 
test. Using tabula muris data of nearly 100,000 cells from 20 different mouse tissues at single-cell 
resolution (Schaum et al., 2018), TRIAGE consistently enriches for cell type-specific regulatory genes 
compared to original expression with no difference between droplet and smartseq2 data sets (Figure 4G 
and Table S5). Using the mouse organogenesis cell atlas (MOCA), which is among one of the largest 
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single cell data sets generated to date (Cao et al., 2019), we demonstrated that TRIAGE outperformed the 
expression value alone in prioritizing cell type-specific regulatory genes across more than 1.3 million 
mouse single-cell transcriptomes (Figure 4H). Lastly, we used benchmarking data for assessing 
clustering accuracy (Tian, 2018) to assess the performance of TRIAGE using three independent 
algorithms (i.e. CORE, sc3, and Seurat) and show no difference in accurately assigning cells to the 
reference (ARI > 0.98) using original expression or TRIAGE transformed expression (Figure 4I).  

We hypothesized that TRIAGE could be used to study any genome-wide quantitative measurement of 
gene expression. To test this, TRIAGE was applied using diverse quantitative readouts of gene expression 
across hundreds of different cell types. TRIAGE vastly outperforms original abundance metrics when 
measuring chromatin methylation for H3K36me3, a surrogate of RNA polymerase II activity deposited 
across gene bodies (Barski et al., 2007) collected from the 111 Roadmap samples (Figure 4J). Similarly, 
cap analysis of gene expression (CAGE), which measures genome-wide 5’ transcription activity, showed 
significant enrichment of variably expressed TFs using TRIAGE from 329 selected FANTOM5 CAGE 
samples (Figures 4J and Table S1) (Forrest et al., 2014). Lastly, analysis of a draft map of the human 
proteome shows that TRIAGE enriches for regulatory drivers of 30 different tissue types from high 
resolution Fourier transform mass spectrometry data (Kim et al., 2014) (Figure 4J). Taken together, these 
data illustrate the power of utilizing TRIAGE to predict regulatory drivers of cell states using diverse 
genome-wide multi-omic endpoints.   

Determining the regulatory control points of disease 

Strategies for identifying genetic determinants of disease have the potential to guide strategies for 
predicting or altering the natural course of disease pathogenesis. We analyzed genetic data from 
melanoma and heart failure (HF) pathogenesis to determine the utility of TRIAGE in identifying 
regulatory determinants of disease.  

Treatment for melanoma has improved with the advent of drugs targeting proliferative cells, but highly 
metastatic and drug resistance subpopulations remain problematic. To assess the potential for TRIAGE 
for informing disease mechanisms, we analyzed single cell RNA-seq data from 1,252 cells capturing a 
transition from proliferative to invasive melanoma (Tirosh et al., 2016). Among the top ranked genes, 
TRIAGE consistently outperforms expression in prioritizing genes with known involvement in melanoma 
proliferation and invasion (Figures 5A and Table S6). Using independently derived positive gene sets 
for proliferative versus invasive melanoma (Tirosh et al., 2016; Verfaillie et al., 2015), TRIAGE recovers 
with high sensitivity the genetic signatures of these two cancer states (Figure 5B). Gene set enrichment 
analysis using TRIAGE identified ETV5 and TFAP2A associated with proliferative melanoma versus 
TFAP2C and TBX3 as regulators of invasive melanoma (Figure 5C). TFAP2A and TBX3 have been 
implicated in proliferative and invasive melanoma respectively (Peres and Prince, 2013; Rambow et al., 
2015), whereas ETV5 and TFAP2C were novel predicted regulators. To validate this, we used in vitro 
nutrient restriction of melanoma cells to trigger a transition into an invasive phenotype (Falletta et al., 
2017; Ferguson et al., 2017). In contrast to expression dynamics of MITF, a master regulator of 
melanocytic differentiation, and TFAP2C is upregulated together with AXL, a receptor tyrosine kinase 
associated with therapeutic resistance and transition to invasive melanoma (Figures 5D and 5E). These 
data demonstrate the ability for TRIAGE to effectively identify genetic signatures of functionally distinct 
cancer cell states without external reference points.  

We aimed to assess whether TRIAGE could identify transcriptional signatures of therapeutic 
interventions in heart failure (HF). Previous studies have shown that the epigenetic reader protein BRD4, 
a member of the BET (Bromodomain and Extra Terminal) family of acetyl-lysine reader proteins, 
functions as a critical chromatin co-activator during HF pathogenesis that can be pharmacologically 
targeted in vivo (Anand et al., 2013; Duan et al., 2017; Spiltoir et al., 2013) to prevent and treat HF by 
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targeting gene programs linked to cardiac hypertrophy and fibrosis (Duan et al., 2017). We analyzed 
RNA-seq data from adult mouse hearts where pre-established HF (transverse aortic constriction, TAC) 
was treated with JQ1. TRIAGE prioritized TFs and regulatory genes with known roles in HF 
pathogenesis (Figure 5F), outperforming expression ranked genes based on stress-associated gene sets 
(Figure 5G). Importantly, comparison between Sham, TAC and TAC+JQ1 TRIAGE-based ranked genes 
highlighted a potent anti-fibrotic effect of JQ1 without the use of a canonical differential expression 
analysis (Figure 5G).  Collectively, these data demonstrate the use of TRIAGE as a scalable strategy for 
studying the mechanistic basis of disease aetiology and therapy.  

Identification of novel regulatory drivers of development  

Lastly, we set out to demonstrate that TRIAGE can facilitate discovery of novel regulatory genes 
governing development in vitro and in vivo. Using data from single cell analysis of cardiac differentiation 
(Friedman et al., 2018) we analyzed sub-populations at day 2. TRIAGE identified known regulatory 
genes governing sub-population identity among the top 10 highly ranked genes (Figure 6A). Among the 
TRIAGE identified genes was SIX3, a member of the sine oculis homeobox transcription factor family 
(RTS=0.54) (Figures 6A and 6B). Importantly, all pairwise differential expression analyses failed to 
enrich for SIX3 (Figure S6A). Though the role of SIX3 in neuroectoderm specification has been studied 
extensively, little is known about its role in other germ layer derivatives (Carl et al., 2002; Lagutin et al., 
2003; Steinmetz et al., 2010). Analysis of SIX3 in hPSC in vitro cardiac differentiation shows robust 
expression in day 2 definitive endoderm (DE) (28.7%) and mesoderm (37.5%) cell populations (Figure 
6C) with enrichment of SIX3+ cells associated with definitive endoderm (Figures S6B and S6C). Using 
previously published laser microdissection approaches, we captured the spatiotemporal transcriptional 
data from germ layer cells of mid-gastrula stage (E7.0) embryos (Peng et al., 2016), with an expanded 
analysis to include pre- (E5.5-E.6.0), early- (E6.5) and late-gastrulation (E7.5) mouse embryos (Figure 
S6F). Spatio-temporal expression of SIX3 and other family members is observed in the epiblast and 
neuroectoderm, (Figures 6D and S6G)  consistent with its known role in these lineages (Carl et al., 2002; 
Lagutin et al., 2003; Steinmetz et al., 2010), as well as early endoderm lineages (Figure 6D). Supporting 
this finding, SIX3 has been identified as a gene distinguishing definitive from visceral endoderm 
(Sherwood et al., 2007) but no functional studies have validated this finding.  

We established CRISPRi loss-of-function hPSCs in which SIX3 transcription is blocked at its CAGE-
defined transcription start site (TSS) in a dox-dependent manner (Figures 6E and 6F). Cells were 
differentiated using monolayer cardiac differentiation and analyzed at day 2 (Figure 6G). SIX3 loss-of-
function depleted endoderm and mesendoderm genes (Figure 6H) consistent with FACs analysis 
showing depletion of CXCR4+/EPCAM+ endoderm cell (Figures 6I-K and S6D). In contrast, FACs 
analysis of alpha-actinin+ cardiomyocytes showed no difference between SIX3-knockdown cells compared 
to dox-treated controls indicating that loss of SIX3 does not impact mesodermal fates (Figures 6L-N and 
S6E). Taken together, these data demonstrate a novel role of SIX3 in endoderm differentiation.  

We also used TRIAGE to identify novel developmental regulators in a distant chordate species, Ciona 
robusta. RNA-seq data comprising cell subpopulations captured across time-course of cardiac 
development were analyzed with TRIAGE using a customized gene mapping tool to link human to Ciona 
genes (Figure 6O) (Wang et al., 2019). The top ranked genes based on TRIAGE were analyzed (Figure 
6P). RNF220 (RTS=0.30, Figure 6Q), an E3 ubiquitin ligase governing Wnt signaling pathway activity 
through β-catenin degradation (Ma et al., 2014; Tsoi et al., 2018), was identified as a novel regulatory 
gene not previously implicated in cardiopharyngeal development. Utilizing CRISPR control vs. RNF220-
knockout, we demonstrate that Mesp lineage progenitors of control animals form the expected ring of 
pharyngeal muscle progenitors around the atrial siphon placode, whereas RNF220-knockout embryos 
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showed significant morphogenetic defects. Collectively, these data illustrate that TRIAGE efficiently 
identifies novel functional regulatory determinants as a demonstration for discovering novel biology 
underlying mechanisms of development.  

Discussion 

Understanding the genetic determinants of cell diversity is essential for establishing mechanisms of 
development, disease etiology and organ regeneration, as well as synthetic control of cell states including 
cell reprogramming. Recent advances in deriving genome-wide data at single cell resolution (Cao et al., 
2019; Schaum et al., 2018) as well as computational analysis and prediction algorithms (Benayoun et al., 
2014; Cahan et al., 2014; Palpant et al., 2017; Rackham et al., 2016) have revolutionized our capacity to 
study complex biological systems. This study demonstrates the power of analyzing cell heterogeneity to 
understand genome regulation at scale and revealing a repressive tendency metric that provides a strong, 
quantitative prediction value for cell type-specific regulatory genes controlling cell diversification in 
development and disease. While sufficiently diverse data sets on epigenetic control of cell states are 
currently available only for human and mouse, we show that the evolutionary conservation of gene 
regulation enables this quantitative strategy to predict regulatory genes across diverse species in the 
animal kingdom. We hypothesize that this approach can be applied across H3K27me3 data from diverse 
cell and tissue types in species where gene expression is governed by the polycomb group complex. 
While not perfectly conserved through evolution, PRC2 and its regulation of histone methylation are 
known to govern genes in protists, animals, plants, as well as fungi. The conservation of this regulatory 
logic provides an effective strategy of utilizing large, diverse genome-wide data to establish quantitative 
basic principles of cell states to infer cell-type specific mechanisms that underpin the complexity of 
biological systems. We anticipate furthermore that this analytic approach can be applied to render 
customized inference predictions, based on chromatin transition, between diverse healthy and diseased 
tissues to reveal stress-sensitive loci and novel disease drivers. This conceptual and experimental 
framework can infer regulatory genes governing theoretically any cell state, and has broad utility for 
studies in genome regulation of cell identity in health and disease.  
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Figure 1: Broad H3K27me3 domains are associated with cell type-specific regulatory genes.  

(A) Broad HM domains identify a set of common genes. For each HM type, genes are ranked by the breadth 
of the associated HM domain within each cell type and grouped into bins of 100 genes. Mean Jaccard 
similarity index is calculated by comparing gene sets of equivalent bins between all pair-wise cell types. 
Regardless of HM type, top 100 genes were significantly more shared between cell types compared to genes 
with narrower domains (p < 2.2e-16 for all HMs, Wilcoxon rank-sum test). Scale bars shows the 95% 
confidence interval.  
(B) Enrichment of tissue type specific GO biological process terms associated with the top 50 variably 
expressed TFs by their expression level in 5 selected Roadmap samples (brain germinal matrix (E070), 
pancreatic islets (E087), left ventricle (E095), primary T helper naïve cells (E038) and H1 BMP4-derived 
mesendoderm (E004)). Fisher’s exact test (one-tailed) was used for enrichment analysis.  
(C) Variably expressed TFs are strongly associated with broad H3K27me3 domains. For each cell type, 
genes are ranked by the breadth of the associated HM peak and grouped into percentile bins (e.g. genes 
with top 1% broadest peaks are grouped into the rank bin position 1 in the x-axis). H3K27me3 significantly 
enriches for variably expressed TFs within the top 5% of broad domains (p=6.66e-16, Fisher’s exact test, 
one-tailed). Mean enrichment of variably expressed genes across the cell types at each rank position is 
shown on the y-axis, with scale bars showing the 95% confidence interval. Inset heatmap shows row-
normalized expression levels of the 634 variably expressed TFs across the 46 Roadmap samples.  
(D) Top 200 genes that are most frequently associated with broad HMs across the 111 Roadmap cell types. 
H3K27me3 is uniquely associated with regulation of development and morphogenesis. Enrichment of 
selected GO biological process terms is calculated using Fisher’s exact test (one-tailed).  
(E) Analysis of gene expression (top) vs H3K27me3 breadth (bottom) for cardiac-specific regulatory genes 
vs structural genes. H3K27me3 uniquely identifies cardiac regulatory from cardiac structural genes when 
analyzed on all samples except heart. Heart (E095, E104, E105), Brain (E070, E071, E082), Epithelial 
(E057, E058, E059), Blood (E037, E038, E047), ES cell (E003, E016, E024) and ES-deriv. (E004, E005, 
E006).  
(F) Distribution of HM domains in the proximal region of selected cardiac RefSeq TSSs NKX2-5 and 
MYH7. Each line represents an associated HM domain aligned to the proximity of the gene (+25kb upstream 
of the TSS to -2.5kb downstream) in 111 cell types. 
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Figure 2: Genes with frequent broad H3K27me3 domains are cell type-specific regulatory genes.  
(A) Schematic diagram showing the calculation basis for the repressive tendency score (RTS) for any gene 
based on breadth information of assigned H3K27me3 domains observed across the 111 NIH Epigenome 
data sets.  
(B) Genes ranked by the RTS (top). Red dashed line indicates the inflection point on the interpolated curve 
(RTS=0.03022) above which genes exhibit substantially higher RTS than the rest (n=1,359). (bottom) 
Enrichment of selected GO biological process terms associated with the RTS priority genes, in comparison 
to genes with a lower RTS (Fisher’s exact test, one-tailed) (Supplementary Table 4).  
(C) Expressional specificity of protein-coding genes sorted by the RTS (x-axis). Each rank bin includes 
100 genes sorted in a descending order of the RTS (e.g. top 100 genes in rank position 1 etc.).  For each 
gene, the proportion of cell types (out of the 46 Roadmap samples) where the gene is detected (RPKM > 1) 
is calculated. Average proportions are subsequently calculated for each bin. Shaded regions mark the 95% 
confidence interval.  
(D) Relationship between the expression level and the RTS. Each rank bin includes 100 genes sorted in a 
descending order (e.g. top 100 genes in rank position 1 etc.).  For each bin, an average expression value of 
genes is calculated. Shaded regions mark the 95% confidence interval.  
(E) Distribution of variably expressed TFs sorted by the RTS in a descending order (x-axis). Each rank bin 
includes 1% of the total genes included. Red dashed line represents a uniform distribution.  
(F) Distribution of genes with selected GO biological process (Development and Gastrulation) or KEGG 
pathway (Disease and Signaling pathways) terms (Supplementary Table 4). Asterisk marks indicate 
significant enrichment of a given term at rank bin position 10 (i.e. top 10% genes) (Benjamini-Hochberg 
FDR < 0.05, Fisher’s exact test).   
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Figure 3: Inferring cell type-specific regulatory genes from somatic cell types.  
(A) Schematic outline showing integration of the product of the RTS with any genome wide readout of 
gene expression establishes a discordance score as the basis for TRIAGE – a computational analysis 
strategy for inferring the regulatory basis of cell identity underlying development, disease, and cell 
reprogramming.  
(B) Breadths of H3K27me3 domains (in base-pairs) associated with selected cell type-specific regulatory 
and structural genes, observed across the 111 NIH Epigenomes data sets.  
(C) TRIAGE non-linearly transforms the expression value (Exp.) to the discordance score (Dis.), 
consistently enriching for regulatory genes in all tissue types. Expression profiles were collected from 
GTEx samples and averaged for the tissue type (Lonsdale et al., 2013).  
(D) Distributions of variably expressed TFs (left) and housekeeping genes (right) when genes are ordered 
by the expression value (blue) or the discordance score (red). Each rank bin (x-axis) includes 1% of all 
genes and sorted in descending order (e.g. rank position 1 represents top 1% genes etc.). TRIAGE identifies 
variably expressed TFs among the top 1% of genes in every cell type analyzed (p<2.2e-16 for all cell types, 
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Fisher’s exact test, one-tailed) while reducing the relative abundance of housekeeping genes compared to 
the expression-based ranking (p<2.2e-16, Wilcoxon rank-sum test, one-tailed).  
(E) Receiver-operating characteristic (ROC) plots comparing sensitivity of identifying tissue type specific 
regulatory genes (Supplementary Table 2) of the 5 distinct tissue types. Area under the curve (AUC) 
values are shown on the right bottom corner of the plot. Performance comparison is between TRIAGE (red), 
H3K4me3 broad domains (green) (Benayoun et al., 2014), expression value (blue), and random (purple).   
(F) Inter-species enrichment analysis of TFs annotated with ‘heart development’ GO term (GO:0007507) 
in cardiac samples. For each species, genes are ranked by either the expression value (blue) or the 
discordance score (red) and binned into a rank bin (each bin includes 1% of all genes) and the enrichment 
is calculated at each rank position (y-axis, Fisher’s exact test, one-tailed).  
(G) Enrichment of tissue type specific TFs within selected GO BP term in the top 100 genes ranked by the 
expression value (blue) or the discordance score (red), across different species. Enrichment of a given gene 
set is calculated using Fisher’s exact test (one-tailed). Hyphen (-) indicates no data set available.  
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Figure 4: Identifying regulatory genes using diverse multi-omics data sets.  
(A) Top 10 genes ranked by expression (left) or discordance score (right) from hPSC-derived 
cardiomyocyte using scRNA-seq from in vitro cardiac-directed differentiation (Friedman et al., 2018).  
(B) Cardiomyocyte expression data ranked by original expression (left). Using the same rank position, 
genes are re-calculated using TRIAGE (right) showing the dramatic quantitative change in values for all 
genes resulting in quantitative prioritization of cell-type specific cardiac regulatory genes.  
(C) Enrichment of four different functional gene sets (i.e. housekeeping (defined in (Eisenberg and 
Levanon, 2013), heart signaling (genes with ‘heart development (GO:0007507)’ term and any KEGG 
signaling pathway term(s)), sarcomere (genes with ‘sarcomere (GO:0030017)’ term) or heart TF (TFs 
with ‘heart development (GO:0007507) term’) genes in cardiomyocytes. Genes are ranked by either the 
expression value (left) or TRIAGE (right) and enrichment of a given gene set is calculated at each rank 
position using Fisher’s exact test (one-tailed).  
(D) UMAP representation of cell clustering using transcriptomic expression (left) or TRIAGE (right).  
(E) Enrichment of developmental GO BP terms primarily associated with stage-specific regulatory 
developmental processes during in vitro cardiac-directed differentiation (y-axis) (Fisher’s exact test) that 
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are consistently identified by TRIAGE but not original expression. In contrast, expression data strongly 
detect structural and housekeeping genes.  
(G) Enrichment of developmental GO BP terms during in vitro cardiac-directed differentiation. Genes are 
ranked by TRIAGE (red), expression (blue) or fold change of gene expression between cell clusters using 
differentially expressed gene (DEG) analysis (green or purple). Each rank bin includes 1% of all genes 
and is sorted in a descending order (i.e. top 1% gene in the rank position 1 etc.).  
(G, H) Application of TRIAGE to scRNA-seq data generated from Smart-seq2 or Droplet 10X chromium 
(G) as well as the mouse organogenesis cell atlas (MOCA) (H). For each sample, the rank position (x-
axis) of the highest enrichment (defined as the lowest p-value using Fisher’s exact test, y-axis) of variably 
expressed TFs is plotted. For MOCA data set, each data point represents an average of 1,000 samples.   
(I) Comparison of single cell RNA-seq cluster assignment efficiency between original expression and 
TRIAGE analyzed data using Mixology data sets.  
(J) Application of TRIAGE to various quantitative readouts of gene expression including CAGE-seq, 
protein abundance, and tag density of H3K36me3. For each sample, the rank position (x-axis) of the 
highest enrichment (defined as the lowest p-value using Fisher’s exact test, y-axis) of variably expressed 
TFs is plotted. 
 
 
 
 
 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2019. ; https://doi.org/10.1101/635516doi: bioRxiv preprint 

https://doi.org/10.1101/635516
http://creativecommons.org/licenses/by-nd/4.0/


 
Figure 5: Determining the regulatory basis of disease pathogenesis and therapy.  
(A) Tables showing the top ranked genes from proliferative melanoma cells or invasive melanoma cells 
indicating rank position by original expression (left) or TRIAGE (right). Genes are identified based on 
their known roles as structural or regulatory genes in melanoma.  
(B) Fisher’s exact test enrichment of positive gene sets for proliferative and invasive melanoma states 
demonstrating high specificity of enrichment for cell type-specific gene signatures only with TRIAGE.  
(C) Gene set enrichment analysis (GSEA) for ETV5, TFAP2A, TBX3 and TFAP2C. The y-axis 
corresponds to the enrichment score with gene expression profiles ranked by TRIAGE. The x-axis shows 
cells ranked from proliferative to invasive. The vertical lines indicate when the respective gene was found 
in the top 50 of a ranked expression profile. 
(D) qPCR analysis showing changes in expression of MITF, AXL and TFAP2C in A2058 melanoma cells 
over 48hours of glucose deprivation (top) and glutamine deprivation (bottom).  
(E) z-score based heat maps showing changes in expression of melanoma genes in three individual BRAF 
mutant melanoma cell lines over 36-48 hours of glucose starvation.  
(F) Top 10 genes ranked by expression (left) or TRIAGE (right) from SHAM, TAC-vehicle and TAC-
JQ1 data from bulk RNA-seq of mice subjected to sham surgery (SHAM), transverse aortic constriction 
(TAC-vehicle) and TAC treated with JQ1 (TAC-JQ1).  
(G) Enrichment analysis of genes annotated with GO terms associated with cardiac biology and heart 
failure stress response mechanisms comparing each sample individually analyzed by TRIAGE and 
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compared against outcomes resulting from DE analysis of TAC-veh vs TACJQ1. Genes are ranked by 
either the expression value or TRIAGE and binned by rank (each bin includes 1% of all genes) and the 
enrichment is calculated at each rank position (y-axis, Fisher’s exact test, one-tailed). 
 
 
 
 
 

 
Figure 6: Predicting novel regulators of heart development. 
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(A) Top 10 genes ranked by expression value (left) or TRIAGE (right) from populations found on day 2 
(germ layer specification) of hiPSC cardiac differentiation, highlighting SIX3 as a candidate novel gene 
identified by TRIAGE.   
(B) Breadths of H3K27me3 domains (in base-pairs) associated with SIX3 gene across the 111 NIH 
Epigenomes data sets. 
(C) Analysis of SIX3 expression during hiPSC-cardiac differentiation represented by t-SNE plots (left), 
percentage of cells expressing SIX3 (top right) and gene expression level of SIX3 (bottom right) in each 
subpopulation on days 0, 2 and 5.  
(D) Corn plots showing the spatial domain of SIX3 expression in the germ layers of E5.5-E7.5 mouse 
embryos. Positions of the cell populations (‘‘kernels’’ in the 2D plot of RNA-seq data) in the embryo: the 
proximal-distal location in descending numerical order (1 = most distal site) and in the transverse plane of 
the germ layers: endoderm, anterior half (EA) and posterior half (EP); mesoderm, anterior half (MA) and 
posterior half (MP); epiblast/ectoderm, anterior (A), posterior (P) containing the primitive streak, right 
(R)- anterior (R1) and posterior (R2), left (L) – anterior (L1) and posterior (L2).  
(E) Schematic overview of SIX3 gene targeting showing position of gRNAs blocking CAGE-defined TSS 
to achieve conditional knockdown of SIX3 in iPSCs.  
(F) qPCR analysis of SIX3 transcript abundance in control vs SIX3 CRISPRi KD iPSCs.  
(G) Schematic of in vitro hiPSC cardiac-directed differentiation protocol.  
(H) qPCR analysis showing significant decreases in endoderm and mesendoderm markers and increases 
in mesoderm markers, respectively, in SIX3 CRISPRi KD iPSCs compared to control (n=6-14 technical 
replicates per condition from 3-6 experiments).  
(I-K) Cells were phenotyped on Day 2 of differentiation for endoderm markers by FACs analysis of 
EPCAM/CXCR4. (I) Changes in EPCAM+/CXCR4+ cells between control and dox-treated conditions in 
SIX3 CRISPRi KD iPSCs and WTC GCaMP CRISPRi iPSCs are shown (n=12-16 technical replicates per 
condition from 4-5 experiments). (J) SIX3 CRISPRi KD iPSCs show significant (p<0.001) reduction in 
EPCAM+/CXCR4+ cells compared to dox-treated control iPSCs (WTC GCaMP CRISPRi). (k) Raw 
FACS plots of EPCAM/CXCR4 analysis.  
(L-N) Analysis of cardiomyocytes by FACs for α-actinin. (L) Changes in α-actinin+ cells between control 
and dox-treated conditions in SIX3 CRISPRi KD iPSCs and WTC GCaMP CRISPRi iPSCs are shown 
(n=6 technical replicates per condition from 3 experiments). (M) SIX3 CRISPRi KD iPSCs show no 
change in α-actinin+ cells compared to dox-treated control iPSCs (WTC GCaMP CRISPRi). (N) Raw 
FACS plots of a-actinin analysis. 
(O) Schematic overview of cardiac development in Ciona from 4 to 72 hours post fertilization (hpf) at 
18oC. Adapted from (Evans Anderson and Christiaen, 2016). TVC: trunk ventral cells; STVC: second 
TVC; FHP: first heart precursor; SHP: second heart precursor; ASMF: atrial siphon muscle founder cells; 
iASMP: inner atrial siphon muscle precursor; oASMP: outer atrial siphon muscle precursor. 
(P) Top 10 genes ranked by expression value (left) or discordance score (right) from populations found 
during Ciona heart development in vivo, highlighting RNF220 as a candidate novel gene identified by 
TRIAGE.   
(Q) Breadths of H3K27me3 domains (in base-pairs) associated with RNF220 gene across the 111 NIH 
Epigenomes data sets. 
(R-S) Mosaic plots (R) and images (S) showing ASM precursor phenotypes at 26 hpf labeled with 
Mesp>H2B:GFP and Mesp>mCherry in control knockout and RNF220-knockout animals (N=100). P-
value represents the chi-sq test between two experimental conditions. Images in (s) derived from Ciona 
robusta cardiopharyngeal mesoderm. 
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