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Abstract

RNA-Seq studies require a sufficient read depth to detect biologically important genes. Se-

quencing below this threshold will reduce statistical power while sequencing above will provide

only marginal improvements in power and incur unnecessary sequencing costs. Although exist-

ing methodologies can help assess whether there is sufficient read depth, they are unable to guide

how many additional reads should be sequenced to reach this threshold. We provide a new method

called superSeq that models the relationship between statistical power and read depth. We apply

the superSeq framework to 393 RNA-Seq experiments (1,021 total contrasts) in the Expression

Atlas and find the model accurately predicts the increase in statistical power gained by increasing

the read depth. Based on our analysis, we find that most published studies (> 70%) are underse-

quenced, i.e., their statistical power can be improved by increasing the sequencing read depth. In

addition, the extent of saturation is highly dependent on statistical methodology: only 9.5%, 29.5%,

and 26.6% of contrasts are saturated when using DESeq2, edgeR, and limma, respectively. Finally,

we also find that there is no clear minimum per-transcript read depth to guarantee saturation for an

entire technology. Therefore, our framework not only delineates key differences among methods

and their impact on determining saturation, but will also be needed even as technology improves

and the read depth of experiments increases. Researchers can thus use superSeq to calculate the

read depth to achieve required statistical power while avoiding unnecessary sequencing costs.
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Introduction. RNA-Seq technology is often used to measure genome-wide gene expression from mul-

tiple biological conditions to identify differentially expressed genes. There are two primary sources of

variation in an experiment that impact the ability to detect differentially expressed genes: the biologi-

cal variation of gene expression inherent in cellular samples and the technical variation induced once

the samples are collected, processed, and sequenced. While biological variation can be reduced by

increasing the number of biological samples included in the study, technical variation can be reduced

through improved processing protocols and the manner in which the resulting libraries are sequenced.

In particular, technical variation can be controlled through the number of reads sequenced (i.e., read

depth). Given that current sequencing technologies provide a broad range of possible read depths,

choosing the read depth in a study requires careful consideration with respect to statistical power, sam-

ple size, and cost [1, 2]. Sequencing too few reads will lead to unreasonably high technical variation

and reduced statistical power, whereas sequencing too many reads will provide only marginal improve-

ments in statistical power and incur unnecessary costs. Therefore, an important objective when utilizing

sequencing technology is to determine a sufficient read depth that achieves acceptable statistical power

without incurring unnecessary experimental costs [3, 4]. However, there are currently no methods to

guide researchers in determining how many additional reads should be obtained in an RNA-Seq study.

There are several heuristic methodologies for assessing the relationship between sequencing depth

and statistical power within the sequencing depth range of a completed experiment [3, 5, 6]. These

approaches are commonly referred to as ‘subsampling’ (or ‘downsampling’) procedures, where experi-

ments are simulated at lower read depths by randomly sampling reads from the completed experiment.

For each simulated experiment, the number of differentially expressed genes at a specified false dis-

covery rate (FDR) is calculated to determine the effect of lower read depths on statistical power. When

applying these methods, the goal is to assess whether or not the experiment is near a saturation point,

where increasing the read depth will only provide marginal improvements in statistical power. As an

illustration, we applied the subsampling methodology subSeq [6] to two experiments involving Saccha-

romyces cerevisiae that have different sequencing depths (Figure 1a-b). In Figure 1a, the experiment is

oversaturated and sequencing additional reads will provide only marginal improvements in power while

incurring unnecessary costs. Alternatively, in Figure 1b, the experiment is undersaturated and sequenc-

ing additional reads will improve the statistical power. While subsampling methods are informative, they

are unable to estimate the number of additional reads needed to reach saturation for undersaturated

experiments.

We provide a solution to this problem by modeling and predicting the relationship between sequenc-

ing depth and statistical power in a completed experiment. Our method superSeq can accurately predict

how many additional reads, if any, need to be sequenced in order to maximize statistical power given

the number of biological samples. Applied to the above example, our model (dashed line) predicts, as
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Figure 1: Learning the relationship between statistical power and sequencing depth. (a,b) The superSeq

model was applied to two different experiments that were either saturated or undersaturated with reads,

and the differential expression method DESeq2 was used to calculate the number of differentially expressed

genes at various subsampling proportions as shown by the points. The vertical dotted lines indicate the

sequencing depth of the experiment and the dashed lines are the predictions from superSeq. (c) A process

to determine sufficient read depth in an RNA-Seq experiment: assess the relationship between read depth

and statistical power (blue), use superSeq to model and predict the improvement in power from sequencing

additional reads (red). If the experiment is undersaturated then additional reads should be sequenced using

the predictions from superSeq.
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expected, that sequencing more reads in Figure 1a (oversaturation) provides marginal improvements

in the number of differentially expressed genes detected. Conversely, in Figure 1b (undersaturation),

substantially more differentially expressed genes will be found by doubling the read depth. Therefore,

the predictions from our model not only indicate when an experiment has sufficient read depth, but

can also be used to inform how many additional reads should be sequenced when an experiment is

undersaturated. An important point to note is that the saturated experiment has substantially lower read

depth and the same number of biological replicates compared to the undersaturated experiment, even

though both involve the same organism. This suggests that determining sufficient read depth is not

simply organism-specific but may vary for every experimental design.

Models and methods. The shapes of the superSeq curves in Figure 1 are determined by the test

statistics, the read depth, the number of biological replicates, and a prespecified FDR. Once the exper-

iment has been completed and the number of biological replicates is fixed, we model the distribution

of test statistics as a function of the read depth D. In particular, the data from subsampling is utilized

to develop insights into how the test statistics vary at lower read depths. Our model then leverages

this information to predict statistical power at higher read depths. More specifically, consider a com-

pleted sequencing experiment with initial read depth D0. We can parametrically model the number of

differentially expressed genes detected at read depth proportion p = D
D0

as

G(p) = kΦ

(
log(p+ b)− µ

σ

)
+ ε,

where Φ is the Normal cumulative distribution function with mean µ and variance σ2; k is the expected

number of differentially expressed genes when the technical variation is minimized (with respect to a

prespecified FDR); b is an offset parameter; and ε is a Normal random error (detailed in Appendix

B). Thus G(p = 1) is the observed number of differentially expressed genes at the original sequencing

depthD0. We obtain simulated observations ofG(p) at lower sequencing depths (p < 1) by applying the

subSeq methodology [6]. Using these observations, the above parameters in our model are estimated

by implementing a non-linear least squares algorithm. The fitted curve is then extrapolated beyond the

original read depth (p > 1) to provide predictions.
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Figure 2: Validation of proposed model on real experimental data. (a) The number of significant genes at

each depth, along with predicted parametric curves using superSeq for six randomly selected experimen-

tal contrasts. Each superSeq fit was performed three times: on the full experiment and on data that had

previously been presampled to one-third and one-half of the full read depth. The differential expression

packages DESeq2, edgeR, and limma were used to test for differential expression at each subsampling pro-

portion. Using the estimates from these packages, we applied our superSeq model to predict the increase

in power from an increase in read depth. (b) The predicted relative increase in significant genes at the full

read depth from training superSeq on a half and a third of the reads compared to the actual relative increase

in significant genes detected at the full read depth. Each point represents a different experimental contrast

in the Expression Atlas. In total, there are 1,021 experimental contrasts plotted. The points along the line

represent accurate estimates of the predicted values. (c) Comparison of three different model fits to pre-

dict the relationship between statistical power and sequencing depth: probit (used in superSeq), logit, and

smoother. We applied each model to all experimental contrasts and tested the predictive power when the

curve is extrapolated to the full read depth.
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Results. To validate the model, we performed the following study on 393 RNA-Seq experiments from

the Expression Atlas [7]. For each experiment, we trained the superSeq model on one-third and one-

half of the full read depth, and then extrapolated the resulting fit to the full read depth to compare our

model predictions with the observed experiment (Figure 1c). In this way, we are utilizing the sequenced

read depth and associated statistical power of each experiment to test the accuracy of our model.

Although any differential expression method can be used within the superSeq framework, we applied a

weighted least squares regression (limma [8]) and two different implementations of a Negative Binomial

regression (edgeR [9] and DESeq2 [10]) to all experiments (detailed in Appendix A). We find that our

model accurately predicts the increase in statistical power with increasing read depth, and in many

cases is almost indistinguishable from the fit using the full read depth (Figure 2a). Additionally, we

find that our predictive model provides a useful metric for estimating saturation: across the majority of

experiments, using either differential expression method, the model accurately predicts statistical power

at the full read depth, even when trained on just one-third of the reads (Figure 2b).

We compared the performance of our model (labeled ‘probit’) to two alternative approaches, namely,

a cubic smoothing spline (labeled ‘smoother’) and a logistic distribution with the same number of free

parameters (labeled ‘logit’) in Figure 2c. Natural cubic splines are known to predict poorly outside

the range of observed data; as expected, it overestimates the sufficient read depth. While the logis-

tic distribution has a similar shape (S-shaped) to our model, we find that the logit model substantially

underestimates the sufficient read depth. These observations suggest that our model is most accu-

rately capturing the observed relationship between sequencing depth and statistical power across all

experiments in these comparisons.

The RNA-Seq experiments show varying degrees of saturation of both significance and accuracy

(Figure 3a). For example, some experiments were able to detect 75% of the differentially expressed

genes from the full experiment even when read depth had been reduced to 10% of its total, while others

detected less than 5% of the genes at this read depth. Similarly, Spearman correlations between

effect size estimates at this depth and the actual estimates varied from 0.5 to 0.9. This indicates that

some experiments were saturated with reads, and that their read depth could have been substantially

reduced while still achieving similar statistical power. In turn, experiments with a nearly linear increase in

statistical power up to the full read depth suggest that the read depth of the experiment was insufficient,

and increasing the read depth further would lead to greater statistical power.
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Figure 3: Quantifying the extent of saturation across multiple organisms. (a) Metrics showing power across

varying read depths for 75 randomly chosen differential expression contrasts, using the software packages

DESeq2, edgeR, and limma to test for differential expression. Each value was averaged across six replicates

from subsampling. (b) Relationship between transcriptome size and the extent of saturation. For each ex-

periment, we trained superSeq on the full read depth and the estimated power at the original sequencing

depth was calculated using the model fit. Estimated power values above the dashed line at 0.9 (90% power)

indicate that the experiment is near saturation while points below are undersaturated. (c) We selected five

species that have the most experiments in the Expression Atlas to assess saturation between species. The

black point is the median value. (d) Relationship between the average number of reads per gene and the

extent of saturation (using the estimated power at the full read depth) across the Expression Atlas experi-

ments. Each point represents a different experiment and values below the dashed line are undersaturated

while points above are saturated.
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We quantified the extent of saturation by calculating the estimated power from our model fit at the

observed read depth for each experiment. We find the majority of experiments were undersequenced

with reads and the extent of saturation varied depending on which differential expression method was

applied. Specifically, only 9.5%, 29.5%, and 26.6% of experiments had sufficient read depth (defined

in this instance as estimated power greater than 90% at the observed read depth) when using DESeq2,

edgeR, and limma, respectively. We then tested whether the extent of saturation varied with respect

to transcriptome size and find a statistically significant negative correlation when using edgeR (Spear-

man correlation: -0.07; p < 0.05) and a statistically significant positive correlation when using DESeq2

(Spearman correlation: 0.18; p < 0.05). However, the variation in saturation at similar transcriptome

sizes is comparatively large (Figure 3b). Furthermore, when grouping experiments by organism, we find

that there is no clear trend in the extent of saturation across species. For example when using limma

and edgeR, experiments performed on Arabidopsis thaliana were marginally more saturated than ex-

periments performed on Homo sapiens, which has approximately four times the transcriptome size

(Figure 3c). Conversely, when using DESeq2, the experiments performed on Homo sapiens were more

saturated compared to those on Arabidopsis thaliana.

One important question is whether saturation in an experiment can be determined by a simpler

approach, such as using the average number of reads per gene. We examined how this value is related

to the extent of saturation (Figure 3d). As expected, there is a statistically significant negative correlation

(p < 0.05) between the per gene read depth and the extent of saturation in each method. However,

the variation in the degree of saturation between experiments at similar read depths is relatively large.

Furthermore, experiments with large per gene read depths are less saturated than experiments at lower

per gene read depths. These results suggest that one cannot assign a simple minimum per gene read

depth threshold for an entire technology.

Conclusions. Prior to this work, researchers designing experiments have had to rely on similar studies to

guide their choice of read depth [1, 11, 12, 13]; however, finding such studies can often be challenging.

Furthermore, methodologies available to assess the relationship between read depth and statistical

power do not guide researchers in predicting a sufficient read depth. Our model, superSeq, can be used

with any completed experiment to predict the relationship between statistical power and read depth.

This will allow researchers to support their biological conclusions by demonstrating their experiment

has adequate statistical power. In addition, our method can also be used as a diagnostic tool to model

technical variation in a study when there are unexpected biological findings.

We find that superSeq provides accurate predictions when applied to real experiments with vary-

ing degrees of saturation, and that the extent of saturation in experiments depends on the differential

expression method. This suggests that the estimated technical variability in an experiment varies with
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methodology: DESeq2 generally estimates higher dispersion than edgeR or limma. Additionally, the ma-

jority of studies in Expression Atlas, regardless of the differential expression method, were undersat-

urated with reads, suggesting that these experiments could benefit from sequencing additional reads,

as shown from the superSeq predictions. Finally, there was not a clear guideline when assigning a

minimum per gene read depth to guarantee saturation for an entire technology, and thus superSeq will

still be needed even as technology improves and the read depth of experiments increases.

Although only two-sample comparisons were used in this study, the model can be extended to any

complex experimental design, such as time course studies [14]. We are currently extending superSeq

to other areas where sufficient sequencing coverage is essential. In ChIP-Seq experiments, a com-

mon issue is determining the optimal coverage for differential binding analysis. In single-cell RNA-Seq

experiments, adequate coverage is important when testing for differential expression across different

populations of cells. This will also allow for a more comprehensive analysis of the model.

Software and reproducible analysis. The data and code used to generate the results in this pa-

per can be found at https://github.com/StoreyLab/superSeq-manuscript. An implementation

of our method is available in the R package superSeq and can be found at https://github.com/

StoreyLab/superSeq.
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Appendix

A Application to Expression Atlas

The experiments used in the paper were from an online repository of gene expression experiments

called Expression Atlas [7]. From the repository, we obtained 465 RNA-Seq differential expression ex-

periments across 39 organisms. Each experiment had at least one two-sample comparison and there

were a total of 1,353 comparisons. For each two-sample comparison, we first filtered out genes with

fewer than 5 reads, then used the R package subSeq to subsample the datasets. Although any sub-

sampling method can be applied, subSeq is a memory efficient and computationally fast implementation

[6]. We subsampled these datasets across 301 subsampling proportions spaced on a logarithmic scale

from 0.001 to 1. There were six replications at each subsampling proportion, and we used edgeR,

DESeq2, and limma to test for differential expression [8, 9, 10]. Significant genes were determined at a

q-value cutoff of 0.05 using the qvalue package [15].

We filtered out subsampling curves where fewer than 100 differentially expressed genes were de-

tected at one-third of the read depth: the signal-to-noise ratio of these filtered experiments were too

low to test the model. After filtering, there were 1,045, 998, and 919 subsampling curves for edgeR,

DESeq2, and limma. We also removed subsampling curves that were non-monotonic and/or highly un-

stable. After this filtering step, there were 981, 859, and 851 subsampling curves for edgeR, DESeq2,

and limma. In total, there were 393 experiments and 1,021 two-sample comparisons used to train our

model. We then created two additional datasets for each study to test our model: one at one-third and

the other at one-half of the full read depth using the observations from subSeq.

We fit our proposed model to each dataset and extrapolated the fit to the full read depth of the

original experiment. There were a few studies with unstable subsampling curves at low subsampling

proportions. Therefore, our model was trained on subsampling proportions 0.01 to 1. We then used

the R package nls to fit a nonlinear least squares algorithm with the following parameters: 10,000

iterations, a convergence criterion of 10−6, and a minimum step size of 0.0002.

As stated in the main text, the Expression Atlas data and code used to generate the figures in this

paper can be found at https://github.com/StoreyLab/superSeq-manuscript. The experiment

accession IDs used to produce Figure 1 were E-MTAB-5313 (labeled Saturated) and E-GEOD-59814

(labeled Undersaturated). There were 3 biological replicates for each condition and the observed read

depths were 62,085,792 and 94,023,022, respectively.
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B Relationship between the number of rejections and read depth

Under a Bayesian mixture model, the positive false discovery rate (pFDR) at significance threshold λ

for test statistic τ is the posterior probability of the null hypothesis is true given |τ | ≥ λ [16, 17, 18]:

pFDR(λ) = Pr
(
H0

∣∣ |τ | ≥ λ) =
π0 Pr

(
|τ | ≥ λ

∣∣ H0

)
π0 Pr

(
|τ | ≥ λ

∣∣ H0

)
+ (1− π0) Pr

(
|τ | ≥ λ

∣∣ H1

) ,
where H0 is the event that the null hypothesis is true, H1 is the event that the alternative hypoth-

esis is true, and π0 is the proportion of true nulls. If there are m hypothesis tests then the ex-

pected number of false positives is mπ0 Pr
(
|τ | ≥ λ

∣∣ H0

)
and the expected number of true positives

is m(1− π0) Pr
(
|τ | ≥ λ

∣∣ H1

)
. We can write the total number of expected significant genes as

R(λ) = mπ0 Pr
(
|τ | ≥ λ

∣∣ H0

)
+m(1− π0) Pr

(
|τ | ≥ λ

∣∣ H1

)
=

m(1− π0)
1− pFDR(λ)

Pr
(
|τ | ≥ λ

∣∣ H1

)
,

where we used the following relationship, mπ0 Pr
(
|τ | ≥ λ

∣∣ H0

)
= R(λ)pFDR(λ). In order to maintain

the pFDR(λ) at a fixed level when subsampling, the significance threshold varies in response to the

changing power of the test statistics τ(p). Furthermore, as the read depth approaches infinity, there

is an asymptotic number of significant genes k = m(1−π0)
1−pFDR(λ) . This value of k is not observed but it

is the optimal number of discoveries when the technical variability is minimized with respect to the

experimental design. The above equation can be rewritten in terms of the test statistic value and

significance threshold at subsampling proportion p as

R(λ) = kPr
(
|τ(p)| ≥ λ

∣∣ H1

)
= kPr

(
|τ(p = 1)| ≥ λ(p)

∣∣ H1

)
R(λ(p)) = kF̄τ

(
λ(p)

∣∣ H1

)
,

(1)

where τ(p = 1) are the observed test statistics from the completed experiment; F̄ is one minus the

cumulative distribution function (i.e., survivor function) of the test statistics under the alternative; and

λ(p) is the changing significance threshold as a function of the subsampling proportion.

There are three unknowns in the above equation, namely, F̄ , λ(p), and k. The cumulative dis-

tribution function of the test statistics under the alternative is unknown in practice. A related issue is

the functional form of λ(p), which depends on the specific test statistic utilized. This is further compli-

cated by any data transformations that were performed as part of the analysis. Finally, the asymptotic

number of rejections k is unobserved. However, we can leverage the information from subsampling to

approximate these unknown quantities using real data.

In order to model the relationship of the survival function, R(λ(p)), with respect to p, we take the

derivative
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dR(λ(p))

dp
= k

dF̄τ (λ(p))

dλ(p)

dλ(p)

dp
,

and empirically observe that the rate of change of R(λ(p)) has approximately a Log-normal distribution

(Figure 4). As such, we assume that
dλ(p)

dp
≈ 1

σ(p+ b)
implying λ(p) =

log(p+ b)− µ
σ

, where

(µ, σ) are the mean and standard deviation of the Normal distribution and b is an experiment-specific

parameter. This gives our proposed model

G(p) = R(λ(p)) + ε,

= kΦ

(
log(p+ b)− µ

σ

)
+ ε,

where G(p) are the observed number of significant genes, R(λ(p)) are the expected number of rejec-

tions, and ε are independent random errors from the model fit. The parameters k, µ, b, and σ in the

probit model are estimated for each experiment using a non-linear least squares algorithm. It is impor-

tant to note that these are not necessarily the parameters of the alternative distribution: this functional

form is an approximation and the threshold parameter is unknown. We find that superSeq (solid line;

Figure 4) provides a reasonable approximation to the observed empirical slopes.

As an alternative to modeling the survivor function using a Log-normal cumulative distribution func-

tion, we also considered a Logistic cumulative distribution function. In this case,

G(D) = kF

(
log(p+ b)− µ

σ

)
+ ε,

where F (x) =
[

1
1+exp{−x}

]
. We fit this model, referred to as ‘logit’, using a non-linear least squares

algorithm. Therefore, the logit and probit models are compared using the same number of free param-

eters: Figure 5 compares the parameter estimates under both models. As a baseline, we compared

both of these models to a natural cubic smoothing spline with four degrees of freedom (referred to as

the ‘smoother’ model).
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Figure 4: Observed slope in six randomly chosen experiments. For each experiment, we calculated the

empirical slope at each subsampling proportion (denoted by the points) using the observed subsampling

data. The solid lines represent the empirical slope from the predicted values of the superSeq model fit.
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Figure 5: Distribution of parameter estimates in the superSeq model. The logit and probit model fits are

shown using DESeq2, edgeR, and limma.
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