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Abstract
The dynamic behavior of synthetic gene circuits plays a key
role in ensuring their correct function. However, our abil-
ity to accurately predict this dynamic behavior is limited
by our quantitative understanding of the circuits being con-
structed. This understanding can be represented as a math-
ematical model, which can be used to optimize circuit per-
formance and inform the design of future circuits. Previous
inference methods have used fluorescent reporters to quan-
tify average behaviors over an extended time window, result-
ing in a static characterization which is a poor predictor of
dynamics. Here we present a method for characterizing the
dynamic behavior of synthetic gene circuits. The method
relies on parameter inference techniques applied to time-
series measurements of cell cultures growing in microtiter
plates. We use our method to design and characterize gene
circuits in E. coli that provide core functionality for engineer-
ing cell behavior at the population level. We arrange 23 bio-
logical parts into 9 devices and combine them to construct
and measure 9 gene circuits including relays, receivers and
a degrader. We demonstrate that the behaviors of simple
devices can be modeled dynamically and used to predict
the behaviors of more complex circuits. Furthermore, our
method allows incremental inference of models as new cir-
cuits are constructed, and lays the foundation for iteratively
learning dynamic models from data in a scalable manner.
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Introduction
As increasingly complex gene circuits are designed and
implemented in living cells (1), the precise dynamic be-
havior of these circuits is becoming increasingly impor-
tant for ensuring their correct function. For instance,
genetically engineered microbes must produce specific
quantities of proteins at particular times to optimize
the yield of compounds such as medicines (2), mate-
rials (3) and chemicals (4), and genetically engineered
T-cells must express the correct levels of chimeric anti-
gen receptors at the appropriate time to avoid over-
stimulating the immune system and potentially killing
the patient (5).

However, our ability to accurately predict the dy-
namic behavior of gene circuits is limited by our quan-
titative understanding of their properties. This under-
standing can be represented as a mathematical model,
which can be used to optimize circuit performance and

inform the design of future circuits (6, 7). The ki-
netic parameters of the model are required to accurately
predict its dynamic behavior, and can include bind-
ing affinities, rates of transcription and translation, and
rates of enzyme-catalyzed reactions. Obtaining model
parameters presents a major challenge, since in most
cases these parameters cannot be derived from static
circuit properties such as genetic sequence.

In addition, the dynamic behavior of a circuit, such
as the concentrations of RNA and proteins over time,
is often not directly observable inside a living cell. As
a result, model parameters need to be inferred by mea-
suring observable outputs such as fluorescence and ab-
sorbance over time. Previous methods have used flu-
orescent reporters to obtain a static measurement of
gene expression for a given a promoter (8–10). How-
ever, these methods focus on quantifying average be-
haviors over an extended time window, resulting in a
static characterization which is a poor predictor of dy-
namics.

This paper presents a method for characterizing
the dynamic behavior of synthetic gene circuits. The
method relies on parameter inference techniques ap-
plied to time-series measurements of cell cultures
growing in microtiter plates. By comparing fluores-
cent protein measurements over time to the dynamic
behavior of a mathematical model, we infer the val-
ues of model parameters that cannot be measured di-
rectly. Our method allows computational models to
be associated with gene circuits in a modular fashion,
by reusing device-level properties based on hypotheses
that can be specified in code. We arrange 23 biologi-
cal parts into 9 devices and combine them to construct
and measure 9 gene circuits that provide core function-
ality for programming cell behavior at the population
level. The devices include Receivers capable of sens-
ing and responding to two homoserine lactone (HSL)
signaling molecules simultaneously, Relays capable of
receiving one signal and producing the other signal in
response, and a Degrader that degrades both signals.
We demonstrate that the behaviors of these devices can
be modeled dynamically and that device models can
be composed to predict the behaviors of more complex
gene circuits. Finally, our method allows incremen-
tal inference of models as new circuits are constructed
and measured. We demonstrate this by iteratively con-
structing a repository of models and re-using param-
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eter values of existing devices as new devices are in-
troduced. Propagating parameter values in this way
removes the need to rerun the inference problem for
an entire database of devices each time a new device
is added. Our work lays the foundation for a scalable
approach to learning dynamic models from data over
time, by iteratively building on existing knowledge.

Results
Dynamic characterization method. We first present our
dynamic characterization method, using the terminol-
ogy of Fig. 1A. We define a genetic device as a sequence
of genetic parts, which can include promoters, ribo-
some binding sites, protein coding regions and termi-
nators. Devices are assembled into circuits, which are
transformed into cell cultures. The dynamic behavior
of each culture is measured under different treatments,
such as different concentrations of input signals. Mea-
surements of the culture can include culture density
and the intensity of spectrally distinct fluorescent pro-
teins. The method uses culture-level measurements in
combination with computational (dynamical systems)
models of intracellular concentrations to infer quanti-
tative properties of parts and devices. In doing so, it
enables model predictions of intracellular dynamics by
reconstructing bulk culture measurements (Fig. 1B).

Inference of model parameters is complicated by
the feedback that exists between a synthetic genetic cir-
cuit and the host cell in which it operates (Fig. 1C).
The circuit places a burden on the host cell resources,
which in turn affects circuit behavior (11–16). In or-
der to reduce the bias that can result from inaccurately
representing the burden on host cell resources (K in
Fig. 1C), our method does not model these resources
explicitly, as attempted in (17). Instead, we model the
circuit in open loop, by allowing parameters quantify-
ing cell growth (ρ) and gene expression (ξ) to take on
culture-specific values. Culture-specific cell growth in-
corporates resource burden indirectly, since we observe
slower growth as the synthetic circuit increases its bur-
den on the host cell. Culture-specific gene expression
captures differences in transcription, translation and
degradation that arise from differences in culture con-
ditions. This might include an increased burden on the
ribosome pool leading to lower translation (16, 18), in-
creased burden on polymerases leading to lower tran-
scription (19), or differences in the degradation of dif-
ferent mRNA sequences (20). Accordingly, these can
include both intrinsic and extrinsic properties (10) of
synthetic gene circuits. By modelling cell growth and
gene expression with culture-specific values, we can ar-
bitrarily account for the interdependence between the
two (21), despite not explicitly modeling host cell re-
sources.

In order to estimate culture-specific gene expression
parameters, we developed a dynamic version of ratio-
metric characterization (10, 22). The ratiometric method

seeks to separate intrinsic properties of a circuit, such
as the ability of a promoter to recruit polymerase, from
extrinsic properties such as cellular metabolic burden
and ribosome availability. This can be achieved by us-
ing a standard promoter to drive expression of a spec-
trally distinct fluorescent protein, which is assumed to
capture the same extrinsic factors that influence fluo-
rescent protein expression driven by other promoters
in the circuit.

Dynamic characterization relies on three distinct
phases (Fig. 1C), where each culture is indexed by the
circuit i that it contains and the treatment j under which
it is measured:

1. A growth phase characterizes the dynamics of cul-
ture growth, by comparing simulations of a growth
model with measurements of culture density over
time. The growth model is of the form

ċ = γ(c,ρij)c (1)

where c(t) is the culture density, ρij are the
culture-specific growth parameters and the function
γ(c(t),ρij) describes the specific growth rate of the
culture.

2. A control phase characterizes the gene expression of
the culture, by comparing simulations of a control
model with the expression of a control signal over
time, such as the intensity of a fluorescent protein
driven by a constitutive promoter, or the expression
of a housekeeping gene. Although the culture may
be genetically engineered to produce the control sig-
nal, we consider this to form part of the culture it-
self and to be distinct from the genetic circuits that
are subsequently introduced, since the same control
signal is used for all circuits and treatments. The
control model is of the form

ẋC = fC(xC, c,uij,φ,ξij, hC,ρij,γ)
yC = gC(xC)

(2)

where xC(t) is a vector of unobserved state vari-
ables, yC(t) is the observable control signal, uij is the
culture-specific treatment, c(t) is the culture den-
sity, φ are culture-independent control parameters
and ξij are culture-specific control parameters that
characterize the gene expression capacity of the cul-
ture, which is described by a function hC(c(t),ξij,φ).
The culture-specific growth parameters ρij are incor-
porated into the model via the specific growth rate
γ(c(t),ρij), which is used to model the effect of dilu-
tion due to growth.

3. A target phase characterizes the dynamics of the ge-
netic circuit by comparing simulations of a target
model with measurements of observable circuit out-
puts over time. The target model is of the form

ẋT = fT(xT , c,uij,θ,ξij, hT ,ρij,γ)
yT = gT(xT)

(3)
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Fig. 1. Understanding the properties of genetic circuits via dynamic bulk fluorescence measurements. A. A collection of genetic parts can be composed combinato-
rially into a set of devices that can be introduced singly or in combination into a cellular context to produce genetic circuits. The circuits (indexed by i) can be exposed to a
variety of treatment conditions (indexed by j), in a set of experiments that produce data such as optical density (OD600) and bulk fluorescence at three different wavelengths
corresponding to mRFP1, eCFP and eYFP . This hierarchical organization allows for the encoding of hypotheses about modularity and the reuse of measured properties in
new contexts to allow for rational forward engineering. B. Dynamic bulk fluorescence is a rich data source but its relationship to the underlying promoter activity is non-trivial.
Constitutive expression by constant promoter activity leads to a sigmoidal bulk fluorescence curve due to sigmoidal growth of cell density. Inducible expression leads to a
(near-)step change in promoter activity, but is almost indistinguishable from constitutive expression. An inverter system drastically alters bulk fluorescence dynamics, which
presents a challenge for time-window selection of static characterization. C. Our method seeks to infer the quantitative properties of a synthetic circuit while accounting for the
feedback of the circuit consuming cellular resources and inhibiting growth. To approximate this closed loop system, an open loop approximation is proposed that allows each
cell culture, expressing a given circuit i under a given treatment j, to be described by models of cell growth (γ) and gene expression capacity (hC , hT ) that are parametrized by
culture-specific parameters uij , ρij and ξij . The models of the control signal ( fC) and the target circuit ( fT ) therefore embed these circuit-specific factors. D. Inference graph
representing the three stages of ratiometric dynamic characterization for a single circuit i. The Growth node infers the growth parameters ρij for the circuit i under a range
of treatments j. This is achieved by fitting a growth model to corresponding growth data, such as optical density of the culture, for each treatment. The Control node uses
the growth parameters ρij to infer the control parameters ξij for the same circuit i under the same treatments j. This is achieved by fitting a control model to corresponding
control data, such as the concentration of fluorescent protein expressed by a constitutive promoter, for each treatment. Parameters φ shared between control models, such
as the degradation of the constitutively expressed fluorescent protein, are also inferred. Finally, the Target node uses the growth and control parameters to infer parameters θ

shared between target models, such as the strength of promoters used in the circuits. E. Inference graph representing the two stages of direct dynamic characterization. The
graph is similar to (E) except that the Control node is omitted.

Dalchau et al. | Dynamic Characterization bioRχiv | 3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635672doi: bioRxiv preprint 

https://doi.org/10.1101/635672


where xT(t) is a vector of unobserved state vari-
ables, yT(t) is a vector of observable genetic circuit
outputs and θ are culture-independent circuit pa-
rameters. Similar to the control phase, the culture-
specific growth parameters ρij are incorporated into
the model via the specific growth rate γ(c(t),ρij),
while the culture-specific control parameters ξij are
incorporated by scaling the expression of all genes
by a function hT(c(t),ξij,θ).

Importantly, phases (1-3) represent three different mea-
surements of the same culture containing a given circuit
i under a given treatment j. The three phases are col-
lectively referred to as ratiometric characterization. We
also consider a variant of the method in which only the
growth and target phases are used, referred to as direct
characterization, which does not attempt to quantify
between-culture variations in gene expression capacity.
In this case hT is set to 1 throughout.

We developed the notion of an inference graph (Sup-
plementary Information Section S1.1) to formally rep-
resent the three phases of our method. An inference
graph is defined as a labelled directed acyclic site graph,
meaning that each edge has a label and a direction, the
graph does not contain any cycles, and each node con-
tains one or more sites:

• Each node in the inference graph represents a pa-
rameter inference over multiple cultures, indexed
by their circuit i and treatment j, where each cir-
cuit is associated with a computational model and
corresponding experimental measurements. Param-
eter inference seeks to minimize the deviation be-
tween the measurements and the model simulations
(see Methods). The models in a given node share
global parameters and typically represent a collection
of similar circuits, such as circuits that differ only in
their ribosome binding sites at specific locations.

• Each site in a node represents a circuit i, where
the same model is assumed to be used consistently
across all treatments j for that circuit. The site can
also contain local parameters specific to that circuit.

• Each edge is labelled with a set of parameters that are
propagated from the source to the target node, where
each parameter is associated with a propagation prop-
erty that denotes how the parameter is to be propa-
gated. For example, if the property is Fixed then only
the parameter value is propagated. If the property
is Normal then the posterior marginal distribution
of the parameter is fitted to a Normal distribution,
which is then used as a prior for the parameter in
the target node. Edges can occur between nodes or
sites, to represent the propagation of global or local
parameters, respectively.

The inference graph representing the three phases of ra-
tiometric dynamic characterization is shown in Fig. 1D.

The Growth node fits a growth model to measurements
of culture density, resulting in growth parameters ρij
for each circuit i under treatment j. These parameters
are then propagated to the corresponding sites in the
Control and Target nodes. The Control node then fits
a control model to measurements of the control signal,
resulting in control parameters ξij for the same circuit
i under the same treatment j, together with parame-
ters φ shared between the control models. The control
parameters are then propagated to the corresponding
sites in the Target node, which fits a target model to
measurements of the target signals, resulting in param-
eters θ shared between the target models. The inference
graph representing the two phases of direct dynamic
characterization is shown in Fig. 1E. More generally, in-
ference graphs also allow parameter inference to be ap-
plied sequentially to circuits of increasing complexity,
by reusing parameters shared between circuits in a con-
sistent manner.

Modeling gene circuits. Our dynamic characterization
method is general in that it can support a range of
modeling hypotheses. In this paper we focus on mod-
els of gene circuits derived from elementary chemical
reactions, by making several assumptions about the
timescales of different biological processes, culminating
in only proteins and small molecules being explicitly
described by ordinary differential equations (see Meth-
ods and Section S2).

Genetic devices are conveniently composable dur-
ing circuit construction and model specification. How-
ever, the quantitative properties of parts and devices
may not be. The rate of translation of mRNA to protein
depends on the upstream ribosome binding site, while
the rate of protein synthesis also depends on other fac-
tors from its surrounding context, such as the choice of
upstream promoter, downstream terminator, position
on the plasmid with respect to the origin of replication
or other gene expression cassettes. Accordingly, one
must hypothesize the rules governing whether a pa-
rameter can be shared when parts or devices are reused
in other circuits. Here, we take the view that the rate of
protein synthesis, which we modeled by treating tran-
scription and translation as a single-step process (see
Methods and Supplementary Information Section S2),
depends on the associated promoter, ribosome bind-
ing site and protein coding region. Only when these
three elements are the same are protein synthesis pa-
rameters shared. In contrast, we hypothesize that pro-
tein degradation is the same for a given protein in dif-
ferent genetic circuits. For inducible promoters, we as-
sume that the regulation function parameters only de-
pend on promoter sequence (and the concentration of
the upstream regulator), and do not depend on down-
stream ribosome binding site and protein coding region
elements.
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Fig. 2. Composable design and characterization of HSL signaling parts and devices. Synthetic gene circuits are constructed and modeled in a modular way. In
each row, the left column graphically depicts different circuits, the middle column shows device and circuit definitions in GEC programs for each circuit and the right column
shows example measurements (solid lines) and calibrated model simulations (dashed lines). A. Autofluorescence characterized with cells expressing no eCFP or eYFP ,
but measured at 480 nm and 530 nm in response to varying concentrations of EtOH. The model of the Auto circuit specifies the cellular context through module calls
cells() and autofluorescence(). B. Fluorescent protein degradation was characterized by expressing eCFP (solid blue square) and eYFP (solid yellow square) with
a constitutive promoter, treating with chloramphenicol, and measuring for a longer duration. The model of the PRPR device involves module calls CFP() and YFP(), which
specify protein production with an expression PR, in addition to protein degradation and dilution (see Supplementary Information Section S1 for more details). The model of
cell growth and autofluorescence is assumed to be equivalent to the model in A, and so is propagated to the system definition using the with keyword. C. HSL Receivers
were characterized by measuring 4 variant circuits with different ribosome binding sites for LuxR and LasR expression (orange symbols), and treated with C6 or C12. Shown
here is the R33-S175 circuit variant only. The model incorporates autofluorescence and fluorescent protein degradation from A and B. D. HSL Relays were characterized by
inducibly expressing LasI in response to different concentrations of C6 via PLux81 (shown here) or LuxI in response to C12 via PLas81 (see Supplementary Information). The
model incorporates elements of A, B and C. Notably, this system extends the Auto system using the with keyword, by combining the drR33S175 and p76lasI devices.
E. The PBAD promoter was characterized by inducing expression of eYFP with different concentrations of arabinose. The model incorporates elements of A and B. F. The
HSL Degrader, PBAD-AiiA, was characterized by inducing its expression via PBAD, then measuring the response of the double receiver to different concentrations of HSL.
Data-model comparisons are shown for the eCFP response to 25 µM C6 (left panel) and the eYFP response to 25 µM C12 (right panel) only.

Dynamic characterization case study. We demon-
strated how our dynamic characterization method can
be used to quantify the properties of genetic devices,
by building and characterizing genetic circuits in E. coli
that provide core functionality for engineering cell be-

havior at the population level. Our circuits make use
of homoserine lactone (HSL) signaling components, in-
cluding the Lux system from V. fischeri (23) and the
Las system from P. aeruginosa (24), which have both
been studied extensively in their natural contexts. They
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have also been used in synthetic biology contexts, ei-
ther alone (25), in co-culture (26), or integrated into the
same host organism (27).

In order to characterize HSL signaling devices, we
designed a collection of synthetic gene circuits of in-
creasing complexity, reusing parts in equivalent genetic
contexts as much as possible (Fig. 2). For each cir-
cuit, a model was proposed that explicitly described the
circuit behavior. These are summarized in the Meth-
ods section, but detailed derivations are shown in Sup-
plementary Information Section S2. In Fig. 2, code
snippets show how devices can be programmatically
specified as calls to modules that describe their behav-
iors. Circuits are defined by specifying which devices
are included and by assigning models for cell culture
growth and autofluorescence. Example comparisons
of calibrated model simulations against measurements
are shown in Fig. 2 for each circuit, and more exten-
sive comparisons are shown in Supplementary Infor-
mation Section S2.

We applied dynamic characterization both sequen-
tially and simultaneously to the circuits introduced in
Fig. 2, using both direct and ratiometric approaches.
The inference graph for sequential direct characteriza-
tion is shown in Fig. 3, while the graph for ratiometric
characterization is shown in Fig. S1. Below we summa-
rize the various stages of the inference graph in Fig. 3.

Autofluorescence. We started by characterizing cellular
autofluorescence, to explicitly account for autofluores-
cence in circuits expressing eYFP and eCFP (Fig. 2A;
Section S2.1). We pharmacologically perturbed the cells
with EtOH, which above a threshold concentration led
to very slow cell growth. We found that the per-cell rate
of autofluorescence production at 480 nm, correspond-
ing to eCFP measurements, was an order of magnitude
higher than at 530 nm, corresponding to eYFP measure-
ments. The autofluorescence parameters a530 and a480
inferred from these experiments were reused in subse-
quent circuits.

Constitutive promoter. Since both eCFP and eYFP were
used in most of the synthetic gene circuits we con-
structed, we characterized their stability using a simple
circuit (Fig. 2B; Section S2.2) expressing the eCFP and
eYFP fluorescent proteins constitutively using the PR
promoter, and measured their fluorescence for 36
hours. A model of the PRPR circuit incorporated aut-
ofluorescence terms, which shared information with
the Auto circuit in Fig. 2A. The the time-series measure-
ments of PRPR enabled identification of the eCFP and
eYFP degradation parameters dCFP and dYFP.

Receivers. The first HSL devices we characterized were
the Receivers, since these are also required to character-
ize the Relay and Degrader devices. We used the dou-
ble receiver circuits developed in (27), which act as a
dual reporter of 3-oxo-C6-HSL (C6) and 3-oxo-C12-HSL

(C12; Fig. 2C; Section S2.3). This is achieved by the con-
stitutive expression of LuxR and LasR and the inducible
expression of fluorescent reporter proteins under the
control of PLux promoter variants selected for orthog-
onal response to regulators composed of C6 bound to
LuxR or C12 bound to LasR. In this way, eCFP reports
the concentration of C6 and eYFP reports the concentra-
tion of C12, both across a broad range of concentrations.
Because different promoters and ribosome binding sites
are upstream of the coding sequences for eCFP and
eYFP , as compared to the PRPR circuit, the parame-
ters for their maximal production rate were assumed to
take on new values. However, the degradation parame-
ters were assumed to be the same as for PRPR, since the
degradation rate is an intrinsic property of the protein.
We used four different double receiver circuits, each in-
corporating a unique combination of promoter and ri-
bosome binding sites in their LuxR and LasR expres-
sion cassettes. As explained in previous work, this en-
abled the effect of variable intracellular concentrations
of LuxR and LasR to be modeled and therefore charac-
terized quantitatively, which was critical for reducing
chemical and genetic crosstalk (27).

Relays. We next characterized LuxI and LasI, the syn-
thases of C6 and C12 respectively. HSL relay devices
were designed that inducibly express the synthase of
one signal in response to the other. HSL is produced
intracellularly but quickly diffuses into the culture me-
dia, changing the signal concentration to which all cells
are responding. This means that the promoter response
to the synthesized signal is inherently time-varying
and therefore cannot be accurately characterized using
static methods. The first relay uses the C6-responsive
pLux76 promoter to drive expression of LasI (abbrevi-
ated as P76-LasI), leading to intracellular production of
C12 and subsequent induced expression of eYFP via the
pLas81 promoter (Figs. 2D & S14B). The second uses the
C12 responsive pLas81 promoter to drive expression of
LuxI (abbreviated as P81-LuxI), leading to intracellular
production of C6 and subsequent induced expression
of eCFP (Fig. S14A). Again, reusing component charac-
terization of the previously described circuits, we mod-
eled time-series measurements of the response to dif-
ferent concentrations of C6 and C12 (Fig. 2D & S15), en-
abling quantification of the ability of LuxI and LasI to
synthesize HSLs.

Inducer. We wished to use an orthogonal inducible sys-
tem to drive expression of an HSL-degrading enzyme
(see ’Degrader’ below) but first needed an understand-
ing of the parameters governing induction. To this end
we characterized a simple circuit in which the proper-
ties of arabinose induction of the promoter PBAD could
be quantified, by simply using PBAD to drive eYFP ex-
pression (Figs. 2E & S17). Incorporating the eYFP aut-
ofluorescence parameter from our Standard device, our
model of the PBAD circuit closely described the exper-
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Fig. 3. Inference graph for direct dynamic characterization of synthetic gene circuits. For conciseness, we allow edges from the same source node to share common
labels. The AutoGrowth node uses a growth model to infer growth parameters r, K and tlag of the autofluorescence circuit, under different treatments. The parameters are
propagated as vectors of equal length (shown as underlined), where the length of the vectors corresponds to the number of treatments. The parameters are propagated to
the Auto node, which uses the Auto model to infer parameters a530 and a480 that characterise circuit autofluorescence. The posterior distributions of these parameters are
then used as priors for the Constitutive node, which uses a model of constitutive gene expression to infer the parameters dCFP and dYFP , together with updated posteriors of
the autofluorescence parameters. The ReceiversGrowth node infers growth parameters of four receiver devices simultaneously. The devices differ primarily in the ribosome
binding sites used to drive expression of the two receiver proteins, LuxR and LasR. The Receivers node uses the corresponding growth parameters to infer parameters shared
between the four receiver circuits. The Relays, Degrader and Inducer nodes are defined in a similar fashion, with parameters propagated as shown in the inference graph.

imental measurements in response to different concen-
trations of arabinose (Fig. S18) and enabled identifica-
tion of the transfer function parameters for arabinose-
induction, given by KAra, nA and eA (Fig. S19).

Degrader. To characterize the HSL lactonase AiiA (28),
we designed a circuit in which AiiA was placed un-
der the control of the arabinose-inducible PBAD pro-
moter (Fig. 2F), so that different intracellular levels of
AiiA could be produced experimentally. Embedding
the characterized PBAD and Receiver modules into the
model of the AiiA circuit enabled modeling of the re-
sponse to different concentrations of C6, C12 and ara-
binose. The parameters quantifying the shape of the
transfer function of PBAD induction by arabinose were
propagated from the characterization of the Arabinose
circuit, though the parameter defining the maximal out-
put (aPBAD

YFP ) was not, because that is associated with a

different downstream protein coding region. Of partic-
ular importance in reproducing the observed bulk flu-
orescence dynamics of the Degrader circuit was the in-
corporation of the effect on cell growth of high arabi-
nose induction of AiiA, which was observable in the
OD600 data, and therefore quantified during the cell
growth phase of dynamic characterization (Figs. S22 &
S24).

Hypotheses about changes in host cell metabolism
can be encoded in time-varying functions of gene
expression capacity. As cells pass through different
phases of growth, from lag to exponential to stationary,
they undergo highly regulated changes in gene expres-
sion and metabolic state (29). These changes will have
an effect on the expression of synthetic circuits and
therefore on their dynamics. We observed such changes
in gene expression in the eCFP and eYFP channels of
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our circuits that correlated with the onset of decreas-
ing growth rate as measured by OD. Interestingly, such
changes were much less prominent in the RFP channel
(Fig. S28). We explored a number of hypotheses about
the nature of those changes by evaluating the perfor-
mance of different functional forms used to define gene
expression capacity hT .
Table 1. Functional forms used to define gene expression capacity hT(c).
In all cases gene expression capacity hC(c,ξij ,φ) in the control phases uses the
Constant hypothesis and its parameters ξij = rcij are inferred during tthis phase.

Additional parameters in hC(c,ξij ,θ) may differ, and are therefore inferred during
the target phase.

Description Target phase hT(c,ξij,θ)

Constant rcij

TargetGrowth rcij ((1− εc)γ(c) + εc)

Tracks the growth-rate γ, falling
to a basal level εc.
TargetGrowthDelay rcij ((1− εc)γ(c(t− τ)) + εc)

Tracks the growth-rate γ at time
t− τ

TargetRSwitch rcij

cnc + εcKnc
c

cnc + Knc
c

Sigmoid that switches at c = Kc
from a well-specific value rc to a
relative value εc

TargetSwitch
rcij c

nc + rsKnc
c

cnc + Knc
c

Sigmoid that switches at c = Kc
from a well-specific value rc to a
non-well-specific basal value rs

We considered several contrasting yet relatively
simple assumptions about the functional form of the
gene expression capacity hT(c,ξij,θ) for the target phase
(see Table 1). The simplest assumption was that gene
expression capacity remains constant through time.
However, because circuit activity changes over time,
this assumption may break down if host cell resources
become limiting when circuit activity increases. Fur-
thermore, as bacterial cultures transition from exponen-
tial to stationary growth phase, broad changes in gene
expression may need to be accounted for. For this we
considered four alternative time-dependent functions
(Table 1). The best-performing function differed from
circuit to circuit but overall, the time-varying functions
performed better than a constant gene expression ca-
pacity 4.

In each case, the culture-specific component rcij was
inferred during the control phase, under a Constant
hypothesis. Then, the non-culture-specific parameters
(e.g. εc in TargetGrowth) were inferred in the target
phase alongside the target circuit parameters θ. As
such, these hypotheses assume that the gene expres-
sion capacity for the chromosomally integrated con-
trol undergoes contrasting regulation from that of the
plasmid-expressed devices. In principle, every gene ex-
pressed on the plasmid could potentially be regulated
differently, which would require gene-specific func-
tions or parameterizations. Here, we assume that the
same function is applied to all genes in the target phase,

to avoid a combinatorial increase in the number of pa-
rameters to infer.

Sequential inference enables scalable dynamic
characterization. We compared the maximum log-
likelihood score of the simultaneous characterization
(Fig. 4H) with the sum of the maximum log-likelihood
scores over the 6 sequential characterizations (Fig. 4G).
This revealed a clear preference for sequential in-
ference, most likely due to the flexibility afforded
to model parameters when propagated from one
inference problem to the next. To assess the extent to
which parameters took advantage of this flexibility, we
plotted the marginal distributions for each parameter
resulting from inference in the 6 problems (Fig. S25 &
S26). We found that the parameters associated with
autofluorescence and fluorescent protein degradation
were relatively stable as they were passed through
the graph. Whereas parameters associated with the
binding of LuxR/LasR to HSL signals and the modified
PLux promoters varied by up to an order of magnitude
or more. Our interpretation is that this reflects the
inherent correlation between these parameters and the
parameters associated with other HSL signaling cir-
cuits, characterized in inference problems downstream
of the double receiver (see Fig. 3). The amount of vari-
ation also was greater in the TargetSwitch hypothesis
than TargetGrowth hypothesis, which is likely due
to TargetSwitch having more parameters associated
with hT to parameterize, and thus more potential for
correlation and non-identifiability.

We found that for sequential inference, in general,
ratiometric dynamic characterization performed better
than direct dynamic characterization in the training
phase (Fig. 4G), though this preference was reversed in
the simultaneous strategy (Fig. 4H). When considering
the breakdown of these scores across different nodes of
the inference graph, we found that PRPR, the Relays
and some hypotheses for the double receiver did not
benefit from the ratiometric control, but in fact led to
worse fits to the data. Ideally, the ratiometric approach
should be at least as good as the direct approach, which
is equivalent to the ratiometric control parameters all
being to the same value. As such, the conclusions here
suggest that the inferred ratiometric control parameters
can inappropriately quantify gene expression capacity.
Because this is the first attempt to incorporate a ratio-
metric control into dynamical models, and several sim-
plifications have been made, we leave further investiga-
tion of how to more broadly specify ratiometric control
parameters to a future research.

Dynamic characterization enables prediction of dy-
namic behavior. To test the ability of our modeling
framework to predict dynamic behaviors, we measured
the R33-S175 double receiver circuit in a regime previ-
ously not encountered in the training phase. The HSL
treatments were applied at different times τ after the
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Fig. 4. Maximum-likelihood performance of dynamic characterization. Direct and ratiometric dynamic characterization was applied sequentially to synthetic gene circuits
implementing (A) no expression (Auto), (B) constitutive expression (PRPR), (C) induced expression of HSL signals (DR), (D) relayed induced expression using HSLs (Relays),
(E) arabinose-inducible expression (Inducer ) and (F) disrupted HSL-inducible expression via arabinose-induced HSL degradation (AiiA). (G) Aggregated maximum likelihood
score across A–F. (H) Maximum likelihood score of dynamic characterization applied simultaneously to the aforementioned circuits. In all cases, 5 different hypotheses about
the dynamics of the gene expression capacity function were explored (see Table 1 for details).

initialization of the assay and the commencing of mea-
surement. This allowed us to observe how otherwise
untreated cells respond to step-like perturbations. As
expected, there was a lag induced in the accumulation
of eYFP and eCFP expression (Fig. 5).

To quantify the predictive capability of each model
hypothesis, we ran step 1 (and step 2 for ratiometric) of
the dynamic characterization method. We then prop-
agated the cell density parameters (and gene expres-
sion capacity parameters as appropriate) to a target
phase. However, in the target phase, rather than run-
ning MCMC-based parameter inference, we sampled
the marginal parameter posterior distributions to pro-
duce a posterior predictive distribution (see Methods).
We chose to marginalize at this point, as opposed to
sampling from the joint posterior of the double receiver
inference results. This is because in general, we would
seek to predict circuits where the underlying parame-
ters were characterized across a range of other circuits,
which means that in this method, the statistical correla-
tions would be unavailable for sampling. Marginaliza-
tion will introduce an approximation error, most likely
resulting in greater uncertainty, and so using it here
provides a conservative estimate of the uncertainty in
the predictive distribution. We also marginalized the
parameter posteriors for predicting based on the simul-
taneous method, for fairness.

We performed two analyses of the posterior predic-
tive distribution. First, we calculated the log-likelihood
for each sample, and summarized these distributions
for each model hypothesis considered (Fig. 5A). We
then plotted the distribution of dynamical behaviors
of the predictions for a selection of hypotheses. In
Fig. 5B, we show the TargetSwitch hypothesis for the
sequential application of direct dynamic characteriza-
tion, which achieved a tight posterior predictive distri-
bution. In this case, the general trend of most of the
data is well reproduced. In Fig. S27, we show the Tar-
getSwitch hypothesis again, but inferred from the si-
multaneous application of ratiometric dynamic charac-
terization. Here, the predictions show a feature not ex-
hibited by the measurements, which is that eYFP ex-
pression increases faster in the delayed HSL treatment
case of τ = 4.82 h, whereas the measurements show sig-
nificantly reduced expression compared with τ = 0 h
and τ = 2.5 h. We found that this was due to the ra-
tiometric control (mRFP1 measurements) showing in-
creased expression, which led to higher values of the
rc parameters, which when propagated to the dou-
ble receiver model, result in higher rates of eYFP and
eCFP production (Fig. S28).

Software implementation. Our method has been im-
plemented in a dynamic characterization (DC) soft-
ware package that enables a convenient specification of
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Fig. 5. Prediction of unseen data. The predictive capabilities of each model are compared against data measuring the R33-S175 double receiver device in response to
HSL treatment at different time-points. A. The posterior predictive distribution is quantified for ratiometric and direct dynamic characterization, both using the graph-based and
simultaneous methods, for the 5 hypotheses about the dynamics of gene expression capacity. The box-plots indicate the interquartile range of samples from the marginalized
parameter posteriors. The red plus symbols indicate the means of each distribution. B. Comparison of the posterior predictive distribution for the TargetSwitch model using
the direct graph method. In each column, the HSL treatment is indicated at the top, and in each row the time of HSL addition is noted on the left. eYFP and eCFP data are
shown as thick darker lines (yellow and cyan respectively), with model simulations depicted as the mean (thin solid lines) and 95% credibility intervals as the shaded region.

model hypotheses using domain-specific programming
languages genetic engineering of living cells (GEC) and
chemical reaction networks (CRN). Software tools em-

ploying these languages already incorporate MCMC-
based parameter inference for CRNs that are simulated
under ODE semantics, and have been used in other
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research (30, 31). Here, we implemented an inference
graph framework that supports both simultaneous and
sequential dynamic characterization, and incorporated
this into the GEC software tool. We also developed a
wrapper program that can extract time-series data from
a format that is produced from BMG plate-readers, and
sub-select those wells that contain measurements for a
device of interest. This enables a user to specify which
devices they are interested in, provide links to the avail-
able data, and to generate and evaluate a set of in-
ference problems that implements dynamic character-
ization methods. After each phase of the method, re-
sults files are written that enable the computation to be
paused and resumed (check-pointing), so that a depen-
dency graph can be navigated conveniently. Detailed
information about how to use the dynamic characteri-
zation software is provided in Supplementary Informa-
tion Section S1.

Discussion
Quantitative biological knowledge is difficult to sys-
tematize as it is not always clear how each measured
quantity relates to others when factors such as genetic
context and measurement techniques vary between ex-
periments. Mathematical models provide a framework
for explicitly encoding those relationships, allowing an
internally consistent body of knowledge to be built,
even when the systems being investigated are too large
and complex to reason about directly. The use of math-
ematical models to make design decisions in the con-
struction of synthetic gene circuits has been a central
goal of the field of synthetic biology since its inception
(6, 7). To make this a viable approach, methods are re-
quired that allow the parameters of models to take on
values that cause models to match experimental data
and thereby encode the quantitative biological knowl-
edge gained by conducting experiments.

Our methods allow us to build increasingly com-
plex genetic circuits by reusing genetic parts in new
contexts and predicting their behavior by encoding our
knowledge from previous experiments in mathematical
models parameterized by the data from those experi-
ments. By taking a Bayesian approach we also capture
our uncertainty about the values those parameters can
take and we can use that uncertainty measure to deter-
mine which experiments to perform next.

Dynamic characterization methods allow for quantita-
tive understanding of inherently time-varying circuits
such as HSL senders and degraders. Most methods
that characterize reporter gene expression assume the
reporter to be in a steady state due to production, di-
lution, and degradation. While this simplification can
be justified in many synthetic circuits, it is distinctly
unsuitable for circuits that produce or degrade inter-
cellular signals while responding to those signals. In
a culture of one of these circuits, the population of

cells will be growing and continuously producing (or
degrading) signal, meaning that the signal concentra-
tion, and the resultant reporter expression in response,
will be changing throughout the experiment. Our ap-
proach was designed to capture these dynamic effects
and therefore allows a direct quantitative characteriza-
tion of these circuits for the first time.

In our experiments with the HSL degrading en-
zyme AiiA, inducing expression even at fairly moder-
ate levels in combination with a receiver circuit results
in strong effects on growth and gene expression capac-
ity (Figs. S22 & S24). These effects mean attempting
to determine the efficacy of degradation under vari-
ous induction conditions directly from the raw data is
extremely difficult. By applying our method, which
can take into account both a decreased growth rate
and altered gene expression capacity, we learn the rate
at which HSLs are degraded for a particular level of
expression of AiiA, which is consistent with both the
PBAD induction measured with a YFP reporter and
with our characterization of the receiver device.

Sequential versus simultaneous inference. Our infer-
ence graph methodology supports both sequential and
simultaneous inference, where simultaneous inference
involves running a single inference problem over all cir-
cuits simultaneously. There are benefits and drawbacks
to each.

Sequential inference enables scalable parameter in-
ference with respect to a growing collection of genetic
circuits and associated measurements. This is particu-
larly important for circuits with large numbers of pa-
rameters, including culture-specific parameters that ac-
count for variations in cell growth and gene expres-
sion capacity. Sequential inference is achieved by prop-
agating marginal parameter posteriors of one infer-
ence problem as the priors of another, for example us-
ing truncated Gaussian distributions (Fig. 1B-D), or by
propagating maximum likelihood parameter estimates
directly. Performing inference sequentially in multi-
ple phases allows each phase to be computationally
tractable. Since scientific investigation proceeds in it-
erations of hypothesis formulation and testing, sequen-
tial inference provides a practical solution for updating
model parameters as new data arrive. In contrast, si-
multaneous inference can only incorporate new data by
re-running inference over all existing data for all exist-
ing circuits. This becomes intractable as the number of
circuits increases, due to the increased number of mod-
els to simulate and the number of samples needed for
convergence.

Sequential inference enables model simulations to
more closely match experimental observations, since
there is flexibility of parameters between circuits. How-
ever, this increased flexibility comes at the cost of in-
creased uncertainty, which we observed to be greater
in the posterior predictive distribution of unseen data
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(Fig. 5A). In contrast, simultaneous inference requires
parameter values to be identical across all datasets,
which can sometimes be difficult to reconcile.

Simultaneous inference enables parameters shared
between multiple genetic circuits to be identified in
a non-biased way. In contrast, sequential infer-
ence introduces two approximation errors, the first
through marginalization of the posterior parameter dis-
tributions, and the second through approximation of
these marginals with truncated Gaussian distributions,
which may not be the optimal choice of parametric
distribution in some cases. Therefore, one must be
careful to only marginalize over MCMC chains that
have reached the same local maximum of the likelihood
function, and discard those stuck in other local maxima.
In the case of propagating maximum likelihood esti-
mates for parameters, such as cell growth and gene ex-
pression capacity, this leads to an under-representation
of parameter uncertainties, which can in turn lead to in-
accuracies in a Bayesian treatment of the target phase.

Open versus closed loop modeling. Our models of
genetic circuits assume a particular level of abstrac-
tion for describing the time-evolution of constituent
components, by describing transcription and transla-
tion explicitly but ignoring host cell machinery (RNA
polymerase, ribosomes, proteases, etc). More detailed
models could offer an alternative starting point, but
without measurements corresponding to careful ma-
nipulation of the host machinery, such models are
likely to contain non-identifiable parameters and mis-
specifications. Without explicit consideration of host
cell resources, the way we have chosen to account for
the feedback burden of circuit activity is open loop:
each culture is modeled with independent parameters
quantifying the rates of cell growth and gene expres-
sion. By breaking the loop in this way, our approach
removes the need to speculate on the functional form
of the feedback between a genetic circuit and the host
cell. Such speculation would increase the complexity
of models and increase the possibility of the feedback
models compensating for misfits in the genetic circuit
models, with poor mechanistic justification. Greater
mechanistic understanding of the interaction between
synthetic genetic circuits and cellular burden would
likely improve both parameterizations and predictions,
but in the absence of such insight, open-loop arrange-
ments such as the one proposed here might be prefer-
able to truly closed-loop feedback models.

There are drawbacks of this kind of simplification,
however. Most notably, transient changes in burden
that are associated with changes in circuit activity may
not be captured. This is the situation encountered in
experiments with timed addition of HSL. In these ex-
periments we might expect burden to increase dramat-
ically at the point in time that HSL is added to the cul-
ture. A predefined function for gene expression capac-

ity will not objectively take into account this switch in
feedback burden. Indeed, the direct dynamic character-
ization method, which has no inter-culture variability
in gene expression capacity, produces a better fit to the
timed addition experiment (Fig. 5). Curiously, the RFP
signal in these experiments is larger in later treatments
but still well fit by a constant gene expression capacity
Fig. S28, which is not necessarily predicted by simple
intuitions about the timing of burden. We also found
that the direct dynamic characterization method scored
more highly than the ratiometric method for PRPR, the
Relays and sometimes the double receiver, suggesting
that gene expression capacity is not well accounted for
by the ratiometric control in certain cases. One possi-
bility is that in general, chromosomal gene expression
might differ from plasmid-derived gene expression. Al-
ternatively, it might be that different circuits induce dif-
ferent burdens on their hosts, which may or may not be
observable in a single ratiometric control signal.

Related and future work. Recent years have seen rapid
improvement in Bayesian inference methodologies.
Harnessing such improvements is a promising avenue
for improving the scalability of genetic circuit charac-
terization. For example, using stochastic gradient de-
scent can enable more efficient approximate Bayesian
inference (32). Beyond this, making explicit approxi-
mations about the distributions of parameter uncertain-
ties (e.g. variational inference) can lead to efficient and
more scalable inference schemes in the context of ODEs
(33).

The simple gene expression capacity functions we
considered do not fully capture the complexity of the
metabolic shift that occurs in the transition of a cell cul-
ture from exponential to stationary phase. This is evi-
denced by their inability to exactly match the shape of
the eCFP and eYFP time courses. Future work could
improve this fit by including more mechanistic under-
standing about the way gene expression is affected by
metabolic shifts, or by taking a more ’black box’ ap-
proach to generating a functional form that best fits the
data (33). Machine learning approaches that combine
mechanistic models where such mechanism is known
with learned functions that describe unknown mecha-
nisms seem uniquely suited for this kind of problem.

Previous methods that characterize reporter gene
expression typically assume the reporter to be in a
steady state due to production, dilution, and degrada-
tion. While this simplification can be justified in many
synthetic circuits, it is distinctly unsuitable for circuits
that produce or degrade intercellular signals while re-
sponding to those signals. In a culture of one of these
circuits, the population of cells will be growing and
continuously producing (or degrading) signal, mean-
ing that the signal concentration, and the expression
of reporter responding to the signal, will be chang-
ing throughout the experiment. Our approach was
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designed to capture these dynamic effects, allowing a
quantitative characterization of these circuits for the
first time.

Our method allows us to build increasingly com-
plex genetic circuits by reusing genetic devices and pre-
dicting their behavior, and to encode our knowledge
from previous experiments in mathematical models pa-
rameterized by data from those experiments. By taking
a Bayesian approach we also capture our uncertainty
about those parameters values, and could in future use
this uncertainty to determine the next experiments to
perform.

Methods

Measurement of synthetic gene circuits in a mi-
croplate fluorometer. Plate fluorometer assays were
conducted as previously described (27). Briefly,
overnight cultures of cells containing constitutive chro-
mosomal mRFP1 (27) and the plasmid construct of in-
terest were diluted 1:100, grown to an OD of approxi-
mately 0.5, then diluted 1:1000 into M9 supplemented
with 0.2% casamino acids and 0.4% glucose. 200µl of
culture was aliquoted into each well and measurements
were taken every 10 min for 1,000-2,000 min in a BMG
FLUOstar Omega plate fluorometer. 3-oxohexanoyl-
homoserine lactone (C6-HSL, Cayman Chemicals) and
3-oxododecanoyl-homoserine lactone (C12-HSL, Cay-
man Chemicals) were dissolved to a concentration of
200 mM in DMSO then C6-HSL was diluted in supple-
mented M9 medium to the concentrations described,
while C12-HSL, due to its limited solubility in aque-
ous media, was first diluted 1:50 in ethanol then diluted
in supplemented M9 medium to the concentrations de-
scribed. A 1M arabinose (Sigma) stock solution was
made in water, filter sterilized, and diluted in supple-
mented M9 medium to the concentrations described.
HSL receiver and sender plasmids were previously de-
scribed in (27) and all other plasmids (summarized in
Table S1) were constructed using Gibson Assembly (34)
from parts obtained from the MIT Registry of Standard
Biological Parts (http://parts.igem.org).

Observer process. Because the microplate reader mea-
surements monitor a whole culture growing over time,
the observed fluorescence measurements are a sum of
the single cell fluorescences in the culture. However,
our models of synthetic gene circuits describe intra-
cellular interactions, and therefore describe concentra-
tions within each cell. Therefore, to compare the mod-
els with bulk fluorescence data, we use a nonlinear ob-
server process. For each wavelength w, we describe
bulk fluorescence variables as

B610 = ([RFP])× c + Bback
610

B480 = ([CFP] + [F480])× c + Bback
480

B530 = ([YFP] + [F530])× c + Bback
530

(4)

where [Fw] is the per-cell autofluorescence at wave-
length w, c is cell density (as above), and Bback

w is
the constant background fluorescence at wavelength w.
We use [RFP], [CFP] and [YFP] to denote the (mod-
elled) intracellular concentrations of mRFP1 , eCFP and
eYFP respectively. Following these definitions, it re-
mains to describe how to model the cell density (c) and
the intracellular concentrations of fluorescent proteins
([RFP], [CFP] and [YFP]).

Modeling cell growth. We characterized the growth of
each culture in a microtiter plate separately, to explic-
itly capture acceleration and deceleration of growth in
response to variations in synthetic gene circuit activ-
ity and culture density. Absorbance measurements at
600 nm enable quantification of the optical density over
time (OD600), providing a measure that is proportional
to cell density (35).

To model cell density, we use the general equation

ċ = γ(c;ρ).c (5)

where γ(c;ρ) is the specific growth rate function that is
parameterized by ρ. For the lag-logistic model, γ is de-
fined by

γ(c;ρ) =

{
0, t < tlag

r
(

1− c
K

)
, t ≥ tlag

(6)

Here r is the per capita culture growth rate, K is the car-
rying capacity representing the maximum culture den-
sity and tlag is the duration of the lag phase of bacterial
growth. Accordingly, the parameters of cell growth for
circuit i and culture j are given by ρij = {rij,Kij, tlag,ij}.
The time-evolution of c(t) depends also on the initial
cell density, c0 := c(t = 0), which is fixed to the intended
dilution factor (0.2%) during preparation of the assay.
In the measured OD600 signal, there is a non-cellular
background signal, which we parameterize as a plate-
level shared parameter xb. As a closed-form solution
exists for the lag-logistic model, we can simply model
the time evolution of the OD signal in well i as

x̂ij(t) =
Kije

rij(t−tlag)c0

Kij − c0 + erij(t−tlag,ij)c0
+ xb (7)

By assuming that the initial cell density is small, we
have that ci(0) ≈ 0, and so the background absorbance
measurement will be approximately equal to the initial
absorbance measurement. Therefore, we identify the
parameter xb as the average over the first time point of
the OD signal in each well.

This leaves the identification of the well-specific pa-
rameters as a set of inference problems in which we
seek to minimize the deviation between the data (xk)
and simulation (x̂(tk)). To obtain parameter estimates,
we assume that the deviation between data and simu-
lation is Gaussian-distributed with standard deviation
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σ. We seek to maximize the log-likelihood of producing
the data in well i with parameters ρi

max
ρi
{L(ρi)} (8)

where L(ρi) is the sum of the log-probabilities of
Gaussian observations for xk − x̂k(ti), with vari-
ance σ2. For simple optimization problems over
few parameters, it is possible to obtain good per-
formance (both reliability and efficiency) using di-
rect search methods such as the Nelder-Mead sim-
plex algorithm (36). Here, we used the implemen-
tation in MathNet.Numerics (http://numerics.
mathdotnet.com/) throughout this study for cell
growth characterization.

Control phase model derivation. We describe constitu-
tive production of mRFP1 mRNA, followed by transla-
tion and fluorescent protein maturation by the follow-
ing CRN:

gRFP
km−→ gRFP + mRFP

mRFP
kp−→ mRFP + iRFP

iRFP kmat−−→ RFP

mRFP
dm+γ(c)−−−−−→ ∅

iRFP
dRFP+γ(c)−−−−−−→ ∅

RFP
dRFP+γ(c)−−−−−−→ ∅

(9)

where km, kp and µR are transcription, translation and
maturation of mRFP1 respectively, γ is the rate of dilu-
tion, and dm, dRFP are degradation rates of mRNA and
(mRFP1 ) protein.

From the reaction set in (Eq. 9), we can write down
corresponding ordinary differential equations for the
time evolution of the concentrations of each molecule,
assuming mass action kinetics as follows:

˙[mRFP] = km − (dm + γ(c))[mRFP]

˙[iRFP] = kp[mRFP]− (dRFP + γ(c) + µR)[iRFP] (10)
˙[RFP] = µR[iRFP]− (dRFP + γ(c))[RFP]

The dynamics of transcription and mRNA turnover are
usually faster than translation and protein turnover,
and therefore a separation of timescales argument can
be applied to simplify the model equations (Eq. 10) as
[mRFP]

∗ ≈ km/dm+γ. By further assuming that the mRNA
dynamics are faster than dilution, the above expression
becomes constant, and can be incorporated into a single
quantity incorporating the mRNA equilibrium and the
translation rate kp.

˙[iRFP] = kc − (dRFP + γ(c) + µR)[iRFP] (11a)
˙[RFP] = µR[iRFP]− (dRFP + γ(c))[RFP] (11b)

If the maturation time is faster than the turnover
time for the fluorescent proteins, then an even simpler
model can be derived:

˙[RFP] = aRFP − (dRFP + γ(c))[RFP] (12)

where aRFP incorporates transcription, translation, flu-
orescent protein maturation and mRNA degradation
rates. Since these factors are might be modulated by
the growth phase and metabolic status of cell, aRFP can
be considered to represent the gene expression capac-
ity, as introduced above. Accordingly, we introduce the
open loop parameterization of the control circuit as

˙[RFP] = hC(c)− (dRFP + γ(c))[RFP] (13)

where gene expression capacity hC(c,ξij,φ) is parame-
terized by culture-specific parameters ξij and global pa-
rameters φ (see Table 1 for options). The effect of dilu-
tion is described by the specific growth rate γ(c) (Eq. 6)
and represents the decline in concentration as the vol-
ume of cells increases. Since we have characterized cell
growth for each culture, we can use this to accurately
model culture-specific dilution.

Target phase models. Here, we summarize the derived
equations for each (target phase) circuit considered in
this study. Full derivation of these models can be found
in Supplementary Information Section S2.

Auto . The model of autofluorescence assumes that
each cell produces material autofluorescent at the
wavelengths corresponding to YFP and CFP measure-
ment, and is subject to growth dilution in the usual way.

˙[F530] = hT(c).a530 − γ(c).[F530] (14a)
˙[F480] = hT(c).a480 − γ(c).[F480] (14b)

Constitutive . The model of the Constitutive circuit in-
corporates autofluorescence (Eq. 14) and the following
equations describing constitutive expression, degrada-
tion and growth dilution of eYFP and eCFP .

˙[YFP] = hT(c).aPR
YFP − (dYFP + γ(c)).[YFP] (15a)

˙[CFP] = hT(c).aPR
CFP − (dCFP + γ(c)).[CFP] (15b)

Receivers . The receivers are a collection of 4 differ-
ent circuits which differ in their ribosome binding sites
upstream of LuxR and LasR expression. Accordingly,
their models all have the same structure, but use RBS-
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specific parameters for LuxR and LasR synthesis.

˙[R] = hT(c).aR − (dR + γ(c)).[R] (16a)
˙[S] = hT(c).aS − (dR + γ(c)).[S] (16b)

˙[CFP] = hT(c).aP76
CFP. f76([C6], [C12], [R], [S]) (16c)

− (dCFP + γ(c)).[CFP]
˙[YFP] = hT(c).aP81

YFP. f81([C6], [C12], [R], [S]) (16d)
− (dYFP + γ(c)).[YFP]

As above, the full models also incorporate the autoflu-
orescence equations (Eq. 14).

Relays . Two relay circuits are considered that each
extend the R33-S175 Receiver circuit. The relay device
P76-LasI expresses the C12 synthase LasI in response
to C6 (via the P76 promoter), while the P81-LasI device
expresses the C6 synthase LuxI in response to C12 (via
the P81 promoter). Accordingly, their models have a
common structure

˙[L] = hT(c). fk([C6], [C12], [R], [S]) (17a)
− (dL + γ(c)).[L]

˙[C12] = k′C12.c.[L] (17b)

where k is P76 or P81, and L represents LuxI or LasI.
Combining these equations with the equations for the
R33-S175 circuit completes the description.

Inducer . Arabinose-inducible expression of YFP uses
a Hill regulation function fPBAD, with a maximal tran-
scription rate that differs from maximal transcription of
YFP of other promoters.

˙[YFP] = aPBAD
YFP . fPBAD(Ara)− (dYFP + γ(c)).[YFP] (18)

Combining these equations with the Auto circuit model
completes the description.

Degrader. The model of Arabinose-inducible AiiA
uses the same Hill function as for the Inducer circuit,
but maximal production of AiiA is divided out, as its
concentration is not observed.

˙[A] = fPBAD(Ara)− (dA + γ(c)).[A] (19a)

˙[C6] = −dA6.c.
[A].[C6]

1 + KA6.[C6] + KA12.[C12]
(19b)

˙[C12] = −dA12.c.
[A].[C12]

1 + KA6.[C6] + KA12.[C12]
(19c)

Combining these equations with the equations for the
R33-S175 circuit completes the description.

Markov chain Monte Carlo. In both the control phase
and the target phase, we seek to infer the parameters
of ODE models, given some observational data. For
notational convenience, we define θ to be the vector

of parameter values sought. In contrast to the opti-
mization procedure in the cell growth phase, we use
Markov chain Monte Carlo (MCMC) methods because
we found that the Nelder-Mead algorithm performed
poorly for inference problems over many parameters,
frequently getting stuck in sub-optimal global optima
of the cost function. MCMC methods are able to reduce,
but not completely remove, the impact of this problem.
MCMC methods also have the advantage of character-
izing the uncertainty of parameter estimates, which can
arise from several sources: measurement error, process
error (molecular stochasticity) and model misspecifica-
tion.

We used the Metropolis-Hastings algorithm as im-
plemented in the Filzbach software (http://www.
github.com/predictionmachines/filzbach) to
perform MCMC parameterizations. This requires spec-
ifying a function that evaluates the log-likelihood score
for a candidate parameter set θ, and prior distributions
of each parameter, which encode our prior belief of its
plausible values.

If we denote by yw,i,j the bulk fluorescence measure-
ments at wavelength w (w ∈ {480,530,610}) in well i
(i = 1, . . . ,nc) at time-points tj (j = 1, . . . ,nt), then we can
define a log-likelihood function for wavelength w as

Lw(θ) = log p(yw|θ)

= −
nc

∑
i=1

nt

∑
j=1

(B(i)
w (tj)− yw,i,j)

2

2σ2 − ncnt log(σ
√

2π)

where nc is the number of cultures (wells in the 96-well
plate). In the control phase, we simply use L610 as the
complete likelihood function, while in the target phase
we use L480 + L530 when both eCFP and eYFP reporters
are present in a circuit, and just one term otherwise.
The parameter σ describes the standard deviation of the
data. Here, we infer σ during application of MCMC.

Prior distributions encode our prior belief about the
values of parameters. When characterizing a variable
that has not previously been used in a model before, it
can be difficult to know how to set the prior, so in this
case we use a uniform distribution with wide bounds.
This prevents the MCMC sampler from being swayed
by an inappropriate value. When a parameter has been
seen in another analysis, we propagate the marginal
posterior from the previous analysis as a prior. To do
this, we use truncated Gaussian distributions, where
the mean and standard deviation are calculated from
the previous MCMC samples, and the bounds are taken
as the uniform prior bounds of that same analysis.

Computing the posterior predictive distribution. To
evaluate a model against unseen data, we approximate
the posterior predictive distribution of the data, given
our best estimates of the distributions of the models
parameters. To do this, we formulate a model of the
synthetic gene circuit being measured. In this article,
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we show calculations for the posterior predictive dis-
tribution of a circuit for which the parameters have al-
ready been characterized, so all are specified as trun-
cated Gaussians, as described above. The predictions
are formed by applying the cell growth phase and con-
trol phase as appropriate for dynamic characterization,
but for the target phase we integrate over the prior.
Accordingly, we approximate p(y′|y) by marginalizing
over the posteriors of p(θ|y) to give approximate priors
πθ and then producing Monte Carlo samples θk ∼ πθ ,
as

log p(y′|y) = log
∫

p(y′|θ)p(θ|y)dθ

≈ 1
N

N

∑
k=1

log p(y′|θk)
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