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Abstract  

An unmet clinical need in solid tumor cancers is the ability to harness the intrinsic spatial 

information in primary tumors that can be exploited to optimize prognostics, diagnostics and 

therapeutic strategies for precision medicine. We have developed a transformational spatial 

analytics (SpAn) computational and systems biology platform that predicts clinical outcomes and 

captures emergent spatial biology that can potentially inform therapeutic strategies. Here we 

apply SpAn to primary tumor tissue samples from a cohort of 432 chemo-naïve colorectal cancer 

(CRC) patients iteratively labeled with a highly multiplexed (hyperplexed) panel of fifty-five 

fluorescently tagged antibodies. SpAn predicted the 5-year risk of CRC recurrence with a mean 

area under the ROC curve of 88.5% (SE of 0.1%), significantly better than current state-of-the-art 

methods. SpAn also inferred the emergent network biology of the tumor spatial domains revealing 

a synergistic role of known features from CRC consensus molecular subtypes that will enhance 

precision medicine. 

Main 

Colorectal Cancer (CRC) is the second most common type of cancer and the third leading cause of 

cancer-related deaths worldwide.1  This multi-factorial disease like other carcinomas, develops 

and progresses through the selection of epithelial clones with the potential to confer malignant 

phenotypes in the context of a reciprocally coevolving tumor microenvironment (TME)  comprising 

immune and stromal cells.2–4 CRC patients are staged using the well-established tumor-node-

metastases (TNM) classification.5,6  However, there is significant variability in patient outcomes 

within each stage. For example, CRC will recur in up to 30% of Stage II patients despite complete 
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tumor resection, no residual tumor burden and no signs of metastasis.7 In contrast, more 

advanced CRC has been known to show stability or indeed even to spontaneously regress.7,8  

The intrinsic plasticity of the TME underlying this variability in outcome is controlled by 

complex network biology emerging from the spatial organization of diverse cell types within the 

TME and their heterogeneous states of activation.3,9–11 The important role of the TME in CRC 

progression and recurrence has recently been highlighted by the identification of four consensus 

molecular subtypes (CMS) 12,13, functional studies defining the critical role of stromal cells in 

determining overall survival,14  and the development of Immunoscore®14 which quantifies tumor-

infiltrating T-lymphocytes in different regions of the tumor and associates their infiltration with 

CRC recurrence.15,16 However the TME can be further harnessed to significantly improve CRC 

prognosis through the identification of biomarkers mechanistically linked to disease progression 

and the development of novel therapeutic strategies.  

Deeper understanding of the TME may arise from  imaging methods capable of labeling > 

7 cellular and tissue components in the same sample (hyperplexed17 (HxIF) fluorescence and other 

imaging modalities).17–21 To fully extract the intrinsic information within each primary tumor we 

have developed a spatial analytics (SpAn) computational and systems pathology platform 

applicable to all solid tumors to analyze the spatial relationships throughout TME signaling 

networks.  SpAn constructs a computationally unbiased and clinical outcome-guided statistical 

model enriched for a subset of  TME signaling networks that are naturally selected as 

dependencies of the corresponding malignant phenotype.22–25 Herein we describe the 

implementation of SpAn to predict 5-year risk of CRC recurrence in patients with resected primary 

tumor that also enables inference of recurrence-specific network biology.  
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Results 

Hyperplexed immunofluorescence imaging of tissue microarrays generates multidimensional 

spatial proteomics data with sub-cellular resolution 

The acquired data were generated using GE Cell DIVETM previously named MultiOmyx20 (GE 

Healthcare, Issaquah, WA) hyperplexed17 immunofluorescence (HxIF) imaging and image 

processing workflow instrument. As previously described,20 Cell DIVETM can perform hyperplexed 

imaging of greater than 50 biomarkers via sequentially multiplexed imaging of 2 to 3 biomarkers 

plus DAPI nuclear counterstain through iterative cycles of label–image–dye-inactivation visualized 

in Supplementary Fig. S1.20 (See Methods for more details.) Extensive validation of this approach 

has demonstrated that a majority of epitopes tested are extremely robust to the dye inactivation 

process. The biological integrity of the samples were preserved for at least 50 iterative cycles.20  

In this study we use 55 biomarkers, which include markers for epithelial, immune and 

stromal cell lineage, subcellular compartments, oncogenes, tumour suppressors, and 

posttranslational protein modifications indicative of cellular activation states. Their role in CRC is 

described in detail in Supplementary Table S1. Figure 1a shows the HxIF image stack of a 5 µm 

thick and 0.6mm wide tissue microarray26 (TMA) spot from resected primary tumor of a Stage II 

CRC patient labelled with the 55 biomarkers plus DAPI. Figure 1b highlights a sub-region of this 

patient TMA spot enabling optimal visualization of the 55 HxIF biomarker images resulting from 

the iterative label–image–chemical-inactivation cycles.  

Cell DIVETM was employed to generate HxIF image stacks of FFPE tissue microarrays from 

resected tissue samples from 432 chemo-naïve CRC patients at single cell resolution. This 55-
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dimensional spatial profiling of the patient-level tumor microenvironment served as input in our 

study. The 432 retrospectively acquired chemo-naïve CRC patient cohort included patients in 

Stage I through Stage III of CRC primary tumor growth between the years of 1993 and 2002 

acquired from Clearview Cancer Institute of Huntsville Alabama. As shown in Supplementary Table 

S2, the median patient age and gender proportions were similar across all stages, with CRC 

recurring in 65 patients. The outcome distribution of the patients and their clinical attributes 

across the CRC stages are detailed in Table S2. The use of chemo-naïve (no administration of 

neoadjuvant or adjuvant therapies for the 5+ years of follow-up) CRC patient cohort provides SpAn 

the opportunity to interrogate unperturbed primary tumor biology. 

 SpAn uses HxIF spatial proteomics data to learn recurrence-guided and spatially-informed 

prognosis of CRC recurrence 

 SpAn performs a virtual three-level spatial-dissection of the tumor microenvironment, by first 

explicitly decomposing the TMA into epithelial and stromal regions as detailed in Methods and 

illustrated in Fig. S2. The cells in the epithelial region are identified using E-cadherin cell-cell 

adhesion labeling and pan-cytokeratin, with individual epithelial cells segmented using a 

Na+K+ATPase cell membrane marker, ribosomal protein S6 cytoplasmic marker, and DAPI-based 

nuclear staining. The resulting epithelial spatial domain of the TMA in Fig. 1a is shown in Fig. 1c. 

The remaining cells are assigned to the stromal domain and are visualized in Fig. 1d. These stromal 

cells have diverse morphologies.20 Based on the epithelial and stromal domains, SpAn also 

identifies a third epithelial-stromal domain, shown in Fig. 1e, to explicitly capture a 100 µm 

boundary  wherein the stroma  and malignant epithelial cells interact in close proximity. Together 

these three intra-tumor spatial domains comprise the virtual three-level spatial dissection of the 
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tumor microenvironment that forms the basis for the SpAn spatial model overviewed in Fig. 1f and 

detailed in Fig. 2.  

Utilizing expression of the 55 hyperplexed biomarkers, SpAn first computes the 

corresponding 55 mean intensities and 1485 Kendall rank-correlations as features characterizing 

each of the three spatial domains (see Fig. 2a). The mean intensity captures the average domain-

specific expression profile of each biomarker, while the Kendall rank-correlations27 measure 

strength of association between any two biomarkers without presuming linearity. (See Method 

for details.) Importantly, computation of domain-specific rank-correlations as explicit features for 

SpAn is used in place of  the more typical approach of implicitly incorporating correlations as 

interactions between covariates (average biomarker expressions) within the prediction model28.  

These explicit features not only detect the association between two biomarkers presumably 

mediated by intracellular and intercellular networks all within the same spatial domain but also by 

mediators (e.g., exosomes) derived from another spatial domain. As an example, SpAn finds 

enrichment of KEGG ‘microRNAs in cancer’ pathway in the epithelial and epithelial-stromal 

domains (Figure 5), while concurrently selecting correlation between CD163 and PTEN as a feature 

in the stromal domain for recurrence prognosis (see Fig. 2c). As has been reported in 

gastrointestinal cancers, tumor cell derived exosomal miRNAs mediate crosstalk between tumor 

cells and the stromal microenvironment, and induce polarization of the macrophages to the anti-

inflammatory and tumor-supportive M2 state via activation of the PTEN-PI3K signaling cascade 

under hypoxic conditions resulting in enhanced metastatic capacity.29,30  

SpAn then uses CRC recurrence-guided learning to determine  those specific spatial 

domain features that constitute the optimal subset for prognosis via model selection based on L1-
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penalized Cox proportional hazard regression method (Figure 2b).31,32 See Methods for details on 

penalized regression,   Fig. S3 for validity of the proportional hazard assumptions, and Figure S4 

for determination of threshold for concordance with recurrence outcome. A follow-up analysis of 

the selected features is performed to test the stability of their contribution to recurrence 

prognosis through testing the stability of the sign of the corresponding coefficients at the 90% 

threshold. The final domain-specific features are shown in Fig. 2c with additional details described 

in Methods. 

The coefficients that control the contribution of the selected features to each of the 

domain-specific models for assessing recurrence outcome were learned under L1 penalization and 

their values are, therefore, dependent on all 1540 features. To remove this dependence, SpAn 

relearns each of the three domain-specific model coefficients using L2 penalty in our penalized 

Cox regression model with only the optimally selected features as input. This L2-regularized 

learning allows SpAn to estimate optimal contribution of the selected features that are 90% 

concordant with the recurrence outcome. The resulting domain-specific coefficients are shown in 

Supplementary Fig. S5. As detailed in Methods, SpAn combines these domain-specific features 

weighted by their corresponding coefficients into a single recurrence guided spatial domain 

prognostic model, whose performance is shown in Fig. 3a. The results were obtained by 

bootstrapping (sampling with replacement) patient data set to generate 500 pairs of independent 

training and testing sets using stratified sampling that ensured the proportion of patients in whom 

cancer recurred in each of the five years remained the same in each bootstrap. For each bootstrap, 

SpAn used the training data for learning and the independent testing data to compute the receiver 

operating characteristic (ROC) curve. These ROC curves are shown in Fig. 3a along with the mean 
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ROC curve. The mean area under the curve (AUC) for bootstrapped ROC curves is 88.5% with a 

standard error of 0.1%, demonstrating the stable performance of SpAn. We also maximized 

Youden’s index33 to identify the clinically relevant operating point on the ROC curves that 

minimized the overall misdiagnosis rate. Figure 3b shows the resulting sensitivity and specificity 

values for all bootstrap runs, with mean values respectively of 80.3% (standard error of 0.4%) and 

85.1% (standard error of 0.3%). High specificity limits SpAn from misidentifying no-evidence-of-

disease patients as being at high risk of CRC recurrence, while at the same time good sensitivity 

allows SpAn to not miss high-risk patients. This is emphasized by a high positive likelihood ratio 

value of 7.2 (standard error of 0.23), which quantifies the large factor by which odds of CRC 

recurring in a patient go up, when SpAn identifies the patient as at being risk of CRC recurrence. 

At the same time a small negative likelihood value of 0.22 (standard error of 0.003) quantifies the 

decrease in odds of CRC recurrence in a patient when SpAn identifies the patient as being at low-

risk. Finally, these results are brought together in Fig. 3c, which show the large separation in 

recurrence-free survival curves of patients identified by SpAn at low- and high-risk of five-year CRC 

recurrence. 

Validating the rationale behind SpAn 

The rationale behind our ‘virtual-dissection followed by combination of the three specific 

spatial domains’ approach is motivated by the acknowledged active role of the microenvironment 

and its spatial organization, and the differential role played by the epithelial and stromal domains 

in tumor growth and recurrence.2,3,14,34 We tested the validity of this rationale within the context 

of our data by comparing the performance of SpAn with the null model, which is based on 

recurrence-guided learning on the spatially undissected patient TMA spot. The learning procedure 
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for the null model was identical to the domain-specific learning within SpAn. Figure 3d shows the 

improvement in performance quantified by the AUC of the bootstrapped ROC curves achieved by 

SpAn over the null model. This improvement is statistically significant with a p-value less than 

0.005, allowing us to reject the null model at the 99% confidence level. The improved performance 

highlights the importance of explicitly modeling the epithelial and stromal spatial domains 

associated with the TME. Interestingly, beyond supporting our rationale, this comparative test 

shows that our approach of exploiting both biomarker expressions and their correlations results 

in  absolute performances of both the null model and SpAn  that are better than those from models 

using biomarker expressions alone, without correlations (Fig. S6) such as published state-of-the-

art approaches that include Immunoscore®.15,16  

SpAn is highly predictive of 5-year CRC recurrence for TNM Stages I-III in individual patients  

The ability to identify patients in whom CRC will recur, especially for those patients in Stages II and 

III of tumor progression is highly clinically relevant. Figure 3e shows that SpAn can consistently 

identify patients in whom risk of CRC recurrence is high for Stages I through III, with mean AUC of 

bootstrapped ROC curves for the three stages respectively being 82.1%, 89.4% and 88.6%. 

Standard error of these mean AUC values respectively is 0.4%, 0.2%, and 0.2%, demonstrating the 

stability of SpAn performance. Although the overall performance across all three stages is highly 

significant with the potential of improving prognosis, the relative reduction in Stage I performance 

is a consequence of a small cohort of only ten patients in Stage I with CRC recurrence.  

The ability of SpAn to predict risk of recurrence in individual patients from all three Stages, 

is relevant in the context of administering adjuvant therapy, especially for Stage II patients. Current 
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guidelines for treating Stage II CRC patients from The National Comprehensive Cancer Network 

(NCCN),35 the American Society of Clinical Oncology (ASCO),36 and the European Society of Medical 

Oncology (ESMO)37 do not recommend routine adjuvant chemotherapy for Stage II patients, but 

do state that it should be considered for sub-population of Stage II patients that are at higher risk 

and might benefit from being put on adjuvant therapy regimen.38 The personalized prognostic 

potential of  SpAn implies that we could triage Stage II patient cohorts into low and high-risk 

groups, with the latter being further considered for therapy. Furthermore, SpAn could help with 

postoperative surveillance of high-risk Stage II patients with more intensive follow-up regimes.39 

 While 20% to 30% of Stage II CRC patients are at high-risk of recurrence, there are Stage III 

patients that have good prognoses of stable 5-year recurrence-free survival.  SpAn, therefore, 

could also be used to fine-tune their postoperative surveillance and adjuvant chemotherapy 

regimens.  

Prognostic performance of SpAn remains stable over the 5-year time period 

A majority of CRC recurrence occurs in the first five years, with 90% occurring in the first 

four.40,41 We, therefore, consider the time-dependent performance42 of SpAn during the first five-

year period. Figure 3f plots the AUC for time-dependent ROC performance. The performance of 

SpAn in predicting risk of recurrence remains consistent and stable (95% confidence interval 

shown) with only a small, and gradual reduction in time-dependent AUC values as we move away 

from the resection and imaging timepoint. This result suggests SpAn captures the critical biological 

underpinnings of recurrence in the primary tumor. Supplementary Fig. S7 shows the time-

dependent AUCs for domain-specific temporal performance of SpAn. 
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SpAn identifies spatial domain networks as emergent properties that explain the robust ability to 

distinguish patients in which CRC recurs  

Given the highly prognostic performance of SpAn, we took a systems perspective to understand 

and to explain the underlying network biology responsible for this performance within each of the 

three spatial domains. For each domain, we quantified the unique associations between 

biomarkers included in the selected features through partial correlations between every 

biomarker pair, when controlling for other biomarkers as described in Methods.  This approach 

was performed for all patients. The resulting partial correlation for every biomarker pair was 

separated into two groups according to no-evidence-of-CRC and CRC-recurrence patient cohorts 

and the information distance based on Jensen-Shannon divergence43 was computed between 

them (see Methods for more details).  The resulting domain-specific distance matrices, shown in 

Figs. 4a-c, define associated graphs with the nodes being the biomarkers and edge weights 

quantifying the differential change, the information distance, in biomarker association between 

patients in which CRC recurred and those in which there was no evidence of recurrence. The 

stronger the weights, the larger the distance and the more significant the differential change in 

association between the two markers for the two patient cohorts. We defined the graphs 

generated by the distance matrices thresholded at the 99th percentile as the spatial domain 

networks that were most significant for CRC recurrence prognosis. Figures 4d-f show the resulting 

networks for the three spatial domains that reveal the heterogeneous nature of the cell 

populations and signaling pathways leveraged by SpAn in CRC recurrence prognosis.  

The epithelial-stromal domain network is comprised of three dominant sub-networks 

associated with tumor-invading T lymphocytes,44 disruption in DNA mismatch repair cellular 
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process, and the role of cancer associated fibroblasts (CAFs) in the desmoplastic 

microenvironment as indicated by the strong edge weight between smooth muscle actin (SMA) 

and collagen IV. CAFs are well known to promote EMT45 and the differential expression of beta-

catenin and phosphorylated-MET in Fig. 4f is also consistent with the epithelial-stromal domain 

supporting the mesenchymal phenotype.46 These features have also been identified with those 

distinguishing consensus molecular subtype (CMS) 4 that is associated with a poor prognosis in 

comparison to the other 3 subtypes in the transcriptome-based classification.12,13  Interestingly, 

the epithelial-stromal spatial domain also reveals the presence of DNA mismatch repair network 

that has been associated with regulation of T lymphocyte infiltration, a prominent feature of 

CMS1. Thus, the epithelial-stromal spatial domain associated with recurrence combines two 

features, where in contrast, each alone is associated with two different CMS subtypes. This theme 

extends to the epithelial spatial domain in Fig. 4d, where metabolic deregulation, a prominent 

feature of CMS3, and DNA mismatched repair, a hallmark of CMS1 are evident. The association of 

these two subnetworks in the epithelial domain has the potential to promote tumor cell growth 

while escaping immune surveillance. Finally, we observe a prominent tumor associated 

macrophage (TAM) network in the stromal spatial domain (Figure 4e). TAM polarization towards 

the M2 phenotype regulated by AKT/PTEN has been associated with poor prognosis in CRC that 

could result from their immunosuppressive and matrix remodeling phenotypes.30 

Spatial domain networks reveal domain-specific network biology of CRC-relevant pathways 

We used STRING47 and KEGG48 databases to identify pathways enriched by biomarkers within each 

of the spatial domain networks and further corroborate their connections to prominent features 

in the CMS subtype classification. Figure 5 shows the pathways enriched in each of the three 
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spatial domains, and further identifies those that are common to a majority of at least two of the 

three spatial domains. Since their identification is based on the spatial domain networks we 

computationally identified as significant for CRC recurrence prognosis, these pathways play a 

differentially important role in prognosis of CRC recurrence.  

CMS2 tumors are associated with chromosomal instability pathway and enrichment of 

genes associated with cell cycle and proliferation.  Interestingly, both Pi3k-Akt signaling and cell 

cycle pathways enriched in our analysis are associated with CMS2 tumor subtype, with almost 

60%-70% of CRCs associated with dysregulation of Pi3k-Akt signaling pathways.49  

Tumors associated with the CMS4 mesenchymal phenotype show upregulated expression 

of genes involved in epithelial-to-mesenchymal transition along with increased stromal invasion, 

angiogenesis and transforming growth factor-β (TGF-β) activation.12,13 Interestingly,  

proteoglycans in cancer, focal adhesion and microRNAs in cancer pathways enriched in our 

analysis enable the mesenchymal phenotype.  For example, non-coding microRNAs both regulate 

and are targets of upstream regulators for modulating the epithelial to mesenchymal phenotype 

by targeting EMT-transcription factors such as ZEB1, ZEB2, or SNAIL.50 Similarly, the focal adhesion 

pathway through the integrin family of transmembrane receptors mediates attachment to the 

extracellular matrix, and when dysregulated promotes cell motility and the mesenchymal 

phenotype.51,52 Furthermore, extracellular and cell surface proteoglycans with their interaction 

with cell surface proteins such as CD44 have been known to promote tumor cell growth and 

migration.53,54  
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Our analysis suggests that by capturing correlation-based crosstalk between heterocellular 

signaling pathways, SpAn leverages the interconnections between the subtypes for a high 

performing CRC recurrence prognosis and reveals a synergistic role of the CMS subtypes in CRC 

progression and recurrence. We note that the ability of SpAn to leverage these interconnections 

is due to the spatial-context-preserving sampling of a diverse set of CRC-relevant biomarkers 

enabled by HxIF imaging.  

Interestingly, this network biology paradigm also shows enrichment of pathways specific 

to a single spatial domain whose oncogenic or tumor suppressive roles in CRC is an active area of 

research but whose differential role in CRC recurrence has not been widely studied. For example, 

in the epithelial domain our analysis shows the enrichment of Thyroid hormone signaling pathway 

that has been associated with a tumor suppressive role in CRC development.55,56 In contrast, the 

bacterial invasion pathway, enriched in epithelial-stromal boundary region, has been implicated 

in the oncogenic role of the colonic microbiome in CRC development.57,58  

Our analysis also reveals enrichment of certain other pathways, such as the hypoxia-

inducible factor 1 (HIF-1), human epidermal growth factor receptor 2 (HER2) and T-cell receptor 

signaling pathways in the epithelial domain. Hypoxia is typical in many solid tumors in CRC with 

HIF-1 regulating tumor adaptation to hypoxic stress.59 Alterations in Her-2 signaling, either 

through genomic amplification or mutations is tumor promoting, and anti-HER2 therapies for 

preventing CRC recurrence and are a focus of on-going work.60 We finally note that MAPK and 

PI3K-AKT signaling cascades are implicated in many of the above discussed pathways. 

Discussion  
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This study highlights the importance of spatial context of the primary tumor microenvironment in 

conferring distinct malignant phenotypes such as recurrence in CRC. We show how a 

computationally unbiased approach can be implemented through statistical modeling of spatially 

defined domains leading to a highly specific and sensitive platform for prognostic and diagnostic 

tests, as well as potentially inferring therapeutic strategies (Figure 6). SpAn provides testable 

hypotheses regarding how the spatial association of common networks could potentially lead to 

emergent signaling networks conferring malignant phenotypes. For example, an epithelial domain 

network coupling cell metabolism and DNA repair is consistent with tumor cell growth at the 

expense of T cell exclusion and functional deficiency12,13,61 (Figs. 4 and 5). Likewise the hijacking of 

CAFs to support EMT in the context of diminished immune surveillance in the epithelial-stromal 

spatial domain45,62,63 (Figs. 4 and 5)  and the PI3K/AKT mediated polarization of TAMs within the 

stromal domain (Figs. 4 and 5) can conspire to facilitate migration of tumor initiating cells to 

promote both local and distant recurrence.64 

SpAn, when used in combination with a hyperplexing imaging platform such as Cell DIVETM 

allows mechanistic hypotheses to be tested through iterative probing of the same spatial domains 

with additional biomarkers inferred by the pathway analyses (Figures 5 and 6).  We expect even 

more specific mechanistic biomarkers to emerge based on the iterative hyperplexed imaging 

approach that incorporates finer stage-based focus, thereby reducing the total number of 

biomarkers needed for optimal analyses. We will be pursuing this in subsequent studies. This 

feature of SpAn combined with a hyperplexing imaging platform will not only allow refinement of 

its prognostic ability, but since the iterative analysis can be potentially conducted in real time with 

further advances in the technologies, it may allow the prognosis to be specific to individual 
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patients.  Importantly, by enabling the testing of mechanistic hypotheses in patient samples 

directly connected to a specific clinical outcome, SpAn may inform therapeutic strategies to 

prevent the outcome. The next phase of this work will take advantage of sampling multiple regions 

of primary tumors with larger TMAs and/or whole side sections, exploring other spatial analytics 

ranging from simple to sophisticated spatial heterogeneity metrics65 and incorporating a 

combination of protein and nuclei acid biomarkers.66 

The present retrospective study provides the foundation for the implementation of SpAn 

in prospective studies predicting disease outcomes in patients with CRC and other carcinomas. 

The high specificity and sensitivity of SpAn lies in its ability to unbiasedly identify emergent 

networks that appear to be closely associated and likely to be mechanistically linked to recurrence. 

We anticipate that hyperplexed datasets based on multiple imaging modalities will be generated 

faster and become less expensive as the technology evolves to become a mainstay tool to analyze 

solid tumors.   
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Methods 
Cell DIVE-based hyperplexed imaging (HxIF) of tissue microarrays (TMA). The 55 biomarkers plus 

DAPI nuclear counterstain included in this study are described in Supplementary Table S1. HxIF 

imaging of a TMA slide was performed using sequentially multiplexed labeling and imaging of 2 to 

3 biomarkers along with DAPI counterstain through a label–image–chemical-inactivation iterative 

cycle  visualized in Supplementary Fig. S1, and previously described1 in detail in the supporting 

information therein.  Broadly, the supporting information details the hyperplexed 

immunofluorescent workflow with information on iterative cycles of antibody labeling of single 5 

µm formalin-fixed and paraffin embedded tissue sections and TMA slides, autofluorescence 

removal, imaging, and dye inactivation in tissue. All samples were stained and imaged in a single 

batch for 2 to 3 biomarkers and DAPI at a time.  

Image processing and single cell analysis. DAPI based nuclear staining was used to register and 

align sequentially labeled and imaged TMA spots prior to downstream image analysis steps.1,2 

Autofluorescence was removed from the stained images,1,3,4 which were then segmented into 

epithelial and stromal regions (Fig. S2), differentiated by epithelial E-cadherin staining. This was 

followed by segmentation of individual cells in both the epithelium and stroma. Epithelial cells 

were segmented using Na+K+ATPase based cell-membrane staining to delineate cell borders and 

membrane regions, the cytoplasmic ribosomal protein S6 for cytoplasm identification, and DAPI 

stain for nuclear regions.Protein expression level and standard deviation were subsequently 

quantified in each cell. 

Quality checks and data normalization. Following single cell segmentation, several data pre-

processing steps were conducted. These included cell filtering, spot exclusion, log2 transformation 
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and slide to slide normalization. Cells were included for downstream analysis if their size was 

greater than 10 pixels at 20X magnification. The hyperplexing process can result in the tissue being 

damaged, folded or lost.  Image registration issues can also result in poor-quality cell data. 

Therefore, a tissue quality index based on the correlation of that image with DAPI was calculated 

for each cell for each round. Only those cells whose quality index equals to or greater than 0.9 

(meaning that at least 90% of the cells overlapped with DAPI) were included.  All the slides for all 

the biomarkers were adjusted to a common exposure time per channel.  The data were then log2 

transformed. A median normalization that equalizes the medians of all the slides was performed 

to remove slide to slide non-biological variability.  

SpAn Input Features. For each of the epithelial, stromal and epithelial-stromal spatial domains, 

SpAn used 𝑀 =	1540 domain-specific biomarker feature vector 𝒇 as input. This input feature 

vector comprised of (1) mean intensity value of 55 biomarkers averaged across all cells within the 

spatial domain, and (2) 1485 (= 55*54/2) Kendall rank-correlations between all 55 biomarker pairs. 

Kendall rank-correlation was chosen as the correlation metric because it is a non-parametric 

measure of association between two biomarkers. Moreover, its use of concordant and discordant 

pairs of rank-ordered biomarker expression for computing correlation coefficients allows it to 

robustly capture biomarker associations in presence of measurement noise and small sample size. 

Rank-correlation for each pair of biomarkers was computed for each spatial-domain from all cells 

across the spatial-domain expressing the biomarkers. This approach is distinctly different from 

prediction models that typically consider correlations via interactions, implicit within the models, 

between mean biomarker intensity expressions – with the biomarker expressions being the only 

covariates of the model.5 We emphasize that we did not compute correlations through mean 
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intensity biomarker expression across the spatial-domain, but instead used biomarker expressions 

across individual cells of the spatial domain to explicitly compute domain-specific rank-correlation 

values between every pair of biomarkers to form the SpAn correlation feature set.  

Before computing these two sets of features, SpAn analysis workflow included an initial 

intensity threshold step to ensure feature robustness. Specifically, we computed intensity-based 

distribution of cell-level biomarker expression separately for every biomarker across each patient 

TMA spot. Only intensities above the 85th percentile on this distribution were considered as 

biomarker expression and included in computing the intensity features. This focus on the right-tail 

of the intensity distribution was deliberately conservative, and although it might have potentially 

excluded low-intensity biomarker expression, it minimized inclusion of false-positive expressions 

into the analysis.  

Penalized Cox proportional hazard regression. For each spatial-domain, SpAn implemented the 

Cox proportional hazard model via the partial likelihood function 𝐿(𝜷) = 	∏ *
+𝒇,-
. 𝜷/

∑ *1𝒇,
.𝜷2

,∈4-

5
678  with 

the penalty given by 𝑃:,<(𝜷) = ∑ 𝜆 1𝛼|𝛽A| +
8
C
(1 − 𝛼)𝛽AC 2F

A78 , and 𝛼 = {0,1}. (The validity of 

using the Cox proportional hazard regression model is demonstrated in Fig. S3.) Given feature 

vector 𝒇 as input, the partial likelihood 𝐿(𝜷) quantifies the conditional probability of observing 

CRC recur in a patient at time 𝑡6 (proportional to the numerator 𝑒1L,-
.𝜷2 of 𝐿(𝜷)), given the risk 

that a patient will recur from the set  𝑅6 of patients at risk at time 𝑡6 (proportional to the 

denominator ∑ 𝑒NL,
.𝜷O

P∈Q- ), over all time 𝑡6, 𝑘 = 1,… , 𝐾, as quantified by the product over time 

index 𝑘. The partial likelihood is a function of the coefficient vector 𝜷, whose penalized estimate 
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is then used to compute the proportional hazard ratio 𝐻𝑅 = 𝑒N𝒇.𝜷O. SpAn computed this estimate 

via a two-step process: (1) Model selection based on L1-penalized (LASSO) Cox regression where 

𝛼 is set to 1 in penalty 𝑃:,<(𝜷), followed by (2) L2-regularized 𝜷 estimation, with 𝛼 set to 0 in the 

penalty term.6,7 As part of model selection, SpAn selected the model that maximally explained the 

deviance of the null model (model with only intercept and no predictive features) from the biased 

but perfect model with an exact fit to the recurrence data. Due to the LASSO penalty, the resulting 

optimal model forces the coefficients of vector 𝜷 that correspond to features that play a minimal 

role in predicting risk of recurrence to zero. The subset of features with non-zero coefficients 

defines the selected model. However, to ensure that this subset identifies a stable set of features, 

SpAn repeated model selection over 500 bootstraps, and included only those features that were 

stably concordant at the 90% level with the recurrence outcome. The rationale for 90% 

concordance is discussed in supplementary Fig. S4. The values of coefficients corresponding to the 

features stably selected using L1-penalized Cox regression, however, are conditioned on the 1540 

input features. To remove this dependence, the second step of SpAn re-estimated the beta 

coefficients corresponding to the selected features only, by maximizing the partial likelihood 

function with L2-regularization as the penalty. The resulting beta-coefficients were passed through 

a final stability check, where the stability of the coefficient sign in 90% of the 500 bootstrap runs 

was tested, and only features that passed this threshold (Fig. 2c) were included in the spatial 

domain model. SpAn performed this process independently for each of the three spatial-domains 

resulting in domain-specific recurrence-guided features (Fig. 2c) and their coefficients (Fig. S5).   

Spatial-Model. Each of the three recurrence-guided domain-specific models defined a hazard risk 

given by  𝑒1𝒇𝒆𝒑𝒊𝒕𝒉𝒆𝒍𝒊𝒂𝒍
. 𝜷𝒆𝒑𝒊𝒕𝒉𝒆𝒍𝒊𝒂𝒍2, 𝑒N𝒇𝒔𝒕𝒓𝒐𝒎𝒂𝒍

. 𝜷𝒔𝒕𝒓𝒐𝒎𝒂𝒍O and 𝑒1𝒇𝒆𝒑𝒊a𝒔𝒕𝒓𝒐𝒎𝒂𝒍
. 𝜷𝒆𝒑𝒊a𝒔𝒕𝒓𝒐𝒎𝒂𝒍2 for the epithelial, 
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stromal, and epithelial-stromal domains respectively. SpAn then defined the final overall risk of 

recurrence model as ∏ 𝑒N𝒇b.𝜷bOc	∈	d , with 𝑆 = {𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙, 𝑠𝑡𝑟𝑜𝑚𝑎𝑙, 𝑒𝑝𝑖 − 𝑠𝑡𝑟𝑜𝑚𝑎𝑙}.  

Partial correlations and spatial-domain networks. For each spatial domain, the selected features 

identified a set of biomarkers specific to predicting risk of CRC recurrence. SpAn used them to 

define a space of biomarkers within which partial correlations between every pair was computed 

by controlling for confounding effect of biomarkers not defining the pair.8 The process performed 

on each patient was as follows: Let the set of biomarkers identified by the selected features be N 

(<= 55). Using the already computed Kendall rank-correlations between the 55 biomarkers, an 

𝑁 × 𝑁 correlation matrix 𝑪 corresponding to the 𝑁 biomarkers was constructed, with small 

shrinkage-based modification to guarantee its positive definiteness, and therefore, its invertibility. 

Next, the 𝑁 × 𝑁 precision matrix 𝚸 was computed by inverting 𝑪. The partial correlation between 

any two biomarkers 𝑏𝑚P  and 𝑏𝑚t  within the set identified by the selected features, was then 

computed using 𝜌vA,,vAw =
xyz{,,z{w

|yz{,,z{,∙yz{w,z{w

, where 𝑝vA,,vAw  is the (𝑖, 𝑗)�� element of the 

precision matrix 𝚸. The partial correlations were performed for all patients and were then 

separated into two groups corresponding to patients with no evidence of disease and those 

patients in which CRC recurred. Probability distributions of the partial correlations – on the 

compact set [−1,1] – within each group were computed and the information distance between 

these two distributions was computed using the Jensen-Shannon divergence. This information 

distance defines the differential change in the association – partial correlation – between 

biomarkers 𝑏𝑚P  and 𝑏𝑚t  in the two patient cohorts. Greater the distance, larger the differential 

change. Repeating this process for all 𝑁(𝑁 − 1)/2 biomarker pairs resulted in the information 
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distance matrices shown in Figs. 4a-c for the three spatial domains. These information distance 

matrices were thresholded at the 99th percentile resulting in the computationally inferred spatial-

domain networks shown in Figs. 4d-f. The high percentile was chosen to ensure that most 

discriminative networks are captured.  

Enrichment analysis. The STRING database9,10 was queried with the set of proteins identified by 

the spatial domain networks generated by thresholding the domain-specific information distance 

matrices at the 99th percentile, to perform functional enrichment analysis using Fisher’s exact test 

with multiple testing correction. 
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Figure 1: Spatial analytics (SpAn) platform based on hyperplexed immunofluorescence imaging for 
predicting risk of 5-year CRC recurrence. (a) Hyperplexed image-stack of a TMA spot generated by 
iteratively multiplexed (Fig. S1) HxIF imaging using the Cell DIVE platform.20 (b) Close-up view of a 
TMA region in (a) outlined in white (approx. 110µm by 110µm), labelled with 55 biomarkers (plus 
DAPI nuclear counterstain) that include epithelial, immune and stromal cell lineage, subcellular 
compartments, oncogenes, tumour suppressors, and posttranslational protein modifications 
described in detail in supplementary Table S1. Hyperplexed imaging is implemented via iterative 
label–image–dye-inactivation immunofluorescence cycle (see Methods and Fig. S1). (c-e) 
Dissection of the TMA spot into three spatial-domains (epithelial, stromal, and epithelial-stromal 
domains) identified and segmented using structural biomarkers (see Methods and Fig. S2). (f) For 
each of the three spatial domains both expressions of the 55 biomarkers and their Kendall rank-
correlations both within and across the cells together defined the domain-specific features. L1-
norm based penalized Cox regression was used for model selection, while L2-penalty was used for 
final model parameter (coefficients) estimation. The stability of the model was tested at the 90% 
concordance level, and the parameters were reevaluated for final construction of the SpAn spatial 
model. 
 
Figure 2: SpAn domain-specific feature selection. (a) Individual mean protein-expression intensity 
profile depicted as a vector and pairwise Kendall rank-correlations between protein expressions – 
visualized as a matrix for each of the three spatial domains. The protein expressions are shown in 
log scale. To prevent inclusion of false-positive protein expression, only intensities above the 85th 
percentile were considered as expressions and used to compute the correlations. (See Methods.) 
(b) Features, including both expressions and correlations, selected by SpAn based on L1-penalized 
Cox regression used for model selection. (c) Stability analysis of the selected features, with only 
those features from the ones selected in (b) that maintain their sign in 90% of the 500 bootstrap 
runs are included as input into the SpAn spatial model. These features are visualized in black in the 
three bar graphs. Features selected in (b) that did not meet this criterion are shown in red. 
 
Figure 3. Performance of SpAn platform for predicting risk of 5-year CRC recurrence. (a) SpAn 
receiver operating characteristics (ROC) curves for predicting risk of 5-year CRC recurrence in 
patients with resected CRC primary tumor. The plot shows ROC curves for 500 bootstrap runs with 
independent training and validation sets. Mean area under the ROC curve is 88.5% with a standard 
error of 0.1%. (b) Boxplots of the sensitivity and specificity values for the same 500 bootstrap runs 
as in (a) with the operating point on the ROCs chosen by minimizing overall misdiagnosis rate. The 
mean sensitivity and specificity values respectively are 80.3% (standard error of 0.4%) and 85.1% 
(standard error of 0.3%). (c) Kaplan-Meier recurrence-free survival curves for each of the 500 
bootstrap runs for patients identified by SpAn at low and high-risk of five-year CRC recurrence. (d) 
Boxplots of AUC values showing the statistically significant improvement in SpAn performance 
over the null model, which considers the TMA spot as a single whole, and unlike SpAn, does not 
dissect the TMA spot into epithelial and stromal spatial domains.  Significance was computed using 
the 500 bootstraps. (e) Boxplots of stage-based area under the 500 bootstrapped ROC curves 
showing the stable stage-based clinical performance of SpAn. (f) Stable temporal performance of 
SpAn illustrated by the time-dependent AUC values plotted as a function of time in years. The 95% 
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confidence interval computed using the 500 bootstraps is also shown by the yellow shaded area 
around the mean time-dependent AUC values depicted by the solid black line.  
 
Figure 4. SpAn based computational and systems derived spatial domain networks. (a) Epithelial 
domain, (b) Stromal domain, and (c) Epithelial-stromal domain Jensen-Shannon divergence 
matrices that show the information distance of partial correlations (computed for biomarkers 
selected by recurrence-guided SpAn feature-selection and stability analysis) between patients in 
the no-evidence-of-CRC and CRC-recurrence cohorts. (d) Epithelial domain, (e) Stromal domain, 
and (f) Epithelial-stromal domain spatial domain networks obtained by thresholding the 
corresponding spatial domain information distance matrices at the 99th percentile, which identify 
differential change most significant for CRC recurrence prognosis.  
 
Figure 5. CRC recurrence-specific network biology inferred by SpAn. Domain-specific biomarkers 
identified by the spatial domain networks are used to interrogate the KEGG and STRING databases 
to identify domain-specific pathways enriched by the biomarkers.  The epithelial, stromal and 
epithelial-stromal domain are respectively shown in green, red and blue, with pathways unique to 
those domains also coded with the same colors. Pathways that are enriched in more than one 
domain are coded with a color combination of those respective domains. For example, the PI3K-
AKT signaling pathway is enriched in all three spatial-domains, and therefore, has a boundary box 
color-coded with all three colors. On the other hand, the mismatch repair pathway is enriched in 
the epithelial and epithelial-stromal domains, and is therefore, color-coded by red and blue colors.  
 
Figure 6. Workflow of spatial analytics (SpAn) computational and systems pathology platform.  (a-
c) SpAn utilizes images of resected primary tumors from TMAs or whole slide images based on 
hyperplexed fluorescence and other imaging modality platforms,18–21 to (d) perform spatial 
domain analysis for (e) patient diagnoses and prognoses and (f) infer recurrence-specific spatial 
domain networks to (g) potentially inform therapeutic strategies.  
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Table S1: Biomarkers and their relation to colon cancer 
 
Table S2: Patient Cohort and Clinical Properties 
 
Figure S1. Cell DIVE hyperplexed immunofluorescence imaging and processing scheme. For the 
Kth iteration, autofluorescence image of the tissue is acquired prior to labeling it with 2-3 
fluorescent dye-conjugated primary antibodies and DAPI counterstain. Fluorescent-labeled 
tissue images are then acquired, followed by inactivation of the dyes and start of the next 
iteration.20 

 
Figure S2. Tissue and cell segmentation. TMA spot, visualized here through a virtual Hematoxylin 
and Eosin image, is segmented into epithelial and stromal regions using E-cadherin to identify 
epithelial region from the stroma, and is followed by individual cell identification using 
Na+K+ATPase (cell membrane marker), ribosomal protein S6 (cytoplasmic marker) and DAPI 
(nuclear counterstain). 
 
Figure S3. Validity of the proportional hazard assumption in penalized Cox regression. The p-
values (shown in log scale) indicate the validity of the proportional hazard assumption for the 
overall Cox regression for all the 500 bootstraps and for each of the three domains. It can be 
seen that the overall global test is not statistically significant at the 95% confidence level 
(indicated by the dashed line) for almost all Cox models generated for the 500 bootstrap runs, 
demonstrating that the proportional hazard assumption is consistently valid. 
 
Figure S4. Rationale for choosing 90% concordance rate. Plot of concordance of the penalized 
Cox regression model as a function of a threshold function that identifies the biomarker features 
most consistently selected by L1 penalization at the concordance level corresponding to the 
threshold. The larger the threshold the more stringent the consistency requirement on feature 
selection, and smaller the number of selected features. As shown in the plot, for low threshold 
values, the concordance value is saturated, and therefore, in this region injective 
correspondence between threshold value and concordance does not exist. In the monotonic 
decay region such a correspondence can be identified. The 90% concordance level identifies 
such a correspondence for all three spatial domains without compromising performance.  
 
Figure S5. Coefficients for the recurrence-guided and domain-specific penalized Cox regression 
models of SpAn. Boxplots for coefficients that control the contribution of the selected features 
(obtained using L1-penalty) to each of the recurrence-guided and domain-specific penalized Cox 
regression under L2 regularization. The coefficients were computed for all 500 bootstrap runs 
and the boxplots capture the spread of values. It is worth noting that for all bootstraps the 
coefficients maintain their sign, which quantifies the nature of their contribution. A positive 
coefficient implies worse prognosis for increase in the corresponding feature value, while 
negative coefficient implies the converse. 
 
Figure S6. Performance of SpAn platform for predicting risk of 5-year CRC recurrence for 
intensity-based features. SpAn ROC curves for predicting risk of 5-year CRC recurrence in 
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patients with resected CRC primary tumor using only biomarker expressions. The plot shows ROC 
curves for 500 bootstrap runs with independent training and validation sets. Mean area under 
the ROC curve is 72% with a standard error of 0.2%.  
 
Figure S7. Time-dependent AUCs for domain-specific temporal performance of SpAn. Temporal 
performance of SpAn for the three spatial-domains illustrated by the time-dependent AUC 
values plotted as a function of time in years. The 95% confidence interval computed using the 
500 bootstraps for each of the three spatial-domains is also shown by the yellow shaded area 
around the mean time-dependent AUC values depicted by the solid black line.  
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Table S1: Colon cancer related biomarkers 
  
 

p4EBP1 

Eukaryotic initiation factor 4E binding protein one: inhibits mRNA transla-
tion intitiation/phosphorylation relieves inhibition of mRNA translation 
initiation  
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845917/  

AKT Signal transduction:cell survival/anabolic metabolism 
https://www.ncbi.nlm.nih.gov/pubmed/31010234# 

Albumin Extracellular transport: binds drugs and small metabolites 
https://www.ncbi.nlm.nih.gov/pubmed/30662523 

ALDH1 
Cytosolic aldehyde dehydrogenase / retinoic acid metabolism / alcohol 
Metabolism 
 https://www.ncbi.nlm.nih.gov/pubmed/22101256  

BetaActin Microfilament protein: structure and motility 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133152/ 

BetaCatenin Adherens junctions/Wnt signaling 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464927/ 

CA9 
Membrane associated carbonic anhydrase: Hypoxia response/pH 
modulation 
https://www.ncbi.nlm.nih.gov/pubmed/28554753 

CD20 B-lymphocyte protein of unknown function 
https://www.ncbi.nlm.nih.gov/pubmed/26215222  

CD31 Endothelial cell:cell junctions/immune cell transendothelial migration 
https://www.ncbi.nlm.nih.gov/pubmed/29110224 

CD68 
Tissue macrophage scavenger receptor / endosomal-lysosomal 
glycoprotein /selectin-dependent migration 
https://www.ncbi.nlm.nih.gov/pubmed/23868006 

CD79 
B-lymphocyte antigen receptor complex - mediates antigen dependent 
B-lymphocyte activation and signal transduction 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637070/ 

CD8a Antigen recognition/class I MHC binding/T-lymphocyte mediated killing 
https://www.ncbi.nlm.nih.gov/pubmed/30042763 

CK1,5,6,8 
(pck26) 

Pan-cytokeratin: recognizes most basal and luminal epithelial cell 
subtypes 
 https://www.ncbi.nlm.nih.gov/pubmed/23902688 

CK19 

Cytokeratin 19: unpaired with basic cytokeratin Useful for identification 
of epithelium and epithelial malignancies including adenocarcinomas of 
colon, stomach, pancreas, biliary tract, liver, breast, and thyroid 
carcinoma of the papillary type 
https://www.ncbi.nlm.nih.gov/pubmed/19956064  
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Claudin1 

Epithelial and endothelial tight junction protein/epithelial barrier 
function/homo and heteropolymers and  zona occludins  protein  
binding.     Neu- trophil expression inCRC. Colocalizes withneutrophil 
specific elastase 
https://www.ncbi.nlm.nih.gov/pubmed/29504115  

Cleaved 
Caspase 3 

Cysteine peptidase - active form: activation of apoptosis/possible role in 
lipid metabolism through activation of SREBP 
https://www.ncbi.nlm.nih.gov/pubmed/23591201 

E-cadherin 

Epithelial specific homotypic adherens junctions/Wnt 
signaling/epithelial-mesenchymal transition/calcium dependent cell-
celladhesion/E7 integrin ligand 
https://www.ncbi.nlm.nih.gov/pubmed/30904616 

EGFR 

Epidermal growth factor receptor: receptor tyrosine kinase/ binds 
epithelial growth factor/ homo or heterodimerization/ activates signal 
transduction  
https://www.ncbi.nlm.nih.gov/pubmed/20857619 

EPCAM 
Epithelial cell adhesion molecule: homotypic calcium independent cell 
adhesion molecule/ cell cycle modulation (myc, cyclin A and E) 
https://www.ncbi.nlm.nih.gov/pubmed/20606680 

ERK 
Mitogen activated protein kinase 1: central hub of mitogenic-progrowth 
signaling 
https://www.ncbi.nlm.nih.gov/pubmed/29988110 

EZH2 
Polycomb repressor complex two methyltransferase: inactivates gene 
expression through histone acetylation on H3K9 and H3K27 
https://www.nature.com/articles/s41598-017-13670-z 

Fibronectin Secreted cell adhesion protein involved in basement membrane function  
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112592/ 

FOXO1 

Forkhead Box-O1: transcription factor involved in regulating 
intermediary metabolic enzymes and cellsurvival 
https://www.ncbi.nlm.nih.gov/pubmed/30518405 
https://www.ncbi.nlm.nih.gov/pubmed/29867200 

FOXO3a 
Forkhead Box-O3a: transcription factor involved in regulating 
intermediary metabolic enzymes and cell survival  
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721407/   

GLUT1 

Facilitated glucose/aldose uptake: upregulated in cancer cells/aerobic 
glycolysis/Warburg effect 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593607/ 
https://www.ncbi.nlm.nih.gov/pubmed/21786248 

Indian Hedge 
Hog 

Hedgehog/patched/smoothened signaling: involved in regulating bone 
metabolism (ossification). 
https://www.ncbi.nlm.nih.gov/pubmed/30926792 

Lamin A/C 
Nuclear lamin protein: involved in organizing nuclear pores and 
chromatin  
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2496895/  
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MLH1 

MutL homolog one: mismatch repair enzyme Used for differential 
identification of colorectal carcinoma. Deficiency of MLH-1 is associated 
with the onset of HNPCC  
https://www.nature.com/articles/6600565  

Na+/K+-
ATPase 

Sodium potassium antiporter - ATP dependent: regulates membrane 
potential polarization/constitutive expression in all known cell types 
https://www.ncbi.nlm.nih.gov/pubmed/9450495 

NDRG1 

nMyc    Downstream  Regulated   One:      involved in cytoskeletal 
dynamics/adherens junctions/metabolism/poorly characterized 
https://www.ncbi.nlm.nih.gov/pubmed/30407715 
https://www.ncbi.nlm.nih.gov/pubmed/28346422 

p-p38MAPK 

Mitogen-Activated Protein Kinase 14: integrates stress signals from 
environmental and cytokine stimuli/phosphorylation indicates the kinase 
is active. 
https://www.ncbi.nlm.nih.gov/pubmed/29687844 

p21 Cyclin dependent kinase inhibitor. 
https://www.ncbi.nlm.nih.gov/pubmed/30343528 

pEGFR 

Epidermal growth factor receptor: receptor tyrosine kinase/ binds 
epithelial growth factor/ homo or heterodimerization/ activates signal 
transduction 
 https://www.ncbi.nlm.nih.gov/pubmed/26171935 

pERK 1/2 

Mitogen activated protein kinase 1/2: central hub of mitogenic-
progrowth signaling/this phosphorylation on the residues targeted here 
is indicative of kinase activity Reference: 
https://www.ncbi.nlm.nih.gov/pubmed/22108866 

pGSK3a 

Glycogen sythase kinase alpha: probable component of the destruction 
com-plex (-catenin degradation)/phsophorylation on the residue 
targeted here in- activates the kinase though the creation of a 
pseudosubstrate  
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270937/  

pGSK3beta 

Glycogen sythase kinase beta: known component of thedestruction 
complex (-catenin degradation)/phsophorylation on the residue targeted 
here inactivates the kinase though the creation of a pseudosubstrate  
https://www.ncbi.nlm.nih.gov/pubmed/16043125  

pMAPKAPK2 

Mitogen-Activated      Protein       Kinase-Activated      Protein       Kinase      
2:  p38MAPK  substrate  motif/  active  MAPKAPK2  stabilizes  TNF  and 
IL6 mRNA/destabilizes HSP27complexes 
https://www.ncbi.nlm.nih.gov/pubmed/15774489 

pMET 

Met Proto-Oncogene (Hepatocyte Growth Factor  Receptor):  instigates  
signaling through prosurvival and EMT signaling pathways/expression is 
required  for gastrulation andderegulated overexpression iscommon in 
many cancers/Y1349 phosphorylation serves as a Gab1 binding site (a 
scaffold for activation of PI3K, PLC, and SHP2) 
https://www.nature.com/articles/1209859  
https://www.ncbi.nlm.nih.gov/pubmed/18258742 
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pNDRG1 

nMyc Downstream Regulated   One:      involved in cytoskeletal dynam-
ics/adherens junctions/metabolism/poorly 
characterized/phosphorylation of this residue is downstream of mTORC2  
https://www.nature.com/articles/onc201774  

pS6 

Ribosomal  Protein  S6:    phosphorylation is associatedwith mitogens 
and growth factors and may regulate selective translation of particular 
classes of mRNAs defined by consensus sequences in untranslated 
regions.  
https://www.ncbi.nlm.nih.gov/pubmed/17175097 
https://www.ncbi.nlm.nih.gov/pubmed/29526493 

PTEN 

Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-
specificity protein phosphatase PTEN: tumor suppressor/opposes PI3K 
function by de- phosphorylating the insoitol 3’OH group/emerging 
nuclear functions related   to DNA repair and apoptosis 
https://www.ncbi.nlm.nih.gov/pubmed/30983885 
https://www.ncbi.nlm.nih.gov/pubmed/30118842 

S6 

Ribosomal  Protein  S6:    phosphorylation is associatedwith mitogens 
and growth factors and may regulate selective translation of particular 
classes of mRNAs defined by consensus sequences in untranslated 
regions  
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474683/ 

SMA 
Smooth muscle actin alpha: cytoskeletal protein of smooth muscle and 
vascular pericytes 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876461/ 

TKLP1 
Transketolase-like protein 1: transfers 2 carbon ketol groups to aldose 
acceptor molecules (TKTL1) 
https://www.ncbi.nlm.nih.gov/pubmed/26650256 

WNT5a 
Wnt signaling secreted glycoprotein 5a: signals through canonical and 
non-canonical Wnt pathways/may affect cell motility and metastasis  
http://clincancerres.aacrjournals.org/content/14/1/55 
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Figure S1
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Figure S2
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Figure S3
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Figure S4
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Figure S6
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Figure S7
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