
	 1	

Non-Uniformity of Projection Distributions Attenuates 1	

Resolution in Cryo-EM 2	

 3	

Philip R. Baldwin1 and Dmitry Lyumkis1 4	

 5	

1The Salk Institute for Biological Studies, La Jolla, CA 92037, USA 6	

  7	

Correspondence: pbaldwin@salk.edu, dlyumkis@salk.edu 8	

 9	

 10	

Keywords - Fourier Shell Correlation, single particle analysis, preferred orientation, anisotropy 11	

12	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635938doi: bioRxiv preprint 

https://doi.org/10.1101/635938
http://creativecommons.org/licenses/by/4.0/


	 2	

Abstract 1	

Virtually every single-particle cryo-EM experiment currently suffers from specimen adherence to 2	

the air-water interface, leading to a non-uniform distribution in the set of projection views. 3	

Whereas it is well accepted that uniform projection distributions can lead to high-resolution 4	

reconstructions, non-uniform (anisotropic) distributions can negatively affect map quality, 5	

elongate structural features, and in some cases, prohibit interpretation altogether. Although some 6	

consequences of non-uniform sampling have been described qualitatively, we know little about 7	

how sampling quantitatively affects resolution in cryo-EM, especially given the numerous 8	

different projection schemes that can arise in experimental situations. Here, we show how 9	

inhomogeneity in any projection distribution scheme attenuates the global Fourier Shell 10	

Correlation (FSC) in relation to the number of particles and a single geometrical parameter, which 11	

we term the sampling compensation factor (SCF). The reciprocal of the SCF is defined as the 12	

average over Fourier shells of the reciprocal of the per-particle sampling and normalized to unity 13	

for uniform distributions. The SCF therefore ranges from one to zero, with values close to the latter 14	

implying large regions of poorly sampled or completely missing data in Fourier space. Using two 15	

synthetic test cases, influenza hemagglutinin and human apoferritin, we demonstrate how any 16	

amount of sampling inhomogeneity always attenuates the FSC compared to a uniform distribution. 17	

We advocate quantitative evaluation of the SCF criterion to approximate the effect of non-uniform 18	

sampling on resolution within experimental single-particle cryo-EM reconstructions. 19	

  20	
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Glossary	1	

FSC 𝑘 			is	the	Fourier	shell	correlation	of	the	reconstruction	at	Fourier	frequency	𝑘.	2	
SSNR 𝑘 	is	the	spectral	signal	to	noise	ratio	of	the	reconstruction	at	Fourier	frequency	𝑘.	3	
ssnr(𝑘)			is	the	per	particle	SSNR,	used	in	the	discussion	in	Section	4.		4	
𝐿,	the	side	of	the	real	space	box	5	
𝑁,	the	number	of	particles	in	the	reconstruction	6	
𝑘	is	Fourier	magnitude		7	
𝑘	is	a	2D	or	3D	point	in	Fourier	space	8	
SCF	is	the	sampling	compensation	factor,	characterizes	effect	of	sampling	on	SSNR	9	
𝒩(𝑘)	is	noise-to-signal	power	(sections	1,2)	10	
Sp 𝑘 , sp(𝑘)	is	the	sampling	function	(and	per	particle	sampling	function)	defined	at	a	3D		11	
																					lattice	site	𝑘	12	
𝐹2 𝑘 	is	the	Fourier	value	of	the	jth	projection	at	the	point	𝑘.	13	
𝑀2 𝑘 	is	the	effect	of	the	microscope	(CTF)	on	the	jth	projection	14	
𝑋 𝑘 , 𝑋 𝑘 	is	the	target	model	and	a	running	estimate	of	the	model	15	
𝑅2 	is	a	3D	rotation	matrix	describing	the	projection,	j.	16	
𝑁2(𝑘)	is	the	noise	added	to	the	projection,	j.			17	
𝐸(𝑘)	is	the	total	envelope	that	attenuate	the	image	due	to	microscope	and	misalignment	18	
	 effects.	19	
𝑁(𝑘)	is	the	effective	noise	at	3D	lattice	sites	after	regrouping	from	projections	20	
𝑁7 𝑘 ≡	< |𝑁(𝑘)|7 >	is	the	power	of	the	noise	21	
𝐹, 𝐺	are	half	maps	used	to	derive	FSC	relations	in	section	2	22	
𝑃?, 𝑄?	the	number	of	measured	and	unmeasured	voxels,	on	a	Fourier	shell	of	radius	𝑘,	when	23	
	 there	is	missing	data.	24	
𝑛	is	used	as	a	unit	vector	demarcating	a	projection	25	
Θ(x)	indicator	function,	which	is	1	if	the	condition	x	is	true,	0	otherwise	26	
𝜆	is	the	amplitude	of	the	modulation	for	the	modulation	of	side	views	(section	3)	27	
𝛼	is	a	cone	half	angle:	for	top-like	views,	projections	are	inside	cone;		28	
																																									for	side	like,	projections	are	outside	the	cone.	29	
𝜖	is	the	fraction	of	projections	that	are	not	restricted	to	be	in	the	main	cone	of	half	angle	𝛼		30	
									(Section	3)	31	
Euler	Angle	is	one	of	the	three	angles	used	to	describe	rotation	matrices	(𝜃	is	rotation	around	Z-32	
	 axis,	𝜙	is	rotation	around	Y-axis,	𝜓	is	in-plane	rotation).		33	
  34	
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Introduction 1	

 2	

Single-particle cryo-electron microscopy (cryo-EM) has gained increasing popularity for 3	

structural analysis of macromolecules and macromolecular assemblies. Numerous technical 4	

advances have contributed to improvements in resolution [1-3], throughput [4], and overall 5	

usability of the approaches, leading to a wealth of novel insights pertaining to macromolecular 6	

structure and function [5]. Although many steps in the single-particle workflow are becoming more 7	

streamlined and automated, a principal remaining challenge pertains to problems resulting from 8	

non-uniform projection distributions contributing to reconstructed density maps.  9	

 10	

Non-uniformity in the distribution of projection orientations recorded in a single-particle imaging 11	

experiment originates from adherence of the specimen to one of two interfaces (top or bottom) of 12	

the grid. The interfaces, which could be air-water or support-water (e.g. thin carbon), cause 13	

specimens to stick in one of several “preferential orientations”.  It is now clear that virtually every 14	

specimen prepared for single-particle imaging using conventional blotting techniques adopts a 15	

preferential orientation on cryo-EM grids [6]. The reason for this is that macromolecules, which 16	

continuously undergo rapid thermal motion, adhere to interfaces on a time scale that is orders of 17	

magnitude shorter than the time to blot off excess sample. Recent inkjet dispensing technologies 18	

have ameliorated some of the effects of preferential specimen orientation by attempting to out-run 19	

sample adherence to interfaces and by minimizing the amount of time between sample application 20	

and plunging into liquid ethane [7]. However, such devices do not yet eliminate preferential 21	

orientation in its entirety and depend heavily on high sample concentration. Furthermore, the 22	

increase in interest in specimen supports, like graphene [8, 9], which also cause preferential 23	
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orientation, indicates that the effects of non-uniform sampling on final reconstructions will remain 1	

problematic for many single-particle experiments.  2	

 3	

Numerous approaches have been devised to estimate the quality of angular distributions and their 4	

effects on a reconstructed density. These ideas are primarily developed in conjunction with some 5	

anisotropic measure. One measure derives from the application of a 3D point spread function to 6	

estimate the strength of signal above some significance criterion, in all directions of the 3D Fourier 7	

transform [10]. In another approach, the 3D spectral signal-to noise ratio (SSNR) is used to define 8	

directional resolution differences [11], with the SSNR bearing a direct relationship to the Fourier 9	

Shell Correlation (FSC), the conventional means for measuring resolution in single-particle cryo-10	

EM. Multiple groups also described the use of conical FSCs to evaluate anisotropic resolution for 11	

tomographic reconstructions [12, 13], as well as our and others’ work on evaluating anisotropic 12	

resolution in single-particle analysis [14, 15].  More recently, the “efficiency” metric  [16] was 13	

introduced to characterize an orientation distribution, based on the observed relationship between 14	

orientation distribution and experimental resolution. We proposed that an evaluation of anisotropy 15	

in cryo-EM experiments should be standard for every cryo-EM reconstruction [17].   16	

 17	

The consequences of sampling non-uniformity on a reconstructed density map can vary and 18	

depend on the extent and distribution of projection views. In many experimental cases, one might 19	

see a few distinct preferential orientations across the Euler distribution profile, but the resulting 20	

map may look reasonable, and is readily interpretable with an atomic model. In the more severe 21	

cases, an anisotropic distribution may lead to apparent elongation of structural features within the 22	

map. In such cases, the interpretation of the map may be affected, sometimes severely, due to the 23	
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appearance of artefactual density parallel to the dominant view [15]. In the most severe cases, 1	

structure determination may be stifled altogether. Some hallmarks of pathologically anisotropic 2	

distributions include inflated Fourier Shell Correlation (FSC) curves, elongated features beyond 3	

interpretability, an inability to converge on a final structure, and/or the appearance of false positive 4	

orientations in the course of refinement	 [15]. All these factors can reinforce problems in the 5	

density. One interesting observation was that anisotropic orientation distributions lead to an 6	

increase in the temperature factor associated with the data, thereby also affecting global resolution 7	

[16]. However, a derivation from standard models has not been established.  8	

 9	

While different measures have been introduced to evaluate the effect of anisotropic distributions 10	

on directional viewings of the reconstructed density map, the effect of sampling on global 11	

resolution has largely been neglected. Furthermore, there remains no systematic, quantitative study 12	

of the effects of inhomogeneous projection distributions on cryo-EM reconstructions. Here, we 13	

examine the relationship between non-uniform angular sampling and global resolution, as 14	

measured using conventional analyses in cryo-EM. A major conclusion from our work is that any 15	

inhomogeneity, and especially missing information in Fourier space, directly attenuates global 16	

resolution in 3D reconstructions, and thus impedes the single-particle experiment.   17	

 18	

  19	

 20	

  21	
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Section 1.  Summary of the major findings  1	

 2	

Given a set of projection views, we develop an assessment of the quality of the sampling.  We 3	

chose this assessment based on the expected effect on the spectral signal to noise ratio (SSNR) 4	

defined through the FSC. We show that the angular average of the reciprocal of the sampling forms 5	

a quantity whose reciprocal attenuates the SSNR, if we consider the other aspects of the problem 6	

associated with the overall experimental envelope to be held constant. More specifically, we argue: 7	

 8	

                                       SSNR 𝑘 = 𝑁	 KLM
7?
		 N
𝒩(?)

	       ,                                                  (1.1) 9	

  10	

where N is the number of particles, k is spatial frequency, 𝒩(𝑘) is a noise-to-signal power, and 11	

SCF is what we term the “sampling compensation factor” and is defined to be 12	

 13	

                                       SCF		 ≡ 		 N
O	N/(7Q	RS)T

	     .                                                     (1.2) 14	

 15	

Here, <∙>	means the average in Fourier space over the nonzero values of shells at (approximately) 16	

fixed spatial frequency, k, and sp is the amount of sampling per-particle, determined from the Euler 17	

angle assignments. Notably, one must compensate for the geometry of the sampling to correctly 18	

estimate the SSNR: hence the name, “sampling compensation factor”. One notes from (1.1) that 19	

the number of particles necessary to perform a reconstruction also depends inversely on the SCF, 20	

with smaller SCFs requiring larger numbers of particles. 21	

 22	
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In section 2, we derive all the formulae relating sampling to SSNR, including the case with missing 1	

data, which requires special handling. In section 3, we derive analytical solutions to the sampling 2	

and SCF for a variety of different cases. In section 4, we discuss the linear dependence of the SSNR 3	

on N, as well as estimating the number of particles to perform a reconstruction. In section 5, we 4	

show the correspondence between the proposed decrement of signal based on sampling and the 5	

actual decrement in the SSNR when reconstructions are performed for two different proteins.  6	

 7	

 8	

  9	
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Section 2.  Decrement of SSNR due to sampling inhomogeneity 1	

 2	

In this section, we derive Eq (1.1), which provides an expression for the SSNR where all the 3	

aspects of the sampling have been incorporated specifically into two parameters: the number of 4	

particles, and a single geometrical factor.  We assume that the effects of the microscope and the 5	

effects of the noise can be approximately decoupled, in a manner that has otherwise been typically 6	

assumed in the literature [18-20]. In section 2.1, we first consider the cases where the voxels in 3D 7	

Fourier space are completely measured and derive the SSNR relationship, Eqs (1.1) and (1.2), 8	

which is the main result of this paper. In section 2.2, we extend these derivations to cases when 9	

there is missing data, by which we arrive at the adjusted formulae for resolution (2.30). We refer 10	

to other sources, as necessary (Sorzano, [20] and Penczek [18]), for more detail on the aspects that 11	

are not central to the derivations given here.  12	

2.1 Derivation of the Sampling Compensation Factor (SCF): 13	

The generally accepted understanding of 2D projection data after orientation assignment in cryo-14	

EM single-particle analysis is given by: 15	

 16	

𝐹2 𝑘 = 𝑀2 𝑘 	𝑋 𝑅2V	𝑘W 		+ 			𝑁2(𝑘),                (2.1) 17	

 18	

Here 𝑘 is a point in 2D Fourier space as measured on the projection j, where the projection j has 19	

data 𝐹2(𝑘) on the 2D grid point labeled by 𝑘 (see Figure 1). This is the usual Fourier space 20	

description of a “single particle”.  Eq (2.1) is our statement of the projection slice theorem: the 21	
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measured data should be a slice out of the true 3D map, 𝑋, but that has been modified in the 1	

microscope by a transfer function, 𝑀2 k  and corrupted by 𝑁2(𝑘), which is identically distributed 2	

noise with mean zero and a variance that is independent of direction. This is the same set of 3	

arguments that appear starting at Eq (7) from [20], as well as other places.  4	

 5	

The 3D rotation, 𝑅2V, that appears in Eq (2.1) is the mapping from the 3D version, 𝑘W ≡ (𝑘Z, 𝑘[, 0) 6	

of the 2D point, 𝑘 ≡ (𝑘Z, 𝑘[) to the 3D point, 𝑅2V	𝑘W,  on the map,  𝑋, which is being reconstructed 7	

(Figure 1). The “Euler angles” for the projection, j, are the angles that appear in the conventional 8	

ZYZ representation of the rotation 𝑅2. The factor 𝑀2 k , has been extensively described (Sorzano 9	

[20], Penczek [18]) and should be an oscillating sinusoidal function (CTF) with a frequency-10	

dependent attenuation caused by various envelope effects. Eq. (2.1) is the generally accepted 11	

starting point for cryo-EM data. 12	

 13	

We next redefine 𝑘 to represent points on the 3D grid, and we shift our attention to the 14	

reconstruction of the map in 3D. In the reasoning of direct Fourier reconstruction, we can form the 15	

average over the samples that are used to reconstruct each 3D grid point 𝑘 to arrive at an estimate 16	

of the 3D data point after reconstruction within the map 𝑋 𝑘 : 17	

 18	

𝑋 𝑘 ≡ N
KS ?

𝐹2
KS ?
2]N 𝑘 ,                                   (2.2) 19	

 20	

where Sp(𝑘) is the number of times that the particular point (in 3D) 𝑘 has been measured (by 21	

means of projections as described above). In a conventional direct Fourier reconstruction, both the 22	
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running estimate of the reconstruction and the total weights that have been used for interpolation 1	

(that is, Sp 𝑘 ) are kept as projection data is added.  2	

 3	

One key observation is that, after substituting (2.1) into (2.2), the resulting noise is always down 4	

by a factor of one over the square root of the amount of sampling (see [20]): 5	

                            6	

                                               𝑋(𝑘) ≡ 𝐸(𝑘)𝑋(𝑘) + N

KS(?)
𝑁(𝑘),                                                (2.3) 7	

   

where the “renormalized” noise, 𝑁(𝑘), has mean zero and the same variance as the average of the 8	

variances of the constituent noise variables 𝑁2(𝑘). Eq. (2.3) has been written so that the variance 9	

of 𝑁(𝑘) does not depend on the sampling. This is parallel to the argument which appears in [20] 10	

at about Eq. (11). We have introduced E(k), which is an effective envelope and the average over 11	

the samples of the microscope influences (𝑀2 k ) as well as misalignment effects. Strictly 12	

speaking, Eq (2.3) can only be approximate, but it is consistent with other approximate analyses 13	

[21] .  14	

 15	

In the typical evaluation of cryo-EM resolution, two independent reconstructions are performed to 16	

arrive at half maps which we can write in Fourier space as: 17	

 18	

 
𝐹 𝑘 ,  𝐺 𝑘    half maps (2.4) 
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We are interested in the FSC of half maps drawn from the same statistical ensemble as in (2.3). 1	

Therefore, we consider two maps assembled as in (2.3) and then we calculate the FSC. Each half 2	

map, 𝐹,  𝐺 should therefore be of the form given as in Eq. (2.3):  3	

                   4	

                                                     	𝐹(𝑘) = 𝐸(𝑘)𝑋(𝑘) + N

KS(?)
𝑁`(𝑘),                             (2.5)  5	

                                                         𝐺(𝑘) = 𝐸(𝑘)𝑋(𝑘) + N

KS(?)
𝑁a(𝑘). 6	

   

The normal prescription is to introduce the correlation of these half maps at a discrete set of 7	

wavevector magnitudes, and then examine the functional behavior of this scalar correlation as a 8	

function of this wave-vector:  9	

 10	

                                                  FSC(𝑘) ≡
`|cd|≈c (?d)a∗(?d)

ghijk(?)  ghijl(?)
  ,                                              (2.6) 11	

         	12	

                                         Norm`(𝑘) ≡ 𝐹|?d|≈? (𝑘o)𝐹∗(𝑘o)  ,                                       (2.7) 13	

                                               Norma(𝑘) ≡ 𝐺|?d|≈? (𝑘o)𝐺∗(𝑘o)                                                    14	

 15	

Since 𝐹 and	𝐺 are assumed to be statistically similar, we can write (2.6) in short hand as  16	

 17	

                                                  FSC(𝑘) ≡ O`a∗T(?)
O|`|pT(?)

                                                          (2.8) 18	

 19	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635938doi: bioRxiv preprint 

https://doi.org/10.1101/635938
http://creativecommons.org/licenses/by/4.0/


	 15	

Where we have used <⋅> to mean the angular averages, (and equating angular and ensemble 1	

averages). Very crudely, it is the cross correlation divided by the self-correlation. For more rigor, 2	

see Sorzano et al [20], or Penczek. [18, 22]. 3	

 4	

Starting from (2.8), we can perform the familiar sort of calculation [18, 20, 23]  5	

 6	

                                            	< 𝐹𝐺∗ >≈ 𝐸7(𝑘) < |𝑋|7 >,                                          (2.9) 7	

 8	

                               < |𝐹|7 >≈ 𝐸7(𝑘)|𝑋|7(𝑘)+< |r(?)|p

KS(?)
>,                            (2.10) 9	

 10	

               ≈ 𝐸7(𝑘)|𝑋|7(𝑘) + 𝑁7 𝑘 < N
KS(?)

>,                    (2.11) 11	

 12	

where:  13	

                                                     	𝑁7(𝑘) ≡< |𝑁(𝑘)|7 >,                                                (2.12) 14	

                          15	

and we have decoupled the noise variance from the sampling in going from Eqs (2.10) to (2.11). 16	

There is no a priori reason to anticipate that the noise variances are related to the Euler angle 17	

assignments, so the decoupling implicit in going from (2.10) to (2.11) is consistent with standard 18	

assumptions. For the half maps, this leads to the following approximate estimate for the FSC using 19	

the above (2.8), (2.9), (2.11):  20	

FSC(k) = sp ? O|t|pT
sp ? O|t|pT	u	rp ? O v

wx c
T

        ,                       (2.13) 21	

 22	
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                       =		 N

Nu yp(c)
zp c {|||p}(c)

O v
wx c

T
                ,                       (2.14) 1	

 2	

=				 N

Nu 7	?	𝒩 c
y 	O v

pc	wx c /y
T

                ,                         (2.15) 3	

 4	

                              = N

Nu7	? 𝒩 c
y	w~�

                              ,                            (2.16) 5	

 6	

Where, in going from (2.14) to (2.15), we have defined 7	

 8	

                                        	𝒩(𝑘) ≡ 𝑁7(𝑘)/(𝐸7 𝑘 < 𝑋7 𝑘 >) ,                             (2.17) 9	

 10	

which is a noise-to-signal power ratio. In going from (2.15) to (2.16), we have defined: 11	

 12	

                                                  				 N
KLM

	≡	< N
7?	KS ? /r

>      .                                       (2.18) 13	

 14	

The expression (2.18) is the same as (1.2), after identifying sp 𝑘 ≡ Sp 𝑘 /𝑁, the per-particle 15	

version of the sampling. The expression for 𝒩(𝑘) is the effective noise-to-signal ratio. Notably, 16	

all the effects of sampling anisotropy are gathered into a single term: the SCF as given by (2.18).  17	

  18	

Following previous formulations, we can define the spectral signal-to-noise ratio (SSNR):  19	

 20	

                                                    SSNR(𝑘) ≡ MKL(?)
N�MKL(?)

          .                                                 (2.19) 21	
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 1	

Substituting (2.16) into (2.19), we arrive at Eq (1.1):  2	

 3	

                                                      		SSNR 𝑘 = 	𝑁	  KLM
7?	𝒩 ?

      ,                                          (2.20) 4	

 5	

where N is the number of particles, SCF is the geometrical factor, 𝑘	𝑖s spatial frequency and 𝒩 𝑘  6	

is the effective noise to signal power (given by (2.18)), whose inverse would act like the 7	

predominant component of the envelope. The reason for the regrouping of the factor 2k into the 8	

SCF expression is that the SCF is then unity in a continuum calculation for the average density of 9	

sampling for distributions that are uniform, as we will show in section 3. Eq (2.20) is essentially 10	

the same expression that appears in [23] except for the appearance of the SCF term. 11	

 12	

Under certain circumstances, the reconstructed volume may have regions of Fourier space that 13	

have not been sampled. Two typical causes for this are: 1). The set of projection views are not well 14	

distributed (such as top views), such that Fourier voxels, even very near the Fourier origin, have 15	

not been filled. 2). The set of projection views are reasonably well distributed, but as one moves 16	

further from the Fourier origin, there are lattice sites that are not sampled. Because Fourier voxels 17	

not receiving information during the reconstruction procedure are traditionally left as zeros, there 18	

will be voxels that do not contribute to the angular averages of (2.9) – (2.11). A careful 19	

recalculation shows that the amended formula for the SSNR, as defined by (2.19), should still be 20	

(2.20), except that the angular average involved with (2.18) for the evaluation of SCF should only 21	

take place over non-zero voxels: 22	

                         				 N
KLM

	≡	< N
7?	RS ?

>�h����ih	�h���R                       .                         (2.21) 23	
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 1	

Eq (2.20) along with (2.21) are our Eq. (1.1). As an aside, we show later that sp 𝑘  goes like 1/2𝑘, 2	

so that the total sampling follows 𝑁/2𝑘. Therefore, in the standard cryo-EM experiment, the total 3	

sampling typically will not thin to zero, and the only zeros are the result of deficient projection 4	

distributions. 5	

2.2 An adjusted formula for SSNR for half maps with unmeasured data 6	

The SSNR, based on half maps, has a drawback when some of the Fourier voxels have been left 7	

unmeasured. The voxels in each half map are typically set to zero, which leads to smooth, but 8	

artefactual maps, and may yield artificially high resolution measures. We see this in detail late in 9	

Section 5, when we look at reconstructions that are performed from projections in a 45° cone, and 10	

a percentage of randomly distributed extra projections is decreased in the sequence 10%, 3%,1%, 11	

0%. There is a sudden increase in the improperly defined FSC resolution measure at 0%. We will 12	

defer discussion of the reconstructed data to that time. Here, we seek an adjusted SSNR expression, 13	

which allows variance to be assigned to regions of Fourier space that have been unmeasured. 14	

Consider the simplest situation, as in Figure 2, where we have represented some shell of Fourier 15	

space by 𝑃 measured values having mean 𝑇, and variance per voxel, varg, given by the reciprocal 16	

sampling at each measured point. There are also 𝑄 unmeasured voxels, that are assigned 0 values 17	

in Figure 2A, and contribute neither to the signal nor the variance. Then, the ratio of signal to 18	

variance is shown in the figure: SSNR = 𝑁	 Vp

O v
�xT

 where the average is taken of the reciprocal per-19	

particle sampling over the measured values. However, if one assigns a variance of 1 to the 𝑄 20	

unmeasured voxels, and repeats the same calculation, one arrives at SSNR = 𝑁	 Vp

O v
�xTur	

�
�	

 . In 21	
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particular, when 𝑁	is large, the behavior is completely different: in Figure 2A the SSNR increases 1	

without bound, and in Figure 2B the SSNR plateaus to a finite value and is proportional to the area 2	

of measured to unmeasured region. 3	

 4	

Generalizing the scenario in Figure 2, we consider a Fourier shell at Fourier radius k, and let  𝑃? 5	

be the number of voxels that have non-zero sampling and let 𝑄? be the number of voxels with 6	

missing data. The total number of voxels therefore is then 𝑃? + 𝑄?. We calculate the adjusted 7	

values of the quantities in (2.9) and (2.10), assuming that the data with missing voxels should be 8	

allowed to have variance. Then: 9	

                                   	< 𝐹𝐺∗ >≈ 			 �c
��	u	��

				𝐸7(𝑘) < |𝑋|7 >                                   (2.22) 10	

 11	

          < |𝐹|7 >= 	 		 �c
�c	u	��

	(	𝐸7(𝑘)|𝑋|7(𝑘) + 𝑁7 𝑘 < N
KS ?

>) +	 �c
�cu	�c

	𝑁7(𝑘)          (2.23) 12	

 13	

Where 𝐸 is defined through (2.3), 𝑁7 is the noise variance defined as in (2.12), and 𝑋(𝑘) is the 14	

target structure. Our approach for the missing data is now clear: missing voxels take on a single 15	

unit of noise unattenuated by any sampling. The fairest assignment for such voxels is one unit of 16	

variance and zero units of signal. The adjusted formula, FSC∗,  for the FSC then becomes: 17	

 18	

                            	FSC∗(k) = �c	sp ? O|t|pT
�c(sp ? O|t|pT	u	rp ? O v

wx c
T	)u�c	rp ?

           .                    (2.24) 19	

 20	
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This leads to an adjusted SSNR, which we develop by starting with its reciprocal:  1	

 2	

                 N
KKg�∗(?)

			≡ N�		MKL∗(Q)
	MKL∗(Q)

		=
	�c	rp ? O v

wx c
T	u�c	rp ?

�csp ? O|t|pT
           ,                       (2.25) 3	

 4	

                                 		=
		rp ? O v

wx c
T	

sp ? 	O|t|pT
				+ 							 �c	rp ?

�csp ? 	O|t|pT
               ,                       (2.26) 5	

 6	

                                 		= N
KKg�	(?)

				+ 							 �c𝒩(?)	
�c

                                    .                      (2.27) 7	

 8	

Thus: 9	

 10	

                                   KKg�(?)
KKg�∗(?)

= 1 +	�c	
�c	

rp ?
	O v
wx c

T
                         ,                            (2.28) 11	

   12	

  13	

                                                    	= 1		 + 						𝑁	 �c
�c
		KLM
7?
								,                                           (2.29) 14	

 15	

which may be rewritten: 16	

 17	

                             SSNR∗ k 				= 						 KKg� Q

N		u						r	�c�c
		w~�pc

            ,                                           (2.30)     18	
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           1	

                                 SCF∗ 𝑘 ≡ KKg�∗ ?
KKg� ?

		 ∙ 	SCF	 = KLM

N	u	r	�c�c
	w~�pc

 , 2	

 3	

where SCF∗ is the expression to use in the adjusted version of Eq. (1.1):  SSNR∗ 𝑘 ≅4	

𝑁	 KLM
∗

7?
		 N
𝒩(?)

	. Eq. (2.30) gives an expression for reevaluating the SSNR for half maps when the 5	

original half maps have missing data. One way to think of Eq (2.30) is it shows how the 6	

conventionally constructed SSNR is inflated due to not assigning any variance to missing data. Eq. 7	

(2.30) also yields a condition by which a correction is necessitated. The ratio of occupied to 8	

unoccupied voxels at some Fourier wavevector is typically only a weak function of Fourier 9	

magnitude. This means it is also a geometrical parameter, similar to the SCF.  Therefore, when 10	

 11	

                                                   	𝑄? ≳
�c
r

  ,                                                                     ( 2.31)  12	

 13	

then one should have to correct with the factor in the denominator of Eq. (2.30), to obtain a more 14	

realistic value of the SSNR. The condition (2.31) is the condition that the unmeasured variance is 15	

similar in magnitude with the measured variance, which is sampled in proportion to the number of 16	

particles. Another way to write it is that we must make an adjustment when 𝑄? ≳
�c
r

.   If there is a 17	

sufficiently narrow gap, then we can ignore the adjustment. In practice, if there a sampling 18	

geometry that produces true missing gaps, then any number of particles should necessitate the 19	

alternate formula.  20	

 21	

 22	
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If N is sufficiently large, then what limits the resolution is solely the gap. Adding more particles 1	

will not improve the SSNR, because additional particles will not better resolve the missing voxels, 2	

and the already measured region is sufficiently well resolved. The expression for the adjusted 3	

SSNR is most readily read off from (2.27), when the unadjusted value becomes large. Then the 4	

first term on the right-hand side can be neglected, and the reciprocal of the remaining terms taken 5	

to find the limit of large particle numbers, but with missing data: 6	

 7	

     𝑁 → ∞,					SSNR∗ 𝑘 ≅ 	 � ?
� ?

	 N
𝒩 ?

		 ; 								SCF∗ 𝑘 ≅ N
r
	� ?
� ?

	2	𝑘	  .            (2.32)                            8	

 9	

Thus, in the limit of large particle numbers, the adjusted SSNR plateaus to a value, which is the 10	

per particle envelope multiplied by the ratio of measured to unmeasured voxels. For positive k, the 11	

expression implies that the FSC* quickly drops from unity for even small 𝑘>0:  FSC∗ 𝑘 ≈ 1 −12	

		�c	
�c
𝒩 𝑘  and is not improved by adding more particles. In this case, the measured voxels are 13	

perfectly well sampled, and all the variance is due to the missing values. 14	

 15	

To summarize, we derived the relationship between the SSNR and the type of sampling distribution 16	

that is involved in the reconstruction. The latter enters the formula solely as a single geometrical 17	

factor, the SCF, given by Eqs (2.20) and (2.21) (which reiterates Eq. (1.1)), the main result of this 18	

work. In section 3, we derive analytical expressions for the SCF, and in section 5, we evaluate the 19	

efficacy of (1.1) using simulated cryo-EM datasets. In the case of missing data, we suggest an 20	

adjusted expression for the SSNR from what is usually used. This is the formula 21	

for	SSNR∗ k 		given by Eq. (2.30).  22	
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Section 3. Numerical and analytical forms for the sampling function, and 1	

expressions for the SCF geometrical factor  2	

 3	

In Section 1 and 2, we showed that the entire effect of the sampling inhomogeneity on the SSNR 4	

could be incorporated into a single geometrical coefficient, the SCF. In this section, we provide 5	

numerical and analytical forms for the sampling function, as well as the geometrical SCF factor 6	

that causes decrement to SSNR curves. In section 3.1 we explain our numerical and analytical 7	

approaches for evaluating the sampling and show that they evaluate identically for appropriate 8	

cases. In section 3.2, we give continuum expressions for the sampling for several families of 9	

distributions: 1) a one parameter family of distributions with an axial symmetry, that span the 10	

complement to cones, which we term “side-like”; 2) a one parameter family of side-like 11	

distributions modulated by fluctuations in the phi angle; 3) A two parameter family of projection 12	

views that are constrained to fall within a cone of half-angle 𝛼, and that have, in addition, a 13	

fraction,	𝜖, of views that are randomly scattered through the remainder of Euler space. In section 14	

3.3, we calculate analytically the SCF for each of these distributions using the continuum 15	

formalism that we developed, which is valid when the sampling is not too small. The range of 16	

values of the SCF for “side like views” ranges from 1 (the maximum, corresponding to uniform) 17	

to �
�p	
	= .81 (side views). For the modulated side view cases, the SCF decreases as �

�p
	 1 − 𝜆7, 18	

where 𝜆 is the magnitude of the modulation, and we restrict the modulation >1.  This gives us a 19	

complete parametrization of reasonable sampling where the SCF decreases from 1 to .81 (side) to 20	

0. For the poorly sampled top-like views, we give a closed form integral expression for SCF 𝛼, 𝜖   21	

and evaluate the expression graphically.  In the case when 𝜖=0, we point out that there are typically 22	

missing values and the usual expression for the SSNR is not logical, as it neglects the variance that 23	
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can be estimated for the unmeasured voxels, by using the data already measured on the same shells 1	

of Fourier space. Using the expressions that we developed in Section 2, we show theoretically that 2	

properly defined SSNR curves should always improve after increasing the sampling (by increasing 3	

the percentage of uniformly distributed views that lead to measured data in the unmeasured 4	

region). All figures of the SCF curves and dependencies on control parameters are provided 5	

accordingly. 6	

 7	

3.1 Discrete and continuum approaches to the sampling function 8	

 9	

3.1.1 Discrete treatment for sampling 10	

The projection-slice theorem [24] states that a 2D projection from a direction 𝑛 of a 3D map, is a 11	

slice out of the Fourier volume of the plane perpendicular to 𝑛 and passing through the origin, as 12	

shown in Figure 1. If we think of the map as rotated by 𝑅 before the projection (along 𝑧), then 13	

what we term the projection direction, 𝑛, is (approximately) perpendicular to the sampled points, 14	

and is given by 𝑛 ≡ 𝑅V𝑧.  As suggested in Figure 1, each projection, 𝑛2, samples the set of points 𝑘 15	

satisfying 16	

 17	

                                       𝑛2 ⋅ 𝑘 ≤ N
7
		.                                             (3.1) 18	

 19	

The totality of the discretely sampled points form a lattice as shown in Figure 3. Here, a single 20	

projection (in Fourier space) is taken in the 𝑧 direction with Fourier magnitudes less than the real 21	

space box, 𝐿. Lattice sites, shown as blue dots in the 𝑘� = 0	plane are considered to be sampled. 22	

Each sampled plane selects a lattice of points in this manner. Our numerical algorithm hinges on 23	
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finding lattice sites that satisfy (3.1) for each projection. As we sum over projections, we increase 1	

the totality of “viewings” of each lattice site. In direct Fourier inversion, this integer number of 2	

“viewings” will correspond roughly to the reconstruction weights. 3	

 4	

The number of times a particular 3D point, 𝑘 is sampled, we term Sp(𝑘), and is therefore given by 5	

the cardinality of the set of the projections, that for a given 𝑘, satisfy the criterion of Eq. (3.1). 6	

Therefore: 7	

 8	

Sp 𝑘 ≡ 	 Θ( 𝑛2 ⋅ 𝑘 ≤ N
7
	)r

2]N 		,                       (3.2) 9	

      10	

                11	

where Θ is the indicator function (see Glossary). The per-particle sampling function we define as:  12	

 13	

sp 𝑘 ≡ N
g
	Sp 𝑘 		 .                                      (3.3) 14	

 15	

Eq. (3.1) is what is used numerically to find the sampling at each voxel, wherein the vector to each 16	

voxel is checked against every projection to see if the dot product between this vector and the unit 17	

direction given by the projection is sufficiently small (less than ½ in magnitude). 18	

 19	

We investigate suitably many approximations that the sampling function emerges as a quantity 20	

that independently affects the SSNR (and only coupled to average microscope effects: not 21	

individual CTFs per particle, for example). It is our hypothesis that this level of approximation is 22	

sufficiently useful to enable understanding the effect of anisotropy on resolution. 23	
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 1	

3.1.2 A continuum treatment for sampling.  2	

We wish to formulate the expressions analytically whenever possible. Toward this end, we recast 3	

(3.2) using Dirac delta functions, which will provide continuum calculations that are both useful 4	

and accurate. For a single projection in the z-direction, we would like to employ 5	

sp 𝑘 = 	𝛿 	𝑘 ⋅ 𝑧    .                                    (3.4) 6	

Generally the Dirac delta function is considered to be 𝑀		Θ |𝑘�| <
N
7 

, in the limit that the 7	

parameter M becomes arbitrarily large, whereas we have taken M as simply unity in (3.1).  The 8	

delta function analytical approximation is crude, but satisfies the proper normalization. 9	

The generalization of (3.1) for continuum calculations using the idea in (3.2) yields 10	

Sp 𝑘 ≡ 	 δ(𝑛2 ⋅ 𝑘	)r
2]N 		,         (for analytical evaluations)          (3.5) 11	

       ≡		∫ ρ(𝑛)		δ(𝑛 ⋅ 𝑘	),                                     (3.6) 12	

where ρ(𝑛)		is a measure on the distributions of projections parametrized by 𝑛: (in this case, 13	

ρ 𝑛 = 	 δ(𝑛2 − 𝑛	)r
2]N , which is discrete, but generally ρ 𝑛  may be continuous). Eq. (3.5) is 14	

the continuum approximation when the length of the side of the box, which we will use as L, can 15	

be considered to be much larger than 1. This is sufficient for many of our analytical treatments and 16	

development of formulae, since we are often working far from the Fourier origin. In Eqs. (3.5), we 17	

consider Fourier space to be dimensionless (unitless), which is a common practice. To reintroduce 18	

units, if one has, in 1D, 200 voxels of voxel size 1 Å per side, then each Fourier space voxel will 19	
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have width N
7¤¤	Å

 and the largest distance from the Fourier origin will be N
7	Å

 (this is the Nyquist 1	

frequency). The average sampling across a shell at fixed Fourier magnitude can be derived using 2	

our continuum treatment. Starting from Eq. 3.4: 3	

<sp 𝑘 >	= 		 N
¦	�
	 dϕ7�
¤ 		 dθ�

¤ sin 𝜃 		𝛿 	𝑘	 cos 𝜃	   ,                 (3.7) 4	

=		 N
7	
	 dθ�
¤ 		sin 𝜃 	𝛿 	𝑘	 cos 𝜃	 = N

7?
                           (3.8) 5	

This is a natural result: placing planes (Fourier slices) into volumes, the density must fall off as 6	

one over the Fourier radius. A more thorough derivation is given in Appendix A.1, including an 7	

interpretation of the geometrical factor 2, which couples to the k dependence. Eq. (3.8) is also the 8	

sampling per particle for a uniform set of projections, but Eqs (3.7) and (3.8) hold for any 9	

distribution of projections. 10	

3.1.3 Consistency between numerical and analytical expressions for sampling 11	

As a check of both our code and analytical implementation, we tested the total amount of sampling 12	

in our volume by placing 50,000 projections in a box of size LxLxL with L=41.  We calculated 13	

the integer sum, S, over all the sampling at all the points, and evaluated 𝑆/4𝐿7 numerically to be 14	

1.19. To develop an analytical expression or this idea, we can write 15	

𝑆	 = 	 dk�
®
�® 	 dk¯

®
�® 	 dk�	

®
�®

N
7?

     ,                               (3.9) 16	

where k is spatial frequency. This is the average amount of intersection of arbitrarily oriented 17	

planes with a cube of side 2L.  In the appendix A, we show that the integral evaluates to 18	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635938doi: bioRxiv preprint 

https://doi.org/10.1101/635938
http://creativecommons.org/licenses/by/4.0/


	 28	

 °
¦®p

= 	3	 	−		 �
N7
+ 			ln	 	1	 + 3 	− ln	√2	 = 1.19.         (3.10) 1	

This corroborates our numerical result described above. 2	

 3	

3.2: Sampling Function for three different distributions in continuum representation 4	

 5	

We calculate the sampling function for three different distributions. The first is the case of the 6	

complement to a cone (which we term side-like). The second is for side views with a modulation 7	

in the azimuthal Euler angle. Finally, we also calculate the top-like cases, where a certain fraction 8	

of uniform views is also included. The side-like views and side-modulated views are each 9	

governed by single parameters: i) the cone half angle, 𝛼 and ii) the modulation parameter, 𝜆. The 10	

top-like family of distributions is governed by two parameters: once again, the cone half-angle, 𝛼, 11	

and a parameter, 𝜖, to cover uniform projections in the complement to this region. 12	

 13	

Figure 4 shows the projection distributions that will be described in this section, including a 14	

schematic representation of the projection distribution (top row), the population of Fourier space 15	

through slice insertion (middle row), and the experimental sampling map derived from 10,000 16	

insertions (bottom row). These are displayed for different sampling schemes, including the 17	

uniform (Figure 4A), side-like or complement to cone (Figure 4B), side (Figure 4C), side-18	

modulated (Figure 4D), and top-like (Figure 4E). 19	

 20	

3.2.1 side-like cases (𝛼) 21	

For the side-like case, we have 22	
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 1	

          					sp 𝑘 = dµ⋅� O¶hR	 · 𝑛   𝛿 𝑛 ⋅ 𝑘 /𝐶r ,                                           (3.11) 2	

 3	

where 𝐶r is a constant to ensure the normalization (3.8), leading to (see Appendix B): 4	

 5	

       sp	 k, θ = 	 N
?

R¹�ºv »¼�½
�¾¿À

�	 ¶hR	 ·
						,			 �

7
− 𝜃 < 	𝛼;			                                      (3.12) 6	

	8	

						 N
7?	 ¶hR	 ·

			.												 �
7
− 𝜃 ≥ 	𝛼								("side-like")		                   (3.13) 7	

 9	

The distribution for side views can be selected by taking the 𝛼 →	�
7
  limit to arrive at: 10	

sp	 k, θ = 	 N
	�	? R¹� Ã

	,			𝜃 > 0,									    (“side-view)                            (3.14) 11	

 12	

Along the z-axis (that is, 𝑘 sin 𝜃 = 0), sp should have the same value as at the origin, which is 1. 13	

 14	

3.2.2 modulated side-views (𝜆): A set of modulated side view projections can be written as a 15	

density distributions: 16	

                 17	

                    ρ 𝜙µ 	= 		 	1 + λ	 cos 2𝜙µ		        ,        (3.15) 18	

where 𝜙µ is the azimuthal angle for a projection direction 𝑛. This gives rise, therefore to a sampling 19	

given by: 20	

 21	

sp k, θ, ϕ = Åµ Æ µ⋅� 			 	NuÇ	 ¶hR 7ÈÉ		 	  Æ µ⋅?
Êy

 , 22	
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	2	

       	= 	N�Ç	 ¶hR 7È		
�	?	 R¹�	 Ã

      (“modulated side views”)               (3.16) 1	

 3	

We describe in appendix A.3 how to select a set of projections with this form, using the cumulative 4	

distribution function. 5	

 6	

3.2.3 top-like cases (𝛼, 𝜖) 7	

Finally, we consider sampling for the top-like cases: 8	

    9	

                                   sp 𝑘 = dµ⋅� T¶hR	 · 𝑛   𝛿 𝑛 ⋅ 𝑘 /𝐶r    ,                                    (3.17) 10	

 11	

which leads to (see Appendix B):                 12	

                               			sp	 k, θ = 	 N
7?
			
¶hRºv »¼�½

�¾¿À
�	 R¹�p	( ·/7)

						,			 �
7
− 𝜃 < 	𝛼,			                        (3.18) 13	

	15	

																											 "top-like" 																								0	,													 �
7
− 𝜃 ≥ 	𝛼		.						                       (3.19) 14	

 16	

Taking 𝛼 ≪ 1 leads to arbitrarily large values of sp: 2k	sp	 k, π/2 − η = 4	 𝛼7 − 𝜂7/17	

𝜋𝛼7		(for	|𝜂| < 𝛼). Once again, the sampling needs to be truncated to unity, when 𝛼 = 0, 𝜃 = 𝜋/2, 18	

that is in the xy plane, if the top-view is taken along the z-direction. 19	

 20	

These distributions have missing data, and so we can calculate, for each shell, the ratio of filled, 21	

P, to unfilled voxels, Q. 22	
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 1	

                  	�
�
	= 				

	R¹� ÃÑ/p
Ñ/pº½ 	ÒÃ

R¹� ÃÑ/pº½
Ó 	ÒÃ

				= R¹�·
N�R¹�·

     .    (3.20) 2	

 3	

We will need Eq. (3.20), to compute SSNR*, as argued in section 2, because there is missing data 4	

and develop an adjusted formula for top-like SCF distributions in the next subsection. 5	

 6	

We also can evaluate the top-like cases, when we add a random distribution of projections, so as 7	

to fill in the missing data. Then: 8	

 9	

                            2k	sp	 k, θ = (1 − 𝜖)			
¶hRºv »¼�½

�¾¿À
�	 R¹�p	( ·/7)

	+ 𝜖						,			 �
7
− 𝜃 < 	𝛼;			     (3.21) 10	

 11	

                                  					𝜖	,																			 �
7
− 𝜃 ≥ 	𝛼		("top − like	with	uniform")		 12	

 13	

where 𝜖 is the fraction of projections that are distributed randomly, and the rest fall in the original 14	

cone of half-angle 𝛼. 15	

 16	

 17	

Section 3.3 The Sampling Compensation Factors for the three different distributions 18	

 19	

The SCF is defined via:  20	

 21	
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                                    N
KLM

≡	< N
7Q	RS(𝐤)

>      (3.22) 1	

 2	

where < ∙> is the average over solid angle regions that have non-zero values of the sampling. We 3	

can evaluate this numerically for the “top-like” and “top-like with uniform” distributions, and 4	

analytically for the “side-like” and “modulated side-view” cases. 5	

 6	

In Appendix A.5, we evaluate Eq. (3.22) using (3.14) to arrive at: 7	

 8	

                         	1/SCFR¹Ò�	jhÒÚ�ÛÜ�Ò(𝛼) =
�p

�
N
N�Ýp

           ,       (3.23) 9	

 10	

which ranges from arbitrarily large values to  �
p

�
  (when 𝜆 = 0	; no modulation). In practice, the 11	

sampling never achieves a continuum of values, so the expression given by (3.23) cannot be used 12	

for 𝜆 very close to 1.   13	

 14	

One can also show: 15	

 16	

        1/SCFR¹Ò���¹Q�(𝛼) = cos	 𝛼 (1 − sin	 𝛼) + �
7
(cos	 𝛼)  ·¤    ¶hR Ã ÅÃ

Ûi¶R¹�	 »¼�	 ½»¼�	 À
     ,           (3.24) 17	

 18	

ranges from �
p

�
   (𝛼 = �

7
	side views) to  a value of 1  (𝛼 = 0 , uniformly distributed views).    19	

 20	

Figure 5 shows schematically the behavior of the SCF for the side-modulated and side-like cases. 21	

It is shown there how to continuously vary the SCF from its low values (corresponding to side-22	
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modulated cases with sampling suffering from deep pockets) to its highest value unity (for uniform 1	

views). 2	

 3	

Finally, we want to calculate the quantity that represents the top-like situation. Since much of the 4	

region is zero, the normalization from (3.22) must be carefully calculated and leads to: 5	

 6	

              1/SCFÜhS��¹Q�(𝛼) =
�
7
	tan	 𝛼/2	  ·¤    ¶hR Ã ÅÃ

Ûi¶¶hR	 »¼�	 ½»¼�	 À
                                   (3.25) 7	

 8	

The right-hand side of (3.25) ranges from 1 (𝛼 = �
7
 , uniformly distributed views) to 0 (for 𝛼 = 0, 9	

purely top views). The asymptotics are 1 − 2	 �
7
− 𝛼 	for	 �

7
− 𝛼 ≪ 1, and  �

p

�
𝛼 for small α.  Thus, 10	

we have a set of analytical expressions for SCF that can run from arbitrarily small to unity and 11	

from unity to arbitrarily large levels. However, any distribution with SCF > 1, involves 12	

distributions with missing data. Ultimately, the more relevant attribute, will be SCF∗ which relates 13	

how the correctly adjusted SSNR∗ is decremented due to the sampling. Thus, the SCF∗ is bounded 14	

by	0 ≤ SCF∗ ≤ 1. 15	

 16	

Repeating with the additional random projections gives a drastically different value for the SCF 17	

for the singular change of adding partially uniform perturbations, because now all (or most) of the 18	

Fourier points have at least some sampling. 19	

 20	

           N
KLMß¼xºà¾�á,			â	(·)

= �
7
	sin7	 ·

7
 ·¤    ¶hR Ã ÅÃ

ã	ä		 	R¹�p	½p	u	 N�	ä 		Ûi¶¶hR	
»¼�	 ½
»¼�	 À

			+ 			 N�R¹�·
å

      .       (3.26) 21	

 22	
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For such top-like distributions, it is interesting to compare SCFÜhS��¹Q�		∗ 𝛼  from (2.31) with 1	

SCFÜhS��¹Q�,ä		(𝛼) for small but finite 𝜖 from Eq. (3.26). From Eq (2.31), (3.20) and (3.25), we can 2	

derive the 𝜖=0 quantity: 3	

 4	

                     N
KLMß¼xºà¾�á		

∗ (·)
	= 	 N

KLMß¼xºà¾�á(·)
				+ 				𝑁		 N�R¹�·

R¹�·
			 N
7?
	          ,                          (3.27) 5	

  6	

                               = �
7
	tan	 𝛼/2	  ·¤    ¶hR Ã ÅÃ

Ûi¶¶hR	 »¼�	 ½»¼�	 À
	+ 	𝑁	 N�R¹�·

R¹�·
	 N
7?

 .                   (3.28) 7	

 8	

Note that SCFÜhS��¹Q�	∗ = SCFÜhS��¹Q�,			å	(𝛼), when	α =
ã
7
.  For small 𝜖, but large N, the second 9	

terms of both (3.26) and (3.28) dominate and we get: 10	

 11	

   	𝛼	 < �
7
			 , 𝑁 ≫ 1,			𝜖 ≪ 1		 		SCFÜhS��¹Q�	∗ 𝛼 		≈ 	 7?

r
		 R¹� ·	
N�R¹�·

					,	  (3.29) 12	

	14	

																																																												SCFÜhS��¹Q�,			ä	 𝛼 ≈ 				 å
N�R¹�·

		                                      (3.30)                    13	

 15	

The crossover between these expressions occurs approximately when  16	

 17	

                        	𝜖 𝛼 ≅ sin 𝛼 	 7?
r

.                              (3.31) 18	

 19	

The situation for the decrement in the correctly adjusted SSNR is depicted In Figure 6, for the 20	

poorly sampled cases. The Eq. (3.28) is the lower bounding curve in gray (𝜖 = 0). Otherwise, the 21	
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curves represent Eq. (3.26).  There is no crossover, unless epsilon is sufficiently small: in the figure 1	

there are only three crossings of the curves.  For 𝑘 = 15, and 𝑁 = 10¦, Eq. (3.31) implies 𝜖 =2	

0.03 ∗ sin 𝛼 , SCF∗ = 0.03 R¹�·
N�R¹�·

  =  is the crossover between curves. 3	

 4	

The last expressions tell the entire story of missing data. If data is missing in some sizeable region, 5	

the adjusted SSNR is drastically reduced. However, even a small fraction of random perturbations 6	

starts to quickly reintroduce signal. If there is a gap, the SCF is increased by a factor 7	

 8	

KLM∗ å
KLM∗ å]¤

		= 	 rå
7? R¹�·	

 ,   (“ratio of top-like SCF at finite 𝜖,	 to 𝜖 = 0,	 top-like”)          (3.32) 9	

  10	

by adding back a fraction 𝜖 worth of random perturbations. For 𝑁 = 10¦, 𝑘 = 15, 𝛼 = 45°, 𝜖 =11	

0.01, the RHS becomes 4.7, which is a huge jump over such a small change in 𝜖.  Conversely, 12	

having an empty region of Fourier space gives much lower SCF∗	than a lightly sampled Fourier 13	

space.    14	
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Section 4.  Relationship between SSNR and the number of particles N in a 1	

reconstruction 2	

In Section 2, we derived the relationship (2.20) (or equivalently (1.1)), which is the estimate of the 3	

SSNR in terms of the sampling. There are two aspects of the latter: the cumulative extrinsic effect 4	

due to the number of particles in the data, and the shape of the distribution of the sampling (or 5	

projection directions), an intrinsic quality. When Fourier space is reasonably sampled everywhere, 6	

we can assign a single parameter to each of the extrinsic and intrinsic qualities of the sampling: N, 7	

the number of particles, and SCF, the sampling compensation factor, defined as in Eq (1.2). The 8	

SSNR is seen to be proportional to each quantity, with the SCF attaining its maximum value of 9	

unity when the distributions of projections are uniform. 10	

 11	

In this section, we revisit the dependence of the SSNR on N, the number of particles, when every 12	

other aspect of the problem is held constant: 13	

 14	

                                          SSNR 𝑁, 𝑘 = 	𝑁		ssnr(𝑘)            ,                                    (4.1) 15	

 16	

for some function, ssnr, which is the form of Eq. (1.1) with ssnr k ≡ 	 KLM
7?
		 N
𝒩(?)

 .  Eq. (4.1) is the 17	

familiar way that the signal in a noisy system should accrue, if N represents the total number of 18	

measurements. The per-particle SSNR, which depends on many factors that corrupt the final 19	

reconstruction, is observed to be quite rigid and independent of N, as previously noted [19]. The 20	

resulting universal curve, ssnr(𝑘), includes multiple components inherent within the cryo-EM 21	

pipeline that attenuate resolution: attenuation due to the microscope transfer function, detector 22	
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noise, incorrect image orientation assignment, structural heterogeneity, among others. The 1	

consequence is that the number of particles needed to obtain a higher resolution using the same 2	

collection scheme can be determined from a single SSNR curve, provided that the curve is 3	

sufficiently smooth at the desired resolution: indeed, smoothness of the SSNR curve might be 4	

another possible criterion for resolution. The universality of the SSNR/𝑁 curves is akin to the 5	

familiar Reslog [25] or Guinier [19] analyses.  6	

 7	

4.1 Linear dependence of SSNR on N 8	

 9	

According to Eq. (4.1), dividing the SSNR by the number of particles results in a universal per-10	

particle curve.  To test this idea, we looked at sequences of FSC, equivalently SSNR, curves for 11	

reconstructions using successively larger number of particles, N, for data from an experimental 12	

dataset contributing to a 2.9 Å reconstruction of the eukaryotic large ribosomal subunit [26]. Figure 13	

7A shows a total of seventeen experimental FSC curves, from N=7000 to 70000 particles. The 14	

series of FSC curves collapse to a universal curve via SSNR/N, as predicted by 4.1, where 15	

SSNR 𝑁, 𝑘 ≡ 	 MKL(g,Q)
N�MKL(g,Q)

, as shown in Figure 7B.  Although this idea has appeared formally in 16	

many places [19, 25, 27, 28], we have not noted the explicit construction of such universal curves, 17	

as highlighted here. For smaller values of particle number, 𝑁, the ssnr(𝑘) curve loses continuity 18	

at smaller values of resolution and limits our ability to calculate the necessary number of particles 19	

to achieve higher resolutions, as described below. 20	

 21	

4.2 Number of Particles Necessary for Reconstruction 22	

 23	
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Eq. 4.1 can be used to predict the number of particles necessary to attain a given resolution for a 1	

general envelope function, ssnr 𝑘 , derived from a single SSNR curve. A common scenario that 2	

is encountered during cryo-EM data collection is one in which the experimentalist asks whether 3	

the current approach is conducive toward achieving a target resolution, given a fixed amount of 4	

collection time. Our claim is that, there is some N¤ so that for N = N¤, we can construct the curve 5	

ssnr k ≡ SSNR(N¤	, k)/𝑁¤	and arrive at a reasonable estimate predicting the necessary number 6	

of particles (it is conceivable to make a lower estimate for the necessary N¤, but this is beyond the 7	

scope of the current discussion). Thus, for a resolution criterion, FSC = FSC∗	, one arrives at an 8	

implied criterion, SSNR = SSNR∗ = FSC∗/(1 − FSC∗)	 (If FSC∗ 	= 	0.143, or 0.5 then SSNR∗ 	=9	

	0.167 or 1.0 respectively). Next, one defines 	𝑘V to be the target resolution. Then the necessary 10	

number of particles, 𝑁V , to achieve the target resolution is given by:   11	

          12	

            𝑁V 	= SSNR∗/ssnr 𝑘V                   .        (4.2) 13	

 14	

Graphically, we can make a construction on a semilog plot of the original SSNR curve, and realize 15	

that  16	

 17	

            log𝑁V/𝑁¤ = log(SSNR∗/	SSNR(𝑘V, 𝑁¤))	    ,    (4.3) 18	

 19	

which follows from Eq. (4.1), which implies  𝑁V/𝑁¤ 		= 	SSNR 𝑁V, 𝑘V /	SSNR 𝑁¤, 𝑘V , and  20	

SSNR 𝑘V, 𝑁V = SSNR∗ . Now, Eq. (4.3) can be used to graphically find the number of particles 21	

needed to achieve a target resolution, since the shift from the current resolution to a target 22	

resolution gives the ratio in the number of particles to increase to. Unlike other methods discussed 23	
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in this section, this makes no assumptions about the functional form of the per-particle SSNR, 1	

ssnr(𝑘): it can be exponential (Reslog) or Gaussian (Guinier) or indeed hold to any shape. 2	

 3	

The idea is demonstrated for the ribosome sequence of reconstructions in Figure 7C. For 4	

convenience and in line with standard assumptions in the cryo-EM literature, we used the same 5	

two FSC criteria described above of 0.5 and 0.143, which is equivalent to an SSNR condition of 6	

SSNR∗ = 1 and 0.167, respectively, and analyzed the SSNR curve corresponding to 7000 particles. 7	

Using SSNR∗ = 1 (or equivalently FSC=0.5), the resolution is measured to be 7.9 Å. To obtain the 8	

necessary ratio of number of particles required for reaching the target resolution of 4.2 Å, and 9	

using this same criterion, we can measure the difference on the log plot, which is 2.3 or log(10), 10	

that is one decade. Therefore, the prediction is that 10 times the original number of particles are 11	

necessary to obtain a reconstruction at 4.2 Å. When the orange dotted curve that corresponds to 12	

10x particles is then inspected on the plot, the prediction is corroborated, since the resolution of 13	

the 70K particle FSC curve, where the orange dotted curve intercepts the SSNR∗ condition, 14	

matches to the predicted 4.2 Å. The identical analysis is repeated using the FSC=0.143 criterion 15	

in Figure 7D. 16	

 17	

Finally, we note that the SSNR is inversely proportional to the geometrical SCF factor, so that 18	

distributions with lower SCF (more fluctuations in the sampling) require larger numbers of 19	

particles. Under typical data collection procedures, the SCF is fixed by the sample preparation and 20	

microscope conditions, and one cannot easily consider the use of the SCF as an independent control 21	

parameter that can be conveniently varied. The exception would be to tilt the specimen, which 22	

would alter the orientation distribution, and thus the SCF	[15]. 23	
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 1	

4.3 Comparison of graphical methods (Guinier, Reslog, and per-particle SSNR curve) 2	

 3	

The Guinier [19] and Reslog [25] formulations are popular for extrapolating the number of 4	

particles necessary for reconstruction. We would like to understand the relationship between these 5	

graphical constructions and the per-particle SSNR curves. We give a thorough analysis of the 6	

Guinier analysis, and see that the Guinier assumptions essentially also imply (4.1), but restrict 7	

ssnr 𝑘  to a Gaussian form.  Our method is seen to be slightly more general, but in typical usage, 8	

identical to these, based on the argument below. 9	

 10	

The prescription in Guinier analysis	[19] is to estimate the number of particles needed to achieve 11	

a given resolution, and mark this on a semilog plot of  N as a function of the square of the spatial 12	

frequency, and repeat. This procedure is presumed to form a line, which can be extrapolated to 13	

find the number of particles to achieve a desired resolution. That is, knowing 𝑁N, define 𝑘N  14	

implicitly  by SSNR 𝑁N, 𝑘N 	= SSNR∗, where SSNR∗ is the fixed value of SSNR that demarcates 15	

resolution as described above, and define 𝑘7 similarly. The Guinier assumption is that: 16	

 17	

𝑘77 −	𝑘N7 𝜆7/2	 = 		 log𝑁7/𝑁N           ,    (4.4) 18	

 19	

for some constant 𝜆, for resolutions of interest corresponding to 𝑘N, 𝑘7. That is, along the fixed 20	

contours of SSNR, the change in the square of the resolution is proportional to the logarithm of 21	

the ratio of the number of particles used to achieve the SSNR criterion. By means of such a 22	
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construction, one can estimate the number of particles needed to achieve a higher resolution. Eq 1	

(4.4) is easily solved formally as  2	

 3	

𝐶N 	= log𝑁 𝑘 −	𝑘7	𝜆7/2                         ,        (4.5) 4	

 5	

where  𝐶N acts like a constant of integration, which depends on the SSNR, which is held fixed in 6	

the construction. This implies (exponentiate 4.5): 7	

 8	

                                    SSNR 𝑁, 𝑘 = 		𝐻(𝑁	 exp(− N
7
𝜆7𝑘7))               (Guinier),   (4.6) 9	

 10	

for some function 𝐻. Every set of SSNR curves of the form (4.6) will yield (4.4). The only 11	

reasonable choice for 𝐻 is linear, which matches our result (4.1), when ssnr(𝑘) from (4.1) is a 12	

Gaussian. We should point out that in light scattering, Guinier plots are used as a low frequency 13	

approximation where the various physical parameters can rigorously be argued to hold to the 14	

damped Gaussian format indicated by (4.6) [29].  15	

 16	

 17	

The Reslog analysis [25]  is very similar and leads to:   18	

 19	

                                  SSNR N, k = 		𝐻(𝑁	 exp(−𝑘/𝑐))				     (Reslog),                  (4.7) 20	

 21	

for some constant wavevector 𝑐. Once again, the only reasonable choice is a linear function,	𝐻, 22	

leading to Eq. (4.1) with an exponential form for ssnr(k) in Eq. 4.1.  23	
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 1	

 2	

Heymann [23] made an identical argument to arrive at our Eq. (4.1) and used the Guinier analysis, 3	

based partly on the formal results on blurring [30] and other envelopes [21]. As an aside, much 4	

like multiple time scales [31] can create an effective 1/frequency noise in physical systems rich 5	

with multiple time scales, with so many differing sources of noise in cryo-EM, it may be that, 6	

depending on the experimental circumstances, the linear behavior is equally valid to the quadratic 7	

behavior for governing the log of the envelope. In any case, Heymann suggests the Gaussian form 8	

for ssnr above: ssnr(𝑘) = exp(− N
7
𝜆7𝑘7)), consistent with the Guinier analysis. Although 9	

Heymann arrives at Eq. (4.1), he does not arrive at our Eq. (1.1), because the possible anisotropy 10	

is not discussed, and therefore he uses the expression for the uniform distribution of the per-particle 11	

sampling (1/2𝑘) which is our Eq. (3.8) and Eq. (9) of Heymann [23] . 12	

 13	

 14	

  15	
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Section 5.  Decrement of SSNR through non-uniform sampling 1	

 2	

In Section 4, we observed that the SSNR depends in two ways with the sampling; the extrinsic part 3	

governed by the number of particles N (as already has been discussed in the literature) as well as 4	

the type of the sampling governed by the geometrical factor of the sampling map, which we have 5	

termed the SCF.  In this section, we test whether the SCF (or SCF*) has the predicted effect on the 6	

SSNR as described by Eq. (1.1) and explained in section 3.3. We look at sequences of 7	

reconstructions of two proteins that vary in their size and shape: the influenza hemagglutinin trimer 8	

and human apoferritin, for all the situations for which we calculated the SCF (or SCF*) values in 9	

Section 3.3. In each case, we compare the SSNR curves of reconstructions versus the baseline 10	

case, which is a set of uniformly distributed views.   11	

 12	

5.1 Methods 13	

 14	

5.1.1 Generation of projection distributions 15	

 16	

We generated a set of 10,000 projection Euler angles for sequences of different sampling 17	

distributions, each of which is described in section 3.2. We evaluated three different schemes for 18	

modulating the projection distribution and comparing to the uniform distribution, as depicted in 19	

Figure 8. For the well-sampled side-like sequence, we used pure side views and modulated side 20	

views with a set of modulation parameters given by 𝜆 = 0.4, 0.6, 0.8, and	1.0, (Figure 8A).  For 21	

the first of the more poorly-sampled cases, we selected top-like projections, distributed within 22	

varying cone sizes of half angular width (5°, 30° and 45°), and fixed a small amount of random 23	
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projections (3%) distributed evenly across the rest of Euler space (Figure 8B). This scenario 1	

evaluates the effect of increasing cone size. For the second of the more poorly-sampled cases, we 2	

fixed the cone size to be 45° and added random assignments of 0%, 1%, 3% and 10% evenly 3	

distributed projections across the rest of Euler space (Figure 8C). This scenario evaluates the effect 4	

of increasing the amount of random projection “sprinkling” in the presence of an otherwise fixed 5	

distribution.  6	

 7	

5.1.2 Synthetic data generation with distinct projection distributions 8	

     9	

To test our idea relating the effect of a single geometrical parameter and the SSNR, we generated 10	

synthetic datasets corresponding to two proteins of varying size and shape, namely the 11	

hemagglutinin (HA) trimer and apoferritin. The synthetic data generation followed previously 12	

described protocols	[15, 32-34]. Briefly, 10K projections were generated from cryo-EM maps of 13	

either HA or apoferritin, according to the viewing directions that were described in Section 5.1 14	

above. These projections were shifted and rotated at random and noise was added. Next a 15	

distribution of CTFs were applied to the 2D projections, followed by an additional layer of noise 16	

to arrive at an SNR approximately equal to 0.05. This SNR is consistent with experimental cryo-17	

EM data	[35].	A reconstruction was performed with the known orientations using the Frealign 18	

software, and the usual FSC was calculated between half maps. In parallel, the angle assignments 19	

were used to calculate sampling maps, as described in Section 3 (and shown graphically in Figure 20	

4). From the sampling maps, the SCFs were calculated numerically by implementing (3.22).   21	

 22	

5.2 Results comparing decrements predicted by sampling and reconstructions. 23	
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 1	

We tested how well the SCF geometrical parameter, based solely on the projection directions, 2	

could predict the decrement of the SSNR, with all other aspects of the problem held constant. 3	

 4	

5.2.1 Side-like and side-modulated sampling cases 5	

 6	

We first proceeded to test the predictive ability of the SCF on well-sampled cases, where most of 7	

the values of the sampling remain reasonably high and each index point is sufficiently sampled, 8	

e.g. above 20. From a theoretical perspective, we should expect that the ideas set forth are most 9	

accurate in the this scenario. This is a typical case in cryo-EM reconstructions, even if some views 10	

are dominant.  In the well sampled cases, all the structure factors remain at play, so we expect that 11	

the formulae relating SSNR to SCF are reasonably accurate. The situation is presented in Figure 12	

9, where we describe the effect on reconstructions for a uniform case, for side views, and for 13	

modulated side-views. For both reconstructions of HA and apoferritin, in comparison to uniform, 14	

the SSNR curves are attenuated for side sampling in accordance with the amount of sampling 15	

inhomogeneity (Figure 9A-C). Side views have a range of sampling values over the surface of a 16	

Fourier sphere of radius, 𝑘, from the on-axis values to those on the orthogonal plane with a max-17	

min ratio of 𝜋𝑘. For the modulated side-view case, the ratio is even larger:  𝜋𝑘/(1 − 𝜆), where 𝜆 18	

is the strength of the modulation. Nevertheless, the agreement between the decrement in SSNR 19	

and the SCF, as shown in the table in Figure 9D, is acceptable for both HA and Apoferritin. 20	

 21	

5.2.2 Top-like sampling cases for varying cone sizes 22	

 23	
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We then proceeded to describe cases that would reflective of a predominant top view, and for this 1	

reason constructed the two-parameter family of distributions described by 𝛼 and 𝜖, where the 2	

former represents the half-angle of the cone from which the projections are drawn, and the latter 3	

represents the percentage of uniform projections besides those drawn from the cone. First, we vary 4	

the size of the cone, while fixing 3% uniform sampling across the rest of Euler space. Figure 10A-5	

C shows how the SSNR is attenuated for reconstructions generated from such top-like distributions 6	

containing a fixed amount of sprinkled projections. In these cases, the maximum to minimum 7	

sampling can be so large as 1 + 4/(𝜋𝜖𝛼), for small 𝜖, 𝛼 according to the analytical formula. 8	

Nevertheless, in Figure 10D, the multiplicative shift determined from SCF (both numerically and 9	

from formulae) approximately matches the decrement in SSNR.  10	

 11	

5.2.3 Top-like sampling cases for fixed cone size and varying fraction of randomly sprinkled 12	

projections 13	

 14	

Finally, we took the same two parameter family as in Section 5.2.2, but examined a fixed cone 15	

size, and varied the fraction of random projections. Figure 11A-C shows how the SSNR is 16	

attenuated for reconstructions generated from such top-like distributions containing a fixed cone 17	

and varied number of random projections. The first observation from this data, as we explained in 18	

Section 3, is the artefactual increase in the SSNR for cases with completely missing data (black 19	

dotted curve in Figure 11A-B). This stems from the singularity in the theory for how the SSNR is 20	

typically defined, and a separate formula is needed to properly account for the variation that is 21	

implicitly missing, in half maps created from sets of projections with missing data. The adjusted 22	

formula from Eq. (3.27) pushes the SSNR curve to the appropriate ordering of the curves, where 23	
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increasing the sampling always increases the SSNR (black solid curve in Figure 11A-B). 1	

Theoretically, the other curves (1%, 3%, 10%) should not be adjusted, because there is sufficient 2	

sampling to add information to the missing regions. In practice, there is also a small shift in those 3	

curves, which is not shown for the sake of clarity. The second observation from this data is that, 4	

for cases with large gaps in Fourier space, a small amount of additional projections goes a long 5	

way in increasing the SSNR. This is not surprising. Even in the early days of reconstructions, it 6	

was realized that, for under-sampled cases, adding small amounts of information to deficient parts 7	

of Fourier space greatly improves the ability to solve the reconstruction problem	 [36]. The 8	

experimental attenuations of the SSNR are also in line with the geometrical decrement of the SCF 9	

in continuum calculations (compare Figures 11 and 6). As in the previous cases described above, 10	

Figure 11D shows that the multiplicative shift determined from SCF (both numerically and from 11	

formulae) approximately matches the decrement in SSNR. 12	

 13	

14	
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Discussion 1	

In this work, we show that non-uniformity of the set of projection views drives down properly 2	

defined global resolution measures. Our calculations are based on standard assumptions, that there 3	

is some envelope that seems to stabilize for values less than 10 Angstroms [19]. The SSNR 4	

resolution measure estimates the ratio of the signal power to the signal variance. Using ordinary 5	

statistics, we expect that the variance per voxel will be decremented by the sampling. Therefore, 6	

if we assume that the noise variance approximately decouples from the sampling, then the average 7	

over Fourier shells of the reciprocal sampling arises naturally in the expression for the SSNR, 8	

leading to Eqs (1.1) to (1.2). Thus, the measure for the efficacy of sampling that we advocate, the 9	

SCF, emerges naturally, if we wish to isolate the effects of the geometry of the sampling on the 10	

resolution. The incorporation of the SCF	is the step that distinguishes our calculations from similar 11	

calculations, such as [23]. 12	

 13	

A typical cryo-EM reconstruction procedure carries along information that can be represented by 14	

three maps: two half-maps and a sampling map that can be created from knowledge of the angle-15	

assignments or that can be taken to be the map of reconstruction weights in a direct Fourier 16	

reconstruction. From these maps, one can estimate up to second moments and continue to combine 17	

information to arrive at more refined reconstructions. Ultimately, one arrives at a mean map, 18	

variance map, and sampling map, or three pieces of information per voxel.  If there is missing data, 19	

then there is a pathology in the way that SSNR is typically defined. Although defining the mean 20	

of the missing values to zero is acceptable (and forms the best estimate of the original structure), 21	

setting the variance to zero is illogical, since there is enough information to give a better estimate. 22	
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We find a self-consistent correction to the ordinary SSNR and showed in section 5 that the 1	

redefined SSNR always increases with more uniform sampling, as should be expected. 2	

 3	

We also demonstrated the linear dependence of the SSNR on the total sampling, which is governed 4	

by the number of particles.  This was implicit in earlier analyses of Guinier or Reslog, as shown 5	

in the mathematical description of section 4, but takes on a simpler form here. We show that these 6	

latter constructions imply a definite functional form for the SSNR, which is more restrictive than 7	

necessary. Indeed, we provide the mathematical argument, that one can estimate the number of 8	

particles necessary to achieve a higher resolution, using the same collection strategy, but with a 9	

single SSNR curve, provided that the curve is sufficiently continuous over the resolution ranges in 10	

question. This has value during data acquisition, since it can inform the experimentalist how a 11	

given collection might be altered or abandoned based on the goals of the experiment, and the 12	

prediction is achieved without the need to recalculate reconstructions using particle subsets. 13	

 14	

There are several major implications from the current work. Most importantly, the direct 15	

relationship between sampling and global resolution in single-particle cryo-EM implies that any 16	

deviation from uniformity always drives down the SSNR, and thereby leads to an increase in the 17	

number of particles that are required for attaining a specified resolution. There is a persistent 18	

problem of preferred specimen orientation (and consequently non-uniform projection 19	

distributions) that appears to affect the vast majority of single-particle reconstructions [6]. This 20	

means that virtually all data sets are characterized by non-ideal imaging and image processing 21	
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conditions. As dictated by Eq. 1.1 (also Eq. 2.20) the experimental situation therefore requires 1	

optimizing two parameters – the experimental “envelope” as well as the sampling distribution. 2	

Here, we use the term “envelope” in a broad sense to encompass all of the factors that attenuate 3	

experimental resolution. These include, but are not limited to, beam coherence, ice thickness (and 4	

its effect on the background signal-to-noise ratio), quantum efficiency of the detector, residual 5	

specimen movement that is not corrected by motion correction, errors in computational orientation 6	

assignment, structural heterogeneity, and any other factors that generally attenuate experimental 7	

resolution, as measured by the FSC. In addition to the envelope, the sampling distribution 8	

matters.  To reach the hypothetical resolution limit for small particles [37], it is therefore essential 9	

to not only improve hardware and software, but also techniques for specimen preparation, in order 10	

to maximize sampling uniformity on cryo-EM grids. Some effort toward this goal is ongoing [7], 11	

but more needs to be done. Along these lines, the more symmetric the particle, the more 12	

orientations are sampled during the reconstruction process. Therefore, symmetry does not merely 13	

multiply the number of particles in the data in accordance with the symmetry group; the 14	

improvement in sampling for symmetric particles also contributes to gains in SSNR by virtue of 15	

improvements to the SCF. Thus, symmetry has a dual effect in improving both data quantity and 16	

quality. In part for this reason, cases like AAV [2] and Apoferritin [3] have pushed the resolution 17	

limits and are associated with very low temperatures factors (or slowly decreasing envelopes) in 18	

the data.  19	

 20	

Beyond attenuation of global resolution, the extent to which the map suffers as a consequence of 21	

incomplete sampling is currently unclear. Specimens with high C- or D-fold symmetry that are 22	
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characterized by pure side views are, strictly speaking, anisotropic. However, the effect at the level 1	

of the reconstructed map is negligible, and the experimentalist should not notice differences in 2	

structural details if one were to directly compare to a map reconstructed from a uniform sampling 3	

distribution. Nonetheless, as we show in figure 9 and emphasize throughout this work, the SSNR 4	

for pure side views is still attenuated in comparison to uniform by ~20%, and thus the amount of 5	

data required for reaching certain resolutions is increased by approximately the same 6	

percentage. Beyond the simple cases, there are multiple factors that currently complicate an 7	

exhaustive analysis of experimental maps characterized by different symmetries and sampling 8	

geometries. First, it will be necessary to decouple the effect of anisotropy (in its strict definition, 9	

impacting directional resolution) from the attenuating effect on global resolution. More worryingly 10	

however, we believe that there may, in certain extreme cases of missing data, be systematic bias 11	

in the reported resolution in the field, caused by artefactual inflation in the FSC (for example, as 12	

observed in figure 11). In part for this reason, we introduced the FSC* and SSNR* criteria, which 13	

compensate for missing views in Euler space and report a more realistic value of resolution for the 14	

pathological cases. FSC* and SSNR* can, in principle, be extended to highly under-sampled 15	

orientations that may be prevalent in experimental situations. Implementation of these criteria to 16	

experimental data, and a careful analysis of the underlying sources and resulting statistics, will be 17	

the subject of future work. 18	

 19	

Experimental improvements to the sampling distribution can be achieved by tilting the specimen 20	

inside of the electron microscope. However, this comes at a cost of degradation in image quality 21	

[15]. The direct relationship between sampling and resolution indicates that any attenuation due to 22	
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sampling can now be compared with other types of experimental attenuations, for example due to 1	

beam-induced movement, ice thickness, errors in the image processing pipeline, etc. Thus, a 2	

natural direction will be to quantify the resolution gains caused by improvements in orientation 3	

sampling, as compared to resolution losses caused by degradation of image quality during tilted 4	

data acquisition. Such studies will help to quantitatively establish an optimal tilt angle for any 5	

dataset containing a given sampling distribution. 6	

 7	

Finally, The SCF provides a direct means by which to evaluate a sampling distributions, with an 8	

intuitive scale ranging from 0 to 1. We propose the use of the SCF for evaluating Euler angle 9	

assignments for sets of particles that produce 3D reconstructions in cryo-EM. 10	

 11	
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 1	
 2	

Figure 1.  Geometry of projections in Fourier space. (A) A 3D object in its Fourier space representation 3	
is rotated by R, and (B) a slice is extracted from the 3D Fourier transform (FT). Based on the Fourier slice 4	
theorem, selecting a 2D slice out of a 3D FT is equivalent to orthogonally projecting the original real-space 5	

map along the new 𝒛	axis. (C) The data in a projection is contained in a slab of Fourier space of unit height. 6	

When considering what the data in a 2D projection, 𝐹(𝑘), corresponds to in 3D, it is easiest to consider the 7	

mapping 𝑹𝑻,  as  shown from (C) to (D). Now, the coordinates on the 3D FT as shown in D are clear:  q = 8	

𝑘Z, 	𝑘[, 	0 ⋅ 𝑹. The slab condition on the projection, |𝑘�| < 1/2 readily translates into the 9	

condition 𝑛 ⋅ 𝑞 < N
7
,			where 𝑛 = 𝑹𝑻	𝒛. 10	

  11	
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 1	
 2	
Figure 2. Schematic of the proposed adjustment to the SSNR formula for cases with unmeasured 3	
regions of Fourier space. The shaded areas represent the P values on a Fourier sphere that have been 4	
measured for a target value, T, in the measured region. The variance in the measured region is down-5	
weighted by the total sampling, Sp, which is N times the per-particle sampling, sp. Meanwhile, the unshaded 6	
region represents Q unmeasured values. In (A) the unmeasured voxels are assigned zero variance, whereas 7	
in (B) the voxels are assigned variance consistent with the already measured voxels, resulting in two 8	
different expressions for SSNR. The expression in (A) limits to arbitrarily large values as the number of 9	
particles increases, whereas in (B) the expression saturates. 10	
  11	
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 1	
 2	
Figure 3.  Numerical and analytical representations for sampling. A representation in Fourier space of a 3	
single projection with Fourier magnitudes less than L. Lattice sites, shown as blue dots, in the 𝑘� = 0	plane 4	

are considered to be sampled. Our coarse-grained approximation is that the entire slab of unit width 5	

containing those points are sampled: sp 𝑘 = Θ	 |𝑘�| ≤
N
7

, where Θ is the indicator function. Our 6	

numerical algorithm hinges on finding lattice sites that satisfy the generalization of this condition: sp 𝑘 =7	

Θ	 |𝑛 ⋅ 𝑘| ≤ N
7

 for any arbitrary projection direction given by 𝑛. For analytical calculations, we further 8	

approximate this as a delta function sp 𝑘 = δ 𝑛 ⋅ 𝑘 , which satisfies the proper normalization.  9	

  10	
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 1	
 2	
Figure 4. Projection distributions used to evaluate sampling. The first row denotes the directions of the 3	
projections (green); the middle row provides a schematic of the sampling (Fourier slices are in gray and the 4	
sampling map schematic is in green); the last row shows the experimental sampling map from 10,000 slices 5	
inserted into the 3D FT. (A) The uniform sampling distribution evenly covers the entirety of reciprocal 6	
space. (B) “side-like” projections are uniformly drawn from the complement to a cone of half angle, 𝛼. The 7	

uncovered region is orthogonal to the cone and lies along the X/Y plane. (C) Projections are drawn from 8	

the side, which corresponds to the 𝛼 → 𝜋/2 limit of case B (Euler angle q=90°). (D) In addition, we 9	

incorporated azimuthal oscillations (Euler angle f is modulated), which increases the fluctuation of side 10	

view sampling. The depth of the oscillations is governed by a parameter, 𝜆, and we term this scenario 11	
modulated side-views. (E) Projections are drawn from within a cone of half angle α. Unlike the other cases, 12	
the top-like distributions always have missing conical regions of Fourier space related to the size of the 13	
half-angle 𝛼. For this reason, we ultimately include an additional parameter, 𝜖, which represents the fraction 14	

of projections scattered randomly over the projection sphere. 15	
  16	
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 3	
Figure 5. Geometrical decrement of the SCF for side-like views characterized by thorough sampling. 4	
The SCF is a single geometrical factor, which forms an approximate estimate for how the SSNR is 5	
decremented due to deficits in sampling. We plotted SCFR¹Ò�	jhÒÚ�ÛÜ�Ò(𝜆) for modulated sets of side views 6	

(see Eq (3.23)), as well as SCFR¹Ò���¹Q�(𝛼) for side-like views (see Eq (3.24)). The approximations inherent 7	
in Eq. 3.23 are no longer valid for 𝜆 very close to 1, and therefore the plot is not shown for	𝜆 < 1, SCF > 8	

0. The projection views and sampling maps are shown in three typical cases: (i) 𝜆 = 0.8 side-modulated, 9	

where there is a deep pocket in the sampling, (ii) pure side views, where the contours of equal sampling are 10	
cylinders, and (iii) uniform views, where the SCF attains its maximum value of 1. Green open circles 11	
represent the numerical evaluations of the SCF, and their correlation with our continuum calculations 12	
(represented by the curves) reinforces the efficacy of both approaches.   13	
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 2	
Figure 6.  Geometrical decrement of the SCF for top-like views characterized by poor sampling. Plot 3	
shows the predicted SCF as a function of cone size and fraction of randomly sampled projections. The 4	
attenuation of SCF due to conical sampling is typically more severe than for well-sampled cases. The angle, 5	
𝛼, represents the cone (in degrees) that predominantly contains the projections, except for a fraction, 𝜖,  6	
which represent the percentage of projections that are distributed uniformly over the projection sphere. 7	
Typical distributions are shown later in Figure 8. The curve that bounds the whole set from below, is given 8	
by Eq. (3.28), but is otherwise given by Eq. (3.26): the plotted SCF* is the maximum of the two different 9	
expressions. This crossover between expressions is given at the bounding curve (gray) when 𝜖 𝛼 ≅10	

sin 𝛼 	 7?
r

.  11	

  12	
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Figure 7. Predicting the number of particles based on per-particle SSNR curves (A) We reexamined 3	
17 of the FSC curves with the largest numbers of particles from Passos et al [26]. (B) A plot of the per-4	
particle ln(SSNR/N) shows that these 17 distinct curves collapsed approximately to a single curve. (C-D) 5	
Since each curve contains essentially the same information, we can estimate the number of particles needed 6	
to achieve a target resolution. For example, one may wish to know the approximate experimental resolution 7	
by increasing the number of particles by tenfold from 7,000 (solid blue line) to 70,000. (C) using the 8	
SSNR*=1 threshold (solid black line), one would find the intercept corresponding to a 10x decrease in 9	
ln(SSNR) (dotted black line), and plot that back onto the solid SSNR* = 1 line. The experimental ln(SSNR) 10	
curve for 70,000 particles (dotted orange line) shows a correspondence between the prediction and the 11	
experimental intercept. (D) The same argument approximately holds for the FSC* = 0.143 criterion, or for 12	
other thresholds. 13	

	 	14	
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	1	
	2	
 3	
Figure 8. Euler angle sampling schemes used in this study. The projection distributions described in 4	
Figure 4 can be modulated to vary specific parameter and evaluate distinct conditions. For each scenario, 5	
Euler angle distributions for 10,000 projections are displayed. A uniform distribution of views across Euler 6	

space is shown at left for comparison. (A) The side-modulated case, whereby the Euler angle q=90°, but f 7	

is modulated in accordance with the modulation parameter, 𝜆. This scenario corresponds to the transition 8	

between Figure 4C-D. (B) The top-like case, whereby the size of the cone is varied, and there is a fixed 9	
amount of randomly distributed views across the rest of Euler space. (C) The top-like scenario, whereby 10	
the size of the cone remains constant at 45°, but the amount of randomly distributed views is varied across 11	
Euler space. The experimental results corresponding to these three cases will be described in Figures 9-11.  12	

	13	
  14	
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 2	
Figure 9. Attenuation of the SSNR due to the projection distribution for side-like cases characterized 3	
by thorough sampling. (A-B) Two synthetic datasets corresponding to (A) the HA trimer and (B) 4	
Apoferritin were reconstructed, as described in section 5. The decrement, which is reflected by the shift in 5	
the SSNR due to the different type of sampling distributions is displayed. (C) Euler angle distribution 6	
profiles corresponding to selected cases from A-B. (D) Table showing the decrement in SCF and the 7	
multiplicative shift from SSNR. For each of the 6 different sampling distributions, the numerical and 8	
analytical forms for the SCF agree (except for 𝜆 = 1, where we only have a numerical formula), and thus 9	

only a single multiplicative shift from SCF is indicated. 10	
 11	
 12	
 13	
  14	
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Figure 10. Attenuation of the SSNR due to the projection distribution for top-like cases characterized 3	
by varying cone sizes. As in Figure 9, for both HA and Apoferritin, we examined the effect of the SCF on 4	
the SSNR for poorly sampled cases, where the projection distributions were constrained to varying cone 5	
sizes, but the number of random projections was fixed at 3%. This leads to Fourier space being sparsely 6	
sampled around the z-axis in each case. (A-B) Decrement of the SSNR for (A) HA and (B) with (C) the 7	
corresponding Euler angle distribution profiles. Even though there is a low percentage of views in certain 8	
regions, the total sampling is not small, because the total number of particles is 10¦. (D) Table showing the 9	

decrement in SCF. In each case, there is a crude agreement between the analytical expectation for the SCF, 10	
the numerically calculated SCF, and the shifts of the SSNR.  11	
 12	
  13	
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Figure 11. Attenuation of the SSNR due to the projection distribution for top-like cases characterized 3	
by varying random views. As in Figures 9, for both HA and Apoferritin, we examined the effect of the 4	
SCF on the SSNR for poorly sampled cases, where the projection distributions were constrained to the fixed 5	
cone size of 45°, but the percent of random projections varies from 0%, 1%, 3% to 10%. (A-B) Decrement 6	
of the SSNR for (A) HA and (B) Apoferritin with (C) the corresponding Euler angle distribution profiles. 7	
(D) Table showing the decrement in SCF. For the first four rows in the table (and the corresponding SSNR 8	
curves in A-B), the SCF, as defined theoretically by Eq (3.25) for 0%, and Eq (3.26) for the 1%, 3% and 9	
10% cases, and numerically by Eq (3.22), approximately describes the observed change in the SSNR, as 10	
given by the last two columns.  There is the one serious issue, as discussed in the text, that the SSNR with 11	
completely empty regions of Fourier space is significantly higher for 0% uniform rather than 1%. The text 12	
explains a logical correction, given by the SCF theoretically by (3.27) and numerically by the same 13	
algorithm. The correction to the SSNR is shown in the last row and appropriately predicts a large 14	
multiplicative shift from uniform, as would be expected for such a poorly sampled case.  15	
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Appendix	A.	Some	details	for	calculations	in	Section	3:	geometrical	factor	for	1	
decay	of	density	Eq	(3.5),	checking	numerical	sampling	code	Eq	(3.9),	creating	2	
distributions	according	to	some	prescribed	function	Eq	(3.15),	proof	that	3	
uniform	distribution	maximizes	the	SCF	Eq	(3.22),	derivation	of	Eq.	(3.23)	for	the	4	
SCF	for	modulated	side-views	5	

	6	

A.1	A	general	formula	for	the	projection	geometrical	factor:	Eq.	(3.5)	7	

Our	claim	in	Eq	(3.5)	is	that	8	
	9	
																																																				< 𝛿 𝑛 ⋅ 𝑘 >µ			=

N
ôõ?

				,																																																																		(A.1)	10	

	11	
where	𝑐ö	is	a	geometrical	factor	that	we	wish	to	calculate	in	general	dimensions,	especially	for	12	

𝐷 = 2, 3.	By	| <	⋅>µ,	we	mean	the	average	over	the	surface	of	the	until	ball	in	D	dimensions.	One	13	

easy	way	is	to	integrate	the	above	equation	over	all	𝑘	with	𝑘 < 𝐿	in	D	dimensions.	Then	on	the	14	

left-hand	side	we	get:		15	

																																							 < 𝛿 𝑛 ⋅ 𝑘 >µ
?,?ø® =< 𝛿?,?ø® 𝑛 ⋅ 𝑘 >µ				,																 	 	16	

(A.2)	17	
	18	

																																											= 𝛿?,?ø® (𝑘�)														,														 	 																	(	A.3)	19	
	20	

																																															21	

																																											= 1?,?ø®,ù�N Ò¹j  											,												 	 	 					(A.4)	22	
																		23	

																																			= 𝐿ú�N		𝑉ù�N																		,																				 	 											(A.5)		24	
	25	
where	 	𝑉ù�N			 is	 the	 volume	of	 the	unit	ball	 in	𝐷 − 1	 dimensions.	 Eq	 (A.3)	holds	because	 the	26	

integrand	in	(A.2)	is	no	longer	dependent	on	the	direction,	𝑛	,	so	the	average	over	𝑛	seen	in	(A.2)	27	

integrates	to	1.	Moreover	𝑛	where	it	appears	in	the	integral	may	be	set	to	𝑧	for	convenience.			On	28	

the	RHS	of	(A.1)	we	also	perform	the	integration	over	the	ball	of	radius	𝐿	and	get	29	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635938doi: bioRxiv preprint 

https://doi.org/10.1101/635938
http://creativecommons.org/licenses/by/4.0/


	 65	

N
ôõ?

?,?ø® = N
ôõ
 Aù ⋅  ®¤ d𝑘 𝑘ú�N N

?
			,																					 	 										(A.6)	1	

																																																					2	

= N
ôõ
 Aù ⋅  ®¤ d𝑘 𝑘ú�7								,													 	 	 					(A.7)	3	

	4	

																				= N
ôõ
 Aù    ⋅

®ýºv

ú�N
																							,																								 												(A.8)	5	

where		𝐴ù	is	the	surface	area	of	the	unit	ball	in	𝐷	dimensions	.	6	

	7	

Equating	the	last	two	expressions	shows	that		8	

	9	

	 𝑐ö =
 Aù

𝐷 − 1 ⋅ 	Vù�N
= 	

 Aù
𝐴ú�N

	.	 (A.9)	

This	gives		10	

𝑐ö(𝐷 = 2) = 7�
7
= 𝜋			,	 	 	 	 (A.10)	11	

and		12	

	 𝑐ö(𝐷 = 3) =
4𝜋
2𝜋 = 2.	 (A.11)	

	13	
Therefore,	the	geometrical	factor	2	that	appears	in	Eq	3.5	is	simply	the	ratio	of	the	surface	area	14	

of	a	unit	ball	to	the	circumference	of	a	great	circle	of	the	same	ball.	15	

	16	

A.2	Checking	the	Sampling	Code	Eq.	(3.9) 17	

We	want	to	evaluate		18	

                            𝑆 = 		 dk�
®
�® 	 dk¯

®
�® 	 dk�	

®
�®

N
7?

                                            (A.12) 19	
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             	1	
         𝑆 = 	 N

7
	 𝑘	dk	 sin 𝜃 𝑑𝜃�

¤ 	 𝑑𝜙	7�
¤ 	Θ |𝑘Z , |𝑘[ , |𝑘�| ≤ 𝐿                      (A.13) 2	

It	is	enough	to	consider	the	upper	quadrant,	where	all	the	components	are	positive.		3	

	This	is	where	both	the	azimuthal	angle,	𝜙,	and	the	spherical	angle,	𝜃,	are	in	the	range	 0, �
7
.	This	4	

gives	us	a	symmetrization	factor	of	8.	However,	we	may	also	consider	a	definite	ordering	for	the	5	

𝑘Z, 𝑘[, 𝑘�	giving	a	symmetrization	factor	of	6.	Putting	this	together	we	have	6	

	8	
𝑆 = 	 �⋅"

7
	 𝑘	dk	 sin 𝜃 𝑑𝜃�/7

¤ 	 𝑑𝜙	�/7
¤ 	Θ 0 ≤ 𝑘[ ≤ 𝑘Z ≤ 𝑘� ≤ 𝐿 						.												(A.14)	7	

We	wish	to	reorder	the	integrations:	first	𝑘,		then	𝜃	then	𝜙.	The	spherical	representations	for	the	9	

components	may	be	written	as:	𝑘Z, 𝑘[, 𝑘� ≡ sin 𝜃 	cos𝜙 , sin 𝜃 	sin𝜙 , cos 𝜃			 	10	

Now	0 ≤ 𝑘[ ≤ 𝑘Z	is	easily	represented	by	0 ≤ 𝜙 ≤ �
¦
		.		Let's	write	down	what	we	have	so	far:	11	

            					𝑆 = 	 �⋅"
7
	 𝑑𝜙	

Ñ
#
¤ 	 sin 𝜃 𝑑𝜃

Ñ
p
¤ 𝑘	dk 		Θ 𝑘Z ≤ 𝑘� ≤ 𝐿            .          (A.15) 12	

To	 ensure	 the	 last	 two	 inequalities	 we	 need	 𝑘 ≤ 𝐿/ cos	 𝜃	 and	 tan 𝜃 cos𝜙 ≤ 1.	 This	 last	13	

inequality	 can	 be	 used	 to	 govern	 the	 upper	 limit	 of	 the	𝜃	 integration,	 in	 place	 of	 the	𝜋/2	,	14	

because	tan 𝜃	can	always	attain	the	value	1/ cos	 𝜙	on	the	interval	[0, 𝜋/2].		15	

Putting	this	all	together	and	developing	we	get		16	

 𝑆 =
8 ⋅ 6
2   d

�/¦

¤
𝜙  sin	 𝜃

ÛÜÛ�( N
¶hR	 È)

¤
d𝜃  𝑘

®
¶hR	 Ã

¤
d𝑘 ,        (A.16) 

 =
8 ⋅ 6
2 ⋅ 2 𝐿

7   d
�/¦

¤
𝜙 

sin	 θ
	cos7 θ

ÛÜÛ�( N
¶hR	 È)

¤
d𝜃 ,        (A.17) 
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 = 4𝐿7 ⋅ 3  d
�/¦

¤
𝜙 

1
cos	 𝜃 ¤

ÛÜÛ�( N
¶hR	 È)

 ,        (A.18) 

 = 4𝐿7 ⋅ 3  d
�/¦

¤
𝜙 

1 + cos7𝜙
cos	 𝜙 − 1  ,        (A.19) 

 = 4𝐿7 ⋅ 3 𝐼 .        (A.20) 

To	evaluate	 the	 last	 integral,	𝐼	we	use	 the	substitution	cos𝜙	 = √cos 𝛾.	The	 limits	 for	𝛾	now	1	

become	 𝜙 = 0 ↔ 𝛾 = 0	, 𝜙 = 𝜋/4 ↔ 𝛾 = 𝜋/3.	 	 We	 also	 have	 sin𝜙 =2	

1 − cos	 𝛾,	 1 + cos7 𝜙 = 1 + cos	 𝛾.	 This	 leads	 to	 dϕ = R¹�)	Ò*
7 ¶hR	) N�¶hR	)

	 	 ,	 which	 can	 be	3	

simplified	to	d𝜙 = Nu¶hR	) Å)
7 ¶hR	)

.		So		4	

 𝐼 = −
𝜋
4 +

1 + cos	 𝛾  𝑑𝛾
2 cos	 γ

�/W

¤
 

1 + cos	 𝛾
cos	 𝛾

 ,     (A.21) 

 = −
𝜋
4 +

1
2

(1 + cos	 𝛾) 𝑑𝛾
cos	 𝛾

�/W

¤
 ,     (A.22) 

 = −
𝜋
4 +

𝜋
6 +

1
2

𝑑𝛾
cos	 𝛾

�/W

¤
 ,     (A.23) 

 = −
𝜋
12 +

1
2

𝑑𝜎
sin	𝜎

�/7

�/"
 ,      (A.24) 

 = −
𝜋
12 +

1
2 ln	 tan	(𝜎/2) �/"

�/7 ,     (A.25) 

 = −
𝜋
12 −

1
2 ln	 tan	( 𝜋/12) 

,      (A.26) 

 = −
𝜋
12 +

1
2 ln	( 2 + 3) ,      (A.27) 

 = −
𝜋
12 + ln	( 1 + 3) − ln	 2 ,       (A.28) 

 = 0.39667956 .       (A.29) 

Finally,	now	5	

 
𝑆
4𝐿7 = 3𝐼 = 1.19 ,   (A.30) 
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This	factor	is	the	empirically	observed	excess	area	of	an	average	plane	embedded	into	a	cube.	1	

This	is	the	approximately	20	per	cent	increase	in	actively	sampled	points.	It	is	a	larger	factor	than	2	

the	comparable	1.12	that	would	appear	in	a	similar	2D	problem.		3	

  	4	
                               °

7®
= ¦

�
log cot �

�
= ¦

�
ln(1 + 2	) = 1.122                    .      (A.31) 5	

Another approach to evaluating (A.9) is to introduce an auxiliary variable via N
?
=6	

7
√�
	 d𝛼-
¤ 	exp−(𝛼7 𝑘Z7 + 𝑘[7 + 𝑘�7 )	. Then there are just a few steps to a single integral and a 7	

numerical evaluation: °
¦®p

= �
¦
		 d𝛼	 �i. ·

·
-
¤

W
= 	1.190038, which is (A.30).  8	

A.3	Creating	distributions	according	to	some	prescribed	function	Eq	(3.15)	9	

In	order	to	create	a	numerical	sampling	map	for	modulated	side	views,	we	would	like	to	assign	10	

azimuthal	angles	to	projections	such	that	the	oscillatory	azimuthal	distribution	density	indicated	11	

by	(3.11)	is	achieved.	This	is	well	known	how	to	do:	for	completeness,	we	include	the	argument	12	

here.	From	the	density	function	(3.11),	the	cumulative	distribution	function	can	be	found	which	13	

is		14	

																						cdf 𝜙 = (1 + 𝜆 cos 2	𝜙)		d𝜙È
¤ 		= 𝜙 + Ý

7
sin 2	𝜙																			.									(A.32)	15	

Now	the	azimuthal	angle	should	be	given	by		16	

																										cdf�N 𝜙 ∈ 0,2𝜋 																																																					.						(A.33)	17	

	That	is,	numbers	should	be	drawn	evenly	between	0	and	2𝜋,	resulting	in	an	array	given	by	(A.33).	18	

These	are	the	angle	labels	to	be	given	to	achieve	the	desired	distribution	(3.11).	So	long	as	𝜆 < 1,	19	

this	 is	easy	 to	do,	because	 the	distribution	 is	positive	and	 the	cdf	 is	monotonically	 increasing	20	
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(graphically,	the	inverse	corresponds	to	flipping	across	the	diagonal,	which	maps	a	function	into	1	

another	 function	 due	 to	 monotonicity).	 The	 python	 pseudo	 code	 would	 read:	 phi0=	 cdf0=	2	

np.linspace(0,2*np.pi,NumPoints);	 	 	cdf	 = 	phi0 + Ý
7
	sin	(2	phi0),	 	cdfInv	=	np.interp(phi0,cdf,	3	

cdf0).	That	is,	map	the	array	phi0	to	the	desired	phi	(which	is	the	desired	cdfInv),	in	the	same	4	

manner	that	cdf	was	mapped	to	cdf0,	where	phi0,	cdf0	are	both	regularly	spaced.	5	

A.4	Proof	that	uniform	distribution	maximizes	the	SCF	Eq	(3.22).	6	

	7	

Consider	a	set	of	positive	numbers	 	𝑎1 	that	satisfy	a	constraint	𝐶:	 	 𝑎11 = 𝑀.	The	set	are	to	8	

represent	the	sampling	on	the	unit	sphere.	We	wish	to	maximize	 N
231	 	subject	to	𝐶.		We	begin	by	9	

writing	the	usual	variational:	10	

																																			ℒ =	 N
231	 + 𝜇		(	 𝑎11 −𝑀)						,																																										(A.34)	11	

where	𝜇	is	a	Lagrange	parameter.	Extremizing	ℒ	wrt	the	𝑎2 	yields	12	

																													 6ℒ
627

= 𝜇 −	 N
27
p = 0							 → 										𝑎2 	= 𝜇		.																																						(A.35)	13	

The	second	variation	is:	14	

																													6
pℒ

627
p = 2 N

27
8 = 2	𝜇

8
p 	> 0					.		 	 	 	 		(A.36)	15	

Since	 the	 second	 variation	 is	 positive,	 the	 uniform	 solution	𝑎2 = constant,	 corresponds	 to	 a	16	

minimum.		17	

The	argument	supplied	here	implies	why	the	SCF	attains	its	maximum	(1/SCF	attains	its	minimum	18	

as	in	the	above	calculation),	when	the	sampling	(which	is	a	conserved	quantity	on	every	shell	of	19	
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Fourier	 space)	 is	 distributed	 as	 uniformly	 as	 possible,	 or	 equivalently	 the	 projections	 are	1	

distributed	uniformly.	2	

	3	

A.5	Derivation	of	Eq.	(3.23);	SCF	for	modulated	side-views	4	

	5	
From	Eq.	3.16,	we	have	6	
	7	

																																																						2𝑘	sp 𝑘, 𝜃, 𝜙 = 7(N�Ý ¶hR 7È)
� R¹� Ã

																																										(A.37)	8	
	9	
	10	

Using	the	definition	of	SCF,	1/SCF =	< (1/(2k	sp	)>,	then	(A.37)	becomes	11	
	12	

									“side-modulated”									 N
KLM

= 	 N
�
	 d𝜙	�/7
¤ sin 𝜃 d𝜃	�

¤ 	 � R¹� Ã
7(N�Ý ¶hR 7È)

			,																			(A.38)	13	

	14	
	15	
where	the	last		term	in	the	integrand	of	(A.38)		is	the	reciprocal	of		(A.37).		The	integration	over	16	

𝜃,	can	be	easily	performed	( sin7 𝜃 d𝜃 = 𝜋/2�
¤ )		leaving:	17	

	18	

									“side-modulated”									 N
KLM

= 	 �
¦
	 	�/7
¤ 	 ÒÈ

(N�Ý ¶hR 7È)
			,		 	 	 (A.39)	19	

	20	
																																																								= 	 �

p

�
				 N

�
	�¤

Ò9
(N�Ý ¶hR 9)

						,																																																		(A.40)									21	

	22	
Integrals	of	the	sort	that	appear	in	(A.40)	are	easily	reduced	by	means	of	the	so-called	23	

Weierstrass	half	angle	formula:		𝑡 = tan 𝑣/2	; cos 𝑣 = N�<p

Nu<p
	.	The	integral	in	(A.40)	becomes		24	

	 7
N�Ý

	 	-
¤

Ò<

Nuv=>vº>	<
p
		=	 7

N�Ýp
	 	-
¤

Ò?
Nu	?p			=	

7
N�Ýp

�
7
.					So	the	expression	in	(A.40)	becomes:	25	

													“side-modulated”																		 N
KLM

= 	 �
p

�
			 N

N�Ýp
																				.													(A.41)	26	

	27	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635938doi: bioRxiv preprint 

https://doi.org/10.1101/635938
http://creativecommons.org/licenses/by/4.0/


	 71	

which	is	(3.23).	1	

	 	2	
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Appendix	B			Derivation	of	Eq.	(3.12)	and	(3.18):	sampling	distributions	from	1	
projection	distributions	2	

	3	
	4	
Eq	(3.11)	reads		5	
	6	
	7	
	8	

                                   sp 𝑘 = dµ⋅� O¶hR	 · 𝑛   𝛿 𝑛 ⋅ 𝑘 /𝐶r,R¹Ò�    ,                                  (B.1) 9	

 10	

where integrations are taken over all unit vectors,	𝑛 , in 3D. Also 𝐶r,R¹Ò�		is a normalization 11	

constant ensuring Eq (3.8):  < 2𝑘	sp 𝑘 >= 1	, where <⋅>? denotes angular average over the 12	

angles in 𝑘 with the uniform measure on the sphere. The integration in B.1 is over the set of normal 13	

vectors to the sphere, with the given constraint. Putting this together with B.1 yields: 14	

                                  𝐶r,R¹Ò� = 	𝐶r,R¹Ò� < 2𝑘	sp 𝑘 >?								   ,                      (B.2) 15	

                          = 2𝑘 d𝑛µ⋅� O¶hR	 ·   <  𝛿 𝑛 ⋅ 𝑘 >?     ,                     (B.3) 16	

                        = 2 d𝑛µ⋅� O¶hR	 ·   <  𝛿 𝑛 ⋅ 𝑘 >?          .                    (B.4) 17	

 18	

Now   <  δ(	𝑛 ⋅ 	𝑘) >?  cannot be a function of the direction of 𝑛. So it can be conveniently 19	

calculated when 𝑛 = 𝑧, which does not depend on an azimuthal angle in the integration over 𝑛 , 20	

and therefore leads only to the average over the altitude. This leads to: 21	

                                           <  δ 	𝑛 ⋅ 	𝑘 >?	= 	
N
7
			 sin 𝜃 		d𝜃		𝛿(𝑘�)

�
¤ 			 ,              (B.5) 22	

                                                                      = 	 N
7
			 sin 𝜃 		d𝜃		𝛿(cos 𝜃)�

¤ 			 ,         (B.6) 23	

                                                                      =		 N
7
			         .                                        (B.7) 24	

 25	
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 1	

Eq. B.7 is a natural result. It is the ratio of the circumference to the surface area of the unit circle: 2	

2𝜋/4𝜋 = 1/2. Returning to (B.4) we get: 3	

                                                      𝐶r,R¹Ò� = d𝑛µ⋅� O¶hR	 ·                           ,                 (B.8) 4	

                         						= 2𝜋 sin 𝜃µ 		d𝜃µ		Θ(| cos 𝜃µ	| < cos 𝛼)�
¤   ,          (B.9)                           5	

                         						= 2	𝜋 sin 𝜃µ 		d𝜃µ		
��·
·                             ,         (B.10)                           6	

                             						= 4	𝜋 cos 𝛼                                         .                   (B.11)                           7	

 8	

So, substituting (B.11) into (B.1) yields 9	

 10	

                                   sp 𝑘 = N
¦	� ¶hR·

				 dµ⋅� O¶hR	 · 𝑛   𝛿 𝑛 ⋅ 𝑘                 .          (B.12)                   11	

 12	

It is easy to argue that  sp 𝑘  does not depend on the azimuthal angle of 𝑘 , which we can 13	

therefore take to be zero in order to evaluate (B.12):  	𝑘 	= sin 𝜃 		𝑥 + cos 𝜃	𝑧 . Instead of the 14	

integration over the sphere given by the unit vector,  𝑛, we need to perform the integral in (B.12) 15	

over the great circle perpendicular to 	𝑘. Therefore, we can parametrize  𝑛 , in the integration in 16	

(B.12) by  17	

                           𝑛 		= (−	cos 𝜃 	sin𝛽	 	 , cos𝛽	 	 , sin 𝜃 sin𝛽	)        .   (B.13) 18	

 Eq. (B.13) is a parametrization of all the unit vectors perpendicular to 𝑘	 as described in the last 19	

paragraph. By changing 𝛽, we can sweep out the unit vector given by (B.13): these are the locus 20	

of normals to 𝑘 and outside the cone of half angle 𝛼. So from (B.12) 21	

 22	
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                                   𝑘	sp 𝑘 = N
¦	� ¶hR·

			 d𝛽7�
¤ 	Θ(	| sin 𝜃 sin𝛽 | < cos 𝛼)		   .                 (B.14)                   1	

 2	

The criterion Θ(	| sin 𝜃 sin𝛽 | < cos 𝛼) in B.14 is a rewrite for the constraint of the projection 3	

directions, 𝑛 ⋅ 𝑧 < cos	 𝛼, from Eq. B.12. Continuing from Eq. B.14. 4	

 5	

                    						𝑘	sp 𝑘 					= N
	� ¶hR·

			 d𝛽�/7	
¤ 	Θ(	sin𝛽 < cos 𝛼	/ sin 𝜃	)		   .     (B.15)                   6	

 7	

If cos 𝛼 > sin 𝜃, then the argument of the indicator function in (B.15) is always true. If not the 8	

upper limit of 𝛽 in the integral must be reduced to asin (cos 𝛼 	/ sin 𝜃). This leads to: 9	

                               		k	sp	 k, θ = 	 N
�
			
R¹�ºv »¼�½

�¾¿À
¶hR·

						,			 �
7
− 𝜃 < 	𝛼,			                        (B.16) 10	

	12	
																											 "side-like" 																													N

7
		 N
¶hR·

			,													 �
7
− 𝜃 ≥ 	𝛼		,				                       	11	

	13	
	14	
which	is	(3.12).	15	
	16	
Finally	17	
	18	
	19	

																																											sp 𝑘 = dµ⋅� O¶hR	 · 𝑛   𝛿 𝑛 ⋅ 𝑘 /𝐶r,ÜhS         .                       (B.17)	20	
	21	
	22	
Using	(B.8)	and	(B.17)	using	the	parallel	argument	to	(B.1)-(B.7)	together,	we	note	that		23	
	24	
																					25	

																									𝐶r,R¹Ò� + 𝐶r,ÜhS = dµ⋅� O¶hR	 · 𝑛 	+ dµ⋅� T¶hR	 · 𝑛 = 4	𝜋					.																(B.18)	26	
	27	
	28	
	29	
So		30	
	31	

																									𝐶r,ÜhS = 4	𝜋 −	𝐶r,R¹Ò� 	= 4	𝜋	 1 − cos 𝛼 = 		8	𝜋		 sin7 𝛼/2			.															(B.19)	32	
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	1	
	2	
The	parallel	derivation	to	(B.14)	now	becomes:	3	
	4	
	5	

																						𝑘	sp 𝑘 = N
�	� R¹�p ·/7

			 d𝛽7�
¤ 	Θ(	 sin 𝜃 sin𝛽 > cos 𝛼)									.																(B.20)	6	

	7	
	8	

This	is	the	integration	around	the	locus	of	points	normal	to		𝑘	and	inside	the	cone	of	half-9	

angle,	𝛼.		However,		sin𝛽		may	be	replaced	by	cos	𝛽	by	shift	of	origin,	and	an	overall	factor	of	4	10	

introduced	due	to	the	4	equivalent	quadrants:		11	

	12	

																						𝑘	sp 𝑘 = N
7� R¹�p ·/7

			 d𝛽�/7
¤ 	Θ cos𝛽 	> cos 𝛼 / sin 𝜃 																.					(B.21)	13	

	If	cos 𝛼 > sin 𝜃,	then	the	condition	of	the	indicator	function	cannot	be	fulfilled,	and	the	left-14	

hand	side	=	0.		Otherwise	15	

	16	

																																		𝑘	sp 𝑘 	= N
7� R¹�p ·/7

			 d𝛽�/7
¤ 	Θ 	𝛽 < acos (cos 𝛼 / sin 𝜃 			)							.	(B.22)	17	

	18	

So		19	

																								𝑘	sp 𝑘 																	= 	 Û¶hR (¶hR·/ R¹� Ã)
7� R¹�p ·/7

													for									 ã
7
− θ	 ≤ 		𝛼					,		 (B.23)	20	

																								 "top-like" 												= 	0																																					for									 ã
7
− θ	 > 		𝛼					.		 (B.24)	21	

	22	

	23	
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This	is	(3.18).	Thus,	the	sampling	is	zero	in	directions	close	to	along	the	z-axis,	for	the	top	like	1	

cases.	2	

	3	

 4	

  5	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635938doi: bioRxiv preprint 

https://doi.org/10.1101/635938
http://creativecommons.org/licenses/by/4.0/


	 77	

References 1	

1.	 Bartesaghi,	A.,	et	al.,	Atomic	Resolution	Cryo-EM	Structure	of	beta-Galactosidase.	2	
Structure,	2018.	26(6):	p.	848-856	e3.	3	

2.	 Tan,	Y.Z.,	et	al.,	Sub-2	A	Ewald	curvature	corrected	structure	of	an	AAV2	capsid	variant.	4	
Nat	Commun,	2018.	9(1):	p.	3628.	5	

3.	 Zivanov,	J.,	et	al.,	New	tools	for	automated	high-resolution	cryo-EM	structure	6	
determination	in	RELION-3.	Elife,	2018.	7.	7	

4.	 Wyrick,	J.,	et	al.,	Tomography	of	a	Probe	Potential	Using	Atomic	Sensors	on	Graphene.	8	
ACS	Nano,	2016.	10(12):	p.	10698-10705.	9	

5.	 Fernandez-Leiro,	R.	and	S.H.	Scheres,	Unravelling	biological	macromolecules	with	cryo-10	
electron	microscopy.	Nature,	2016.	537(7620):	p.	339-46.	11	

6.	 Noble,	A.J.,	et	al.,	Routine	single	particle	CryoEM	sample	and	grid	characterization	by	12	
tomography.	Elife,	2018.	7.	13	

7.	 Noble,	A.J.,	et	al.,	Reducing	effects	of	particle	adsorption	to	the	air-water	interface	in	14	
cryo-EM.	Nat	Methods,	2018.	15(10):	p.	793-795.	15	

8.	 D'Imprima,	E.,	et	al.,	Protein	denaturation	at	the	air-water	interface	and	how	to	prevent	16	
it.	Elife,	2019.	8.	17	

9.	 Russo,	C.J.	and	L.A.	Passmore,	Progress	towards	an	optimal	specimen	support	for	18	
electron	cryomicroscopy.	Curr	Opin	Struct	Biol,	2016.	37:	p.	81-9.	19	

10.	 Grigorieff,	N.,	Three-dimensional	structure	of	bovine	NADH:ubiquinone	oxidoreductase	20	
(complex	I)	at	22	A	in	ice.	J	Mol	Biol,	1998.	277(5):	p.	1033-46.	21	

11.	 Penczek,	P.A.,	Three-dimensional	spectral	signal-to-noise	ratio	for	a	class	of	22	
reconstruction	algorithms.	J	Struct	Biol,	2002.	138(1-2):	p.	34-46.	23	

12.	 Diebolder,	C.A.,	et	al.,	Conical	Fourier	shell	correlation	applied	to	electron	tomograms.	J	24	
Struct	Biol,	2015.	190(2):	p.	215-23.	25	

13.	 Dudkina,	N.V.,	et	al.,	Interaction	of	complexes	I,	III,	and	IV	within	the	bovine	respirasome	26	
by	single	particle	cryoelectron	tomography.	Proc	Natl	Acad	Sci	U	S	A,	2011.	108(37):	p.	27	
15196-200.	28	

14.	 Dang,	S.,	et	al.,	Cryo-EM	structures	of	the	TMEM16A	calcium-activated	chloride	channel.	29	
Nature,	2017.	552(7685):	p.	426-429.	30	

15.	 Tan,	Y.Z.,	et	al.,	Addressing	preferred	specimen	orientation	in	single-particle	cryo-EM	31	
through	tilting.	Nat	Methods,	2017.	14(8):	p.	793-796.	32	

16.	 Naydenova,	K.	and	C.J.	Russo,	Measuring	the	effects	of	particle	orientation	to	improve	33	
the	efficiency	of	electron	cryomicroscopy.	Nat	Commun,	2017.	8(1):	p.	629.	34	

17.	 Lyumkis,	D.,	Challenges	and	opportunities	in	cryo-EM	single-particle	analysis.	J	Biol	35	
Chem,	2019.	294(13):	p.	5181-5197.	36	

18.	 Penczek,	P.A.,	Resolution	measures	in	molecular	electron	microscopy.	Methods	Enzymol,	37	
2010.	482:	p.	73-100.	38	

19.	 Rosenthal,	P.B.	and	R.	Henderson,	Optimal	determination	of	particle	orientation,	39	
absolute	hand,	and	contrast	loss	in	single-particle	electron	cryomicroscopy.	J	Mol	Biol,	40	
2003.	333(4):	p.	721-45.	41	

20.	 Sorzano,	C.O.,	et	al.,	A	review	of	resolution	measures	and	related	aspects	in	3D	Electron	42	
Microscopy.	Prog	Biophys	Mol	Biol,	2017.	124:	p.	1-30.	43	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635938doi: bioRxiv preprint 

https://doi.org/10.1101/635938
http://creativecommons.org/licenses/by/4.0/


	 78	

21.	 Jensen,	G.J.,	Alignment	error	envelopes	for	single	particle	analysis.	J	Struct	Biol,	2001.	1	
133(2-3):	p.	143-55.	2	

22.	 Penczek,	P.A.,	Image	restoration	in	cryo-electron	microscopy.	Methods	Enzymol,	2010.	3	
482:	p.	35-72.	4	

23.	 Heymann,	J.B.,	Single-particle	reconstruction	statistics:	a	diagnostic	tool	in	solving	5	
biomolecular	structures	by	cryo-EM.	Acta	Crystallogr	F	Struct	Biol	Commun,	2019.	75(Pt	6	
1):	p.	33-44.	7	

24.	 Bracewell,	R.N.,	Strip	Integration	in	Radio	Astronomy.	Austrian	Journal	of	Physics,	1956.	8	
9:	p.	198.	9	

25.	 Stagg,	S.M.,	et	al.,	ResLog	plots	as	an	empirical	metric	of	the	quality	of	cryo-EM	10	
reconstructions.	J	Struct	Biol,	2014.	185(3):	p.	418-26.	11	

26.	 Passos,	D.O.	and	D.	Lyumkis,	Single-particle	cryoEM	analysis	at	near-atomic	resolution	12	
from	several	thousand	asymmetric	subunits.	J	Struct	Biol,	2015.	192(2):	p.	235-44.	13	

27.	 Saad,	A.,	et	al.,	Fourier	amplitude	decay	of	electron	cryomicroscopic	images	of	single	14	
particles	and	effects	on	structure	determination.	J	Struct	Biol,	2001.	133(1):	p.	32-42.	15	

28.	 Stagg,	S.M.,	et	al.,	A	test-bed	for	optimizing	high-resolution	single	particle	16	
reconstructions.	J	Struct	Biol,	2008.	163(1):	p.	29-39.	17	

29.	 Guinier	Plot.	2019.	18	
30.	 Baldwin,	P.R.	and	P.A.	Penczek,	Estimating	alignment	errors	in	sets	of	2-D	images.	J	19	

Struct	Biol,	2005.	150(2):	p.	211-25.	20	
31.	 Milotti,	E.,	1/f	noise:	a	pedagogical	review.	2013.	21	
32.	 Lyumkis,	D.,	et	al.,	Likelihood-based	classification	of	cryo-EM	images	using	FREALIGN.	J	22	

Struct	Biol,	2013.	183(3):	p.	377-388.	23	
33.	 Voss,	N.R.,	et	al.,	A	toolbox	for	ab	initio	3-D	reconstructions	in	single-particle	electron	24	

microscopy.	J	Struct	Biol,	2010.	169(3):	p.	389-98.	25	
34.	 Zhang,	C.,	et	al.,	Analysis	of	discrete	local	variability	and	structural	covariance	in	26	

macromolecular	assemblies	using	Cryo-EM	and	focused	classification.	Ultramicroscopy,	27	
2018.	28	

35.	 Baxter,	W.T.,	et	al.,	Determination	of	signal-to-noise	ratios	and	spectral	SNRs	in	cryo-EM	29	
low-dose	imaging	of	molecules.	J	Struct	Biol,	2009.	166(2):	p.	126-32.	30	

36.	 Crowther,	R.A.,	et	al.,	Three	dimensional	reconstructions	of	spherical	viruses	by	fourier	31	
synthesis	from	electron	micrographs.	Nature,	1970.	226(5244):	p.	421-5.	32	

37.	 Henderson,	R.,	The	potential	and	limitations	of	neutrons,	electrons	and	X-rays	for	atomic	33	
resolution	microscopy	of	unstained	biological	molecules.	Q	Rev	Biophys,	1995.	28(2):	p.	34	
171-93.	35	

 36	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635938doi: bioRxiv preprint 

https://doi.org/10.1101/635938
http://creativecommons.org/licenses/by/4.0/

