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Abstract 11 

The killer shrimp (Dikerogammarus villosus) is one of the most recent, but also most 12 

damaging, aquatic invasive species in Europe, but information on how the species responds 13 

to novel predation pressures in recently invaded areas is very limited. We employed an open 14 

test arena to examine predator recognition and anti-predatory behaviour in killer shrimp 15 

exposed to either blank water or water conditioned with fish kairomones to simulate a 16 

predator threat. Within five years after their introduction, killer shrimp spent much more time 17 

hiding in the presence of fish kairomones than when they were exposed to blank water. 18 

However, no significant difference was found in aggregation behaviour, and killer shrimp 19 

were strongly attracted to the scent of conspecifics regardless of predator threat. Given the 20 

strong selective pressures that fish predators can exert on native and invasive gammarids, our 21 

findings highlight the need to consider prey-predator interactions to better predict the 22 

dispersal and likely impact of killer shrimp into invaded ecosystems. 23 
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Introduction 36 

From a prey-predator perspective two opposing selective forces may confront invasive 37 

species when they colonise a new area:  the absence of former predators may facilitate their 38 

establishment (the enemy release hypotheses – Colautti et al. (2004), while their different 39 

appearance (the oddity effect - Almany et al. (2007) and lack of co-evolutionary history (the 40 

‘naïve prey’ hypothesis - Sih et al. 2010) may curtail it. Thus, whether invasive species thrive 41 

or flounder may depend on what predators they encounter, and how they respond to them. 42 

This may result in ‘boom and bust’ cycles, reflecting prey-predator dynamics (Strayer et al. 43 

2017).  Surprisingly, very little is known about anti-predatory strategies of invasive species in 44 

novel habitats. 45 

The killer shrimp  (Dikerogammarus villosus) is a freshwater gammarid indigenous to 46 

the Ponto-Caspian region which has recently invaded Western Europe (Tricarico et al. 2010), 47 

and which therefore constitutes a good system to examine anti-predatory strategies in novel 48 

habitats. The species has a small size (1.8-30mm; Aldridge 2015) a flexible omnivorous diet 49 

(Mayer et al. 2008), and lives in a wide variety of freshwater and brackish habitats (Devin & 50 

Beisel 2008) where it faces many different potential predators. Despite its very recent 51 

introduction, it is listed among the 100 most invasive species in Europe (DAISIE 2009) and 52 

included in the RINSE (Reducing the Impact of Non-Native Species in Europe) black list 53 

with a score of 9 out of 10 (Gallardo et al. 2016). It can displace and prey on local gammarids 54 

and reduce native biodiversity (Eckmann et al. 2008; Macneil et al. 2013), and may already 55 

be benefitting from a boom phase in some parts of Europe, having shed some of its former 56 

parasites (Arundell et al. 2015; Grabner et al. 2015). The need for more information on this 57 

aquatic invader has been flagged as a priority (Gallardo et al. 2016; Pöckl 2009), as it is 58 

predicted that the species will cause major deleterious impacts on native fauna (MacNeil et 59 

al. 2012).   60 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/636100doi: bioRxiv preprint 

https://doi.org/10.1101/636100
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Studies on the killer shrimp have focused mostly on its diet, there is very little information on 61 

its predators. The species appears to be trophically very plastic (Bacela-Spychalska & van der 62 

Velde 2013; Casellato et al. 2007; Platvoet et al. 2009), which would make it vulnerable to 63 

many different predators. Gammarids are an important prey for many fishes (Mazzi & Bakker 64 

2003; Perrot-Minnot et al. 2007) and there are reports that native brown trout and perch can 65 

feed on killer shrimp in Britain (Aldridge 2015; Madgwick & Aldridge 2011). However, 66 

knowledge on the predators of killer shrimp is mostly anecdotal and there is little information 67 

on anti-predatory behaviour of this species in newly colonized areas, which is an important 68 

aspect to consider for predicting its future spread and impact.  69 

Hiding, aggregation and crypsis are three of the most common anti-predatory 70 

strategies in aquatic species (Keenleyside 1979), which in the case of benthic gammarids are 71 

intimately related to the nature of the substrate (Holomuzki & Hoyle 1990). Hiding behaviour 72 

is particularly strong in gammarids (Goedmakers 1981; Jazdzewski et al. 2004), and 73 

availability of suitable substrate to hide can be a key determinant of establishment success in 74 

invasive gammarids (Devin et al. 2003), as different species may compete for shelter. For 75 

example, De Gelder et al. (2016) reported that the killer shrimp’s strong tendency to hide 76 

during daytime can displace the European native gammarid Gammarus roeselii from their 77 

shelters, which might put them at a higher risk of predation. Another common anti-predatory 78 

strategy is aggregation behaviour, as being part of a group can confuse predators (Krakauer 79 

1995; Krause & Ruxton 2002) and reduce the per-capita probability of being preyed (Codella 80 

& Raffa 1995). Aggregation behaviour, however, also has costs as it is influenced by 81 

competition for food and mating partners, and poses a greater risk of being parasitized, which 82 

may put the group at a disadvantage (Krause & Ruxton 2002).  83 

Thus, while killer shrimp invading Europe could be benefitting from a boom phase 84 

caused by predator release, the oddity effect and prey naïvety of novel predators might make 85 
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them more vulnerable to native predators in the invaded waters. To shed light on this issue, 86 

we tested two anti-predatory behaviours (hiding and aggregation) in killer shrimp exposed to 87 

either dechlorinated water (control) or water conditioned with kairomones (i.e. semio-88 

chemicals emitted by predators that allow eavesdropping by prey without benefitting the 89 

predator - Roberts & Garcia de Leaniz (2011) from a carnivorous fish predator, the three 90 

spined stickleback (Gasterosteus aculeatus). We wanted to test if killer shrimp from a 91 

recently colonized stream in Britain were able to recognise a common native fish as a 92 

predator or, on the contrary, displayed prey naïvety that might make it more difficult to 93 

mount and efficient anti-predatory response and, hence, make it more difficult to become 94 

established in neighbouring waters.  95 

  96 
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Materials and Methods 97 

Collection and origin of samples 98 

Killer shrimp (average size = 16.8 ± 0.9mm) were collected by live trapping in the Upper 99 

Mother Ditch (Margam, Wales, 51°33'19.5"N 3°44'46.6"W) in May 2017, and three-spined 100 

stickleback (weight range 0.9-2.0g) were hand-netted from an ornamental pond in Swansea 101 

(Singleton Park, Wales 51°36'26.2 "N 3°58'52.4"W) in July 2017. We maintained the two 102 

species in separate 100L recirculation aquaculture systems at CSAR facilities (Swansea 103 

University) to avoid mixing their scents. Both species were fed frozen bloodworms, the 104 

sticklebacks every day and the killer shrimp three times per week. Water temperature was 105 

maintained at 15-16.5 ˚C with a weekly replacement of 20% volume.  106 

 107 

Experimental design 108 

We set up two experiments to examine the killer shrimp’s anti-predatory behaviour in 109 

relation to the presence of stickleback’s kairomones (a fish predator that feeds on 110 

gammarids). In the first experiment, we compared the hiding behaviour of individual killer 111 

shrimp tested in water conditioned with stickleback kairomones compared to blank water. In 112 

the second experiment, we examined the attraction of single killer shrimp to the scent of 113 

conspecifics in an open-test arena scented with stickleback kairomones or with blank water.  114 

We chose the three-spined stickleback as a test predator because it is a common predator of 115 

gammarids (Macneil et al. 1999; Mazzi & Bakker 2003) and was present at the study site 116 

(Upper Mother Ditch) where killer shrimp were first detected in 2011, having been detected 117 

in a nearby reservoir one year earlier, in November 2010 (Madgwick & Aldridge 2011).  118 

 119 

 120 

 121 
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Water conditioning 122 

To obtain the kairomones used to simulate the presence of a predator, we housed 20 123 

stickleback (biomass = 2.9 g/L) in a 10L tank of dechlorinated water for 24 hours.  The 124 

conditioned water was prepared freshly the day before the experiments.    125 

 126 

Experiment 1. Hiding behaviour under the threat of predation 127 

To quantify hiding behaviour under the threat of predation we used a 2L plastic tank 128 

(L:20cm, W:10cm, H:10cm) fitted with artificial grass patches (3cm2) glued to the bottom in 129 

a staggered fashion (Figure 1a), and a release cylinder (3.5cm diameter) located in the centre 130 

of the tank. At the beginning of the experiment 250ml of either dechlorinated water (control 131 

test) or fish-conditioned water (treatment) was added to the tank.  One killer shrimp was 132 

placed inside the release cylinder and left to acclimatise for 5 min. The cylinder was then 133 

slowly lifted and the behaviour of the killer shrimp (time spent swimming or hiding in the 134 

artificial grass patches) was recorded for 10 minutes with a GoPro Hero camera mounted 135 

above the test tank (Figure 2A). In total, 20 individuals were tested with fish conditioned 136 

water and 20 individuals with blank water, the order of which was determined at random. 137 

 138 

Experiment 2. Conspecific attraction  139 

To test if killer shrimp were more attracted to conspecifics under the threat of predation, we 140 

used a tank of the same size and volume (2 L) as the one used in experiment 1, but in this 141 

case the bottom was left bare and did not have artificial grass patches. At the two extremes of 142 

the tank we attached two tea balls (diameter 5cm) and drew two lines in the tank to notionally 143 

divide it into three equal sectors, two choice zones associated with the tea balls, and a middle 144 

section that served as a neutral (no choice) zone (Figure 1b). Ten killer shrimp were 145 

introduced in one of the two tea balls chosen at random, while the other one was left empty. 146 
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As for experiment 1, 250ml of fish conditioned water or dechlorinated water were added to 147 

the tank and a single individual was introduced in the acclimatization cylinder, where it was 148 

left to acclimatize for 5min The cylinder was then removed, and the activity of the killer 149 

shrimp was recorded for 10 minutes with an overhead GoPro camera, as above. The time 150 

spent in each of the three tank zones was used to describe its behaviour: the time spent in the 151 

side containing the tea ball with conspecifics was interpreted as measure of attraction for 152 

group protection, the time spent in the central part was interpreted as neutral behaviour, and 153 

the time spent in the side with the empty tea ball was interpreted as avoidance of 154 

conspecifics. After each trial, the position of the two tea balls was alternated to control for 155 

possible external disturbances. In total, 40 killer shrimp were tested, 20 with dechlorinated 156 

water and 20 with fish scented water. The killer shrimp inside the tea ball were replaced 157 

between sessions to reduce aggressive behaviour due to confinement. 158 

 159 

Statistical analyses 160 

We used R 3.3 (Team 2017), for analysis. For both experiments, we used a paired t-test to 161 

examine if (1) killer shrimp spent more time hiding than swimming when they were exposed 162 

to fish kairomones than when they were exposed to blank water (Experiment 1), and if (2) 163 

attraction to conspecifics was stronger when the killer shrimp were exposed to kairomones 164 

from a fish predator than when they were exposed to dechlorinated water (Experiment 2) .  165 

 166 

Ethics Statement  167 

Experiments were carried out in accordance with Swansea University’s Ethical guidelines 168 

and were approved by the Ethics Committee (070917/24, Reference Number: 169 

STU_BIOL_30638_060617140454_1). At the end of the experiments all sticklebacks were 170 
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released alive at the site of capture.  The killer shrimp, due to the risk they may pose for 171 

native communities, were disposed through incineration. 172 

 173 

  174 
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Results 175 

Experiment 1. Hiding behaviour 176 

Killer shrimp spent significantly more time hiding when the water was conditioned with 177 

kairomones from a predatory fish (mean time ± 95CI = 543.45 ± 13.7 s) than when they were 178 

tested against blank water (mean time ± 95CI = 386.75 ± 18.5 s; behaviour x treatment 179 

interaction F1,76 = 544.02, P < 0.001; Figure 2). Controls spent 50% of their time hiding and 180 

50% swimming (t19 = 1.416, P = 0.173), whereas when they were exposed to fish kairomones 181 

they spent 91% of their time hiding and only 9% swimming (t19 = 34.789, P < 0.001). 182 

 183 

Experiment 2. Attraction to conspecifics  184 

Killer shrimp spent much more time in the side of the tank scented with conspecifics (mean 185 

time 477.5 ± 20.5 s) than in the opposite side (mean time 39.1 ± 12.2 s), but such preference 186 

was not affected by the presence of fish kairomones (t19 = 0.245, P = 0.808; Figure 3). 187 

 188 

 189 

  190 
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Discussion 191 

Our study shows that within 6 years (approximately 20 generations) of their introduction into 192 

a novel area in Britain killer shrimp display a strong tendency to hide when they are exposed 193 

to the chemical scent of a native predatory fish (the three spined stickleback), but not when 194 

they are exposed to dechlorinated water. Given that no evidence of predator avoidance was 195 

detected on the same population in relation to the scent of non-predatory Nile tilapia (Rolla et 196 

al. 2019), this strongly suggests that chemical recognition of stickleback kairomones 197 

constitutes an evolved, adaptive trait.   198 

 Much of our knowledge on the invasive killer shrimp refers to its role as a predator, 199 

there is little information regarding its role as a fish prey. This is unfortunate because 200 

predatory fish can exert strong selective pressures on gammarids (Åbjörnsson et al. 2004; 201 

Ahlgren et al. 2011; Kinzler & Maier 2006; Kotta et al. 2010; Wudkevich et al. 1997) and 202 

could play a major role in determining the killer shrimp’s invasion success. The killer shrimp 203 

has been found in the diet of 17 fish species found in the introduced range (9 exotic and 8 204 

native, Table 1), but predator recognition has only been reported for the European bullhead 205 

Cottus gobio (Sornom et al. 2012), the racer goby Babka gymnotrachelus (Jermacz et al. 206 

2017), and the spiny-cheek crayfish Orconectes limosus (Hesselschwerdt et al. 2009), 207 

therefore little is known about its antipredator behaviour.  Amphipods can change their 208 

behaviour and habitat preferences when they detect chemical cues from potential predators 209 

(Baumgärtner et al. 2003; Thiel 2010), but also from injured conspecifics (Wisenden et al. 210 

2001; Wudkevich et al. 1997), similar to what has been observed among teleost fishes 211 

(Roberts & Garcia de Leaniz 2011). Kairomone detection by gammarids has been reported 212 

previously as an anti-predatory strategy (Wudkevich et al. 1997), but seldom in the context of 213 

invasion biology (Hesselschwerdt et al. 2009). 214 
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Predation by native species could reduce, or at least slow down, invasions by non-215 

native species (Zuharah & Lester 2010; Zuharah & Lester 2011) because they may not be 216 

able to recognise native predators (Sih et al. 2010), but also because their different 217 

appearance could make them easier to detect, or make them more attractive, to native 218 

predators (the ‘oddity prey effect’, (Penry�Williams et al. 2018). For example, killer shrimp 219 

are typically larger than native freshwater gammarids (Devin et al. 2003), and this might 220 

make it easier for visual predators to detect them.  However, native predators may also be 221 

reluctant to feed on novel prey due to neophobia (Champneys et al. 2018), and this could 222 

result on lower predation pressure on invasive species (Crawley 1987; MacNeil et al. 2000; 223 

Trowbridge 1995; Wells & Henderson 1993). Killer shrimp could also benefit from a 224 

‘shadow of safety’ effect if their relative low abundance during the earlier stages of invasion 225 

deflects predation pressure to the more abundant native prey (Trillo et al. 2016). Killer 226 

shrimp can rapidly become the dominant species in invaded benthonic communities (Dick & 227 

Platvoet 2000) and can become the most abundant food resource for fish feeding on 228 

macroinvertebrates. For example, field studies have indicated that killer shrimp can replace 229 

native Gammarus roeseli in the diet of zoo-benthivorous fish (Eckmann et al. 2008), but 230 

other studies have suggested the opposite, and reported that native fish prefer to feed on 231 

native gammarids (Kinzler & Maier 2006).  232 

Clearly, the role of predation on invasion dynamics is difficult to predict, but 233 

knowledge of the time since introduction, and of prey-predator interactions appear important 234 

in determining establishment success. This is particularly complicated in the case of the killer 235 

shrimp in Great Britain because although its arrival is very recent, it may have already 236 

learned to chemically recognise a range of novel predators during its long invasion of Europe. 237 

Killer shrimp in the British Isles are genetically similar to those in continental Europe 238 

(Rewicz et al. 2015), where the invasion started in 1992 after the opening of the Main-239 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/636100doi: bioRxiv preprint 

https://doi.org/10.1101/636100
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Danube canal (Dick & Platvoet 2000), suggesting that they are stepping stones direct 240 

descendants from the first invaders. Stepping stones strategies drive the long distance 241 

dispersal of many species (Saura et al. 2014), and it is possible that repeated residencies in 242 

different habitats may have enabled the killer shrimp to learn to recognise different predators. 243 

Given that the three-spined stickleback is also widespread in continental Europe, our study 244 

cannot rule out that the observed predator recognition was acquired in Britain, or represents 245 

an older behavioural legacy from previous invasions. 246 

Two common anti-predatory strategies in amphipods are to reduce mobility and 247 

become more aggregated under the risk of predation (Åbjörnsson et al. 2000; Williams & 248 

Moore 1985; Williams et al. 2016). Results from Experiment 1 in our study indicate that 249 

killer shrimp spend more time hiding and less time swimming when they were exposed to 250 

predator kairomones, as seen in other gammarids. These findings are also in agreement with 251 

those of Sornom et al. (2012) who observed a decrease in mobility and an increase in hiding 252 

time in killer shrimp exposed to the scent of another fish predator, the European bullhead 253 

(Cottus gobio). However, our results on aggregation behaviour (Experiment 2) are more 254 

equivocal. Unlike Gammarus pulex, which become increasingly aggregated when exposed to 255 

stickleback kairomones (Kullmann et al. 2008), killer shrimp in our study showed the same 256 

strong preference to remain in the vicinity of conspecifics even when there was no immediate 257 

threat of predation. Exposure to bullhead kairomones also failed to elicit an increase in killer 258 

shrimp aggregation (Sornom et al. 2012), but in this case aggregation was low. Jermacz et al. 259 

(2017) have shown that killer shrimp prefer to hide in response to predator cues, rather than 260 

aggregate, when refuges are present, and that they aggregate when there are no shelters and 261 

staying in a group is the only antipredator strategy possible. It is possible that aggregation 262 

behaviour in the killer shrimp depends on the availability of shelters, but also on the risk of 263 

intra-guild predation. Compared to native gammarids, killer shrimp display higher sociability 264 
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and lower incidence of cannibalism (Kinzler et al. 2009; Truhlar & Aldridge 2015), which 265 

may explain their strong tendency to aggregate. Aggregation behaviour can provide not only 266 

protection from fish predators (Åbjörnsson et al. 2004), but could also facilitate dispersal, as 267 

living in a group would increase the number of founders, and propagule pressure has been 268 

found to be an important factor determining invasion success (Consuegra et al. 2011; 269 

Ricciardi et al. 2010) 270 

 271 

Conclusions 272 

In conclusion, prey-predator dynamics are an important, but largely neglected, determinants 273 

of invasion success and our study indicates that knowledge of anti-predatory strategies might 274 

be important for predicting dispersal pathways and risk of establishment in the killer shrimp, 275 

and likely also on other aquatic invaders. Killer shrimp are dispersing at an alarmingly fast 276 

rate in Europe (DAISIE 2009; Gallardo et al. 2016), and prevention and control measures 277 

might benefit from information on prey and predators present in communities at risk. In this 278 

sense, behavioural profiling of anti-predatory strategies, using perhaps some of the simple 279 

assays shown in our study, could be incorporated into risk assessments. Knowledge of how 280 

invasive species might respond to resident predators can inform the development of more 281 

efficient management actions, as these seldom consider biotic resistance (Robinson et al. 282 

2019; Robinson et al. 2018). Given its strong aggregation behaviour, we also suggest that 283 

even when complete eradication is not possible, control measures that aim to reduce the 284 

density of killer shrimp might be beneficial, as a lower relative abundance and a smaller 285 

group size can make them more vulnerable to fish predators, potentially reducing their impact 286 

on native communities. 287 

 288 

  289 
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