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Abstract

A central goal in microbial ecology is to simplify the extraordinary biodiversity that inhabits natural
environments into ecologically coherent units. We present an integrative top-down analysis of over 700 bac-
terial communities sampled from water-�lled beech tree-holes in the United Kingdom at distances between
<5m to >100km, combining an analyses of community composition (16S rRNA sequencing) with assays of
community functional capacity (exo-enzymatic activities, ATP production, CO2 dissipation and yield). The
communities were grown in laboratory conditions in a complex growth medium, what allowed us to investi-
gate the relationship between composition and function, excluding confounding environmental factors. We
found a distance-decay trend in the similarity of the communities, and simulated data allowed us to reject
the hypothesis that stochastic processes dominated the assembly of the communities, suggesting that niche
e�ects prevailed. Consistent with this idea, clustering of communities lead us to identify six distinct commu-
nity classes encompassing samples collected at often distant locations. Using structural equation modelling,
we explored how functions were interrelated, demonstrating that a representative functional signature can
be associated with each community class. We obtained a more mechanistic understanding of the classes us-
ing metagenomic predictions with PiCRUST. Notably, this approach allowed us to show that these classes
contain distinct genetic repertoires re�ecting community-level ecological strategies. We �nally formulated an
over-arching ecological hypothesis about how local conditions drive succession in these habitats. The ecolog-
ical strategies resemble the classical distinction between r- and K-strategists and could be extrapolated to
other systems, suggesting that a coarse grained picture of microbial ecological succession may be explained by
relatively simple ecological mechanisms.
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Introduction1

The microbial communities inhabiting natural environments are unmanageably complex. It is therefore di�cult to2

establish causal relationships between community composition, environmental conditions and ecosystem functions3

(such as rates of biogeochemical cycles) because of the large number of factors in�uencing these relationships.4

There is great interest in developing methods that reduce this complexity in order to understand whether there are5

predictable changes in community composition across space and time, and whether those di�erences alter microbe-6

associated ecosystem functioning. The most common approach has been to search for physical (e.g. disturbance)7

and chemical (e.g. pH) features that correlate with community structure and function. This approach has8

often been successful in identifying some major major di�erences among bacterial communities associated with9

di�erent habitats [1] and some of the edaphic correlates [2]. However, even if signi�cant correlations between10

environmental variables and microbial functioning are found, we are still far from understanding the underlying11

biological mechanisms explaining these relationships. For instance, adding variables such as biomass or diversity to12

models in which environmental variables are good predictors of function do not strongly improve model predictions13

[3], suggesting that there is a need for variables that increase the accuracy of biological processes [4].14

The development of a more mechanistic picture is hindered for several reasons, such as di�culties in identi-15

fying the relative role of stochastic and deterministic processes in shaping microbial communities [5, 6, 7], the16

pervasiveness of functional redundancy [8, 9], and of priority e�ects [10]. In addition, it is often di�cult to17

identify which functions to assess. Microbes inhabitating a host sometimes have a substantial impact on host18

performance, for example turning a �healthy� into a �diseased� host [11]. Such extreme impacts of individual taxa19

make it relatively simple to infer a direct link between community composition and function. In open, natural20

environments (e.g. soil, lakes, oceans), the impact of individual taxa on ecosystem functions is often minor, and21

generalisations may depend on subjective choices of which functions to measure.22

An important step forward comes from manipulative experiments in natural environments, that have identi�ed23

variables such as pH [12], salinity [8], sources of energy [13], the number of species [14], and environmental24

complexity [4] as key players in the relationship between bacterial community structure and functioning. Improved25

control can be obtained by �domesticating� communities surveyed from natural environments by growing them26

in a synthetic (albeit complex) environment, and quantifying their functioning under such controlled conditions27

[15, 16]. With these experiments it becomes possible to directly test the hypothesis that more similar communities28

have more similar functions without the confounding in�uence of extrinsic environmental conditions.29

Community similarity can be assessed using a rich array of analytic tools that identify β−diversity clusters30

within multivariate datasets, such as the detection of communities in species co-occurrences networks [17] or31

the reduction of the dimensionality of β−diversity similarities [18]. These approaches have been pervasive in32

the medical microbiome literature, for example in the search for �enterotypes�� i.e. whether individuals are33

characterised by diagnostic sets of species representing alternative community states [18, 19] which, in this paper,34

we call �classes� of communities. The existence of classes in communities sampled from di�erent locations may be35

due to variable environmental conditions that select for di�erent taxa, or may be explained more parsimoniously36

by stochastic processes together with strong dispersal limitation [20]. Deciphering the likelihood of di�erent37

ecological mechanisms can be assessed by adopting a suitable null model, see e.g. [21]. Community classes arising38

from environmental selection would also be functionally di�erent, whereas we would not expect functioning to39

di�er among community classes created by stochastic processes.40

Once classes and functional di�erences have been identi�ed, it is possible to step down into key biological pro-41

cesses focusing on the genetic repertoires of the constituent taxa [22]. Investigating the dominant genes present in42

the di�erent community classes allows explanations of functional di�erences and the determination of ecological43

strategies. For example, community classes that di�er in genes related with environmental sensing, degradation44

of extracellular substrates, or metabolic preferences, could be used as hypotheses of the molecular mechanisms45

responsible for functional di�erences. Therefore, the last step aims to explain how the functional and genetic46

di�erences arise from the prevailing environmental conditions [23], and could point to the speci�c environmental47

parameters that could be measured. This approach solves the problem of measuring many environmental param-48

eters in the hope that some will be signi�cantly associated with community structure or ecosystem functioning.49

Lack of any clear functional di�erentiation among community classes is also informative, and would indicate al-50

ternative community states with redundant functions [24, 25, 26]. Such redundancy could arise in the absence of51

environmental variability, which could also help explain the lack of a dominant environmental axis that explains52

variation in composition.53

In this work we followed the above pipeline investigating a large dataset consisting of more than 700 samples54
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of rainwater-�lled puddles (phytotelmata) that can form at the base of beech trees. The bacterial communities55

present in the tree-holes are key players in the decomposition of leaf litter, and therefore of great interests more56

broadly for understanding decomposition in forest soils and riparian zones. This is an ideal system to follow57

this procedure given the relatively similar conditions found across di�erent locations, making it unique in terms58

of replicability of a natural aquatic environment [27, 28], and its relatively low diversity. Indeed, while e�ects59

caused by environmental variation on phytotelmata ecosystems has been investigated in meio- and macrofaunal60

communities [28], the in�uence in microbial communities is largely unknown. Moreover, emphasis was made for61

understanding bottom-up drivers of tree-holes diversity like nutrients [29, 30, 31], but top-down approaches that62

may help us to understand other drivers of microbial composition like stochastic dispersion or interactions have63

received less attention [28].64

Previous work using this dataset showed that larger (smaller) taxa abundances in�uenced broad (narrow)65

community-level functions [32]. Here we aim to illuminate the mechanistic basis of this relationship. The large66

dataset allowed us to study natural variation in bacterial community composition through the top-down cate-67

gorisation of communities into classes. We then linked the classes with bacterial functioning, analysing a set of68

community-level functional pro�les obtained from laboratory assays of the same communities [32], and investi-69

gating whether the classes di�ered in their functional capacity. Instead of focusing on each function individually,70

we investigated how the functional pro�les varied across the community classes. We then used metagenomic71

information to understand whether similar compositions and functions were translated into di�erent classes of72

genetic repertoires.73

We found signi�cant di�erences in the genetic repertoires and functional measurements among classes, that74

we interpreted in the context of changing environmental conditions. In deciduous forests, bacterial life on the75

forest �oor is characterised by seasonal and daily changes to temperature and resource availability. We therefore76

address whether di�erences in the communities are due to the historical processes at the di�erent geographic77

locations, or if they are rather more in�uenced by contingent local conditions. These factors are often di�cult78

to resolve [26] but may both be important due to the high temporal variability in these systems, as observed79

in compost ecosystems [33]. Interestingly, interpreting the signatures found in the functional measurements and80

in the genetic repertoires led us to hypothesize the existence of community-level ecological strategies re�ecting81

an ecological succession driven by local environmental dynamics of the tree-holes. These ecological strategies82

ressemble the classical distinction between r� and K�strategists described for single species [34].83

Results84

Microbial communities classes are determined by local conditions85

We analysed 753 bacterial communities sampled from water-�lled beech tree-holes in the South West of UK [32]86

(see Suppl. Table 1). Communities were grown in a medium made of beech leaves as substrate for seven days and87

then their composition interrogated through 16S rRNA sequencing (see Methods). We analysed the β−diversity88

of these communities according to two di�erent metrics: the Jensen-Shannon divergence (DJSD) [35], and a89

transformation of the SparCC metric (DSparCC, see Methods [36]). Spatial distances and the two β−diversity90

distances were signi�cantly correlated (Mantel test: r = 0.21; p < 10−3 for DSparCC and r = 0.19; p < 10−3 for91

DJSD). To test if this trend was maintained across the di�erent scales, we clustered samples that were closer in92

space, and retrieved the classi�cations found at 10 distance thresholds spanning 5 orders of magnitude (from <593

m to >100km). We used three statistics (ANOSIM, MRPP and PERMANOVA [37, 38], see Methods) to test94

whether the β−diversity distances within clusters are signi�cantly smaller than those between clusters for the95

10 classi�cations. In all cases, the three tests supported the hypothesis that communities within locations were96

signi�cantly more similar than between locations (permutation tests, p < 10−3, see Suppl. Fig. 1). This spatial97

autocorrelation may be indicative of an important role for stochastic assemblage and dispersal limitation [20].98

We studied how the di�erent statistics changed across the 10 classi�cations. We observed an increase in the99

mean distances within clusters (quanti�ed with the MRPP statistics) and a decay in the ANOSIM R statistics100

(Fig. 1 c and d), while PERMANOVA remains roughly constant across scales (Suppl. Fig. 2). To interpret these101

trends we analysed the behaviour of these metrics with synthetic data in which arti�cial β−diversity distances102

matrices were generated under di�erent assumptions on the mean and variances within and between locations103

across scales (Suppl. Figs. 3�6). We found that the most informative observation is the ANOSIM-R decay when104

the variance of the simulated distances were large (Suppl. Figs. 6 middle column, bottom) a pattern consistent105

with the one observed for the real data (Fig. 1d). To give a sense of the implications of this �nding, in Suppl.106
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Fig. 7 we show that for such variance in the generated distances, approximately 3% of the β−diversity distances107

between samples located at more than 100 km. away should be as high as those found in communities samples108

within 5 m. of distance.109

This result implies high levels of dispersal that are di�cult to explain for tree-hole bacteria. We explored110

the alternative hypothesis: that similar communities found at distant locations result from similar underlying111

environmental conditions. We performed unsupervised clusterings with DJSD and DSparCC, revealing in both112

cases six distinct community classes (Fig. 2A and B, Suppl. Fig. 8 and Suppl. Table 2 for global characteristic113

metrics such as diversity). The whole set of communities are dominated by Proteobacteria, and the community114

classes were distinguished at the genus level (95% sequence similarity), including a higher presence of the genus115

Klebsiella and Pantoea (classes 1, red; and class 3, pink); Paenibacillus and Sphingobioum (class 2, green); Serratia116

(class 5 blue); Sphingomonas, Streptomyces and Pseudomonas (classes 4, yellow) and low abundant genera like117

Brevundimonas and Herbaspirillum and, again, Pseudomonas for class 6 (grey). In the following, we refer to class118

1 (red) as the reference class because it encompassed the largest number of communities (Suppl. Table 2). We119

refer to the remaining communities by their most distinctive taxon as Paenibacillus (class 2), Klebsiella (class 3),120

Streptomyces (class 4), Serratia (class 5). For class 6 we observed that, although the Pseudomonas genus was121

also high in other communities, classes 4 and 6 were dominated speci�cally by Pseudomonas putida (Suppl. Fig.122

9), which we selected as representative of class 6. In Ref. [39] we use a network approach to identify modules of123

coocurring species that con�rm the key role of the taxa selected as representatives.124

We illustrate how these classes are distributed in space by representing the class identity of each community125

in a coloured bar, alongside the Site and Date in which the community was sampled (Fig. 2C). As expected from126

the previous analysis, some communities belong to the same class even if they were distant in space (see examples127

in Suppl. Fig. 10). For the latter, in Fig. 2C we highlight with dotted rectangles some of the cases in which128

there is a better correspondence with the date of sampling than with the site. To test this observation, we showed129

that a classi�cation based on the date of sampling is consistently more similar to the β−diversity classes than the130

site (Suppl. Table. 3). Moreover, computing the ANOSIM statistics when tree-holes are clustered according to131

sampling location (Site values in Fig. 2e) or according to the sampling date (Day and Month values) consistently132

show that the speci�c date (Day) is more informative than the site. The Day was also more informative than the133

Month, suggesting that seasonal environmental conditions were not the main drivers of the similarities, but were134

rather due to daily variation in local conditions. Notably, the value we obtain for the ANOSIM statistics when135

the classi�cation considered are the community classes found, reaches the same value than the one found at 50 m136

(Fig. 1c). In summary, the classi�cation successfully grouped communities into just six groups, with communties137

often separated by far more than 50 m. In addition, the date of sampling is more informative than the sites.138

Taken together, the results suggest that the classes capture similarities in local environmental conditions even in139

tree-holes that were spatially separated by considerable distances.140

Community classes re�ect di�erent functional performances141

If environmental conditions determine compositional di�erences in the communities, we expect that these di�er-142

ences are translated into di�erent community functional capacities, a question that we investigate analysing data143

that quantify the function performance of these communities [32]. The sampled communities were cryo-preserved144

after sequencing, and later revived in a medium made of beech leaves as substrate. Cells were grown for seven145

days while monitoring CO2 dissipation and, after this period the following measurements were taken: community146

cell counts, community metabolic capacity (measured as ATP concentration), and community capacity to secrete147

four ecologically relevant exoenzymes [40] related with i) uptake of carbon: xylosidase (X) and β−glucosidase148

(G); ii) carbon and nitrogen: β−chitinase (N); and iii) phosphate: phosphatase (P) .149

Visual inspection indicated substantial di�erences in the functional capacities among the community classes.150

In some cases, communities belonging to di�erent classes clearly separated, as shown in the histograms in Suppl.151

Fig. 12. Therefore, we explored if these di�erences among the community classes were signi�cant using struc-152

tural equation models (SEM) [41]. A model that made no distinction among classes yielded an excellent �t153

(RMSEA<10−3, CI=[0�0.023], AIC=7493 see Methods and Suppl. Fig. 14). From this structural model we next154

considered models with di�erent parameters for each community class (up to six parameters per pathway, see155

Methods). We then investigated which model better explained the data according to 3 scenarios: i) a model in156

which all the parameters were constrained to be the same for all the classes; ii) a model in which each class had157

a di�erent parameter for each pathway; iii) an intermediate model, in which some parameters were constrained158

for some classes. Accounting for penalizations for models with more degrees of freedom (RMSEA<10−3, CI=[0�159

0.035], AIC=6658, see Methods and Suppl. Material), the best model belonged to the scenario (iii) (see Fig. 3160
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Figure 1: Analysis of decay of communities' similarity with distance. (A) Illustration of the procedure.
Trees are clustered within areas A of increasing sizes, leading to one classi�cation every order of magnitude
(ellipses of di�erent colours). We approximate these areas, stopping the clustering at spatial distances thresholds
equal to

√
A, e.g. the classi�cation for areas of 100 m2 (blue ellipses) is obtained stopping at d = 10m. For each

classi�cation, an ANOSIM and mrpp value was computed to test if the similarity of the communities within the
clusters is larger than between clusters, and the statistics were plotted against the spatial threshold. (B) Number
of clusters at each spatial threshold. The three counties from which the communities were sampled are shown in
the map. The classi�cation at the last threshold consists of two clusters separated by more than 100km. (C and
D) Observed ANOSIM and mrpp statistics for each of the distance thresholds, re�ecting a decay in the similarity
of the communities (see Main Text for details). (E) ANOSIM values for communities clustered according to the
day and month in which were sampled, the site from which they were collected (optimal classi�cation of spatial
distances), and the six community classes (optimal classi�cation of β−diversity distances).
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Figure 2: Communities classes description and relation with sampling sites. (A) Genus frequencies in
each of the six community classes found after unsupervised clustering of the communities using DSparCC. Only
the 15 most abundant genera in each community class are shown, with the remainder classi�ed as Others. (B)
Calisnki-Harabasz index versus the number of �nal clusters in the classi�cation, showing a maximum at six classes.
(C) The dendrogram represents the clustering of the samples (leafs in the tree) according to their spatial distances.
The coloured bars represent membership of each sample to di�erent classi�cations (from top to bottom): the sites,
the day of sampling collection (Date), and the classes found using either DSparCC and DJSD. Dotted rectangles
in the dendrogram indicate examples of: (green) locations where one site was sampled on di�erent days; (blue)
two sites sampled on the same day: (red) a mix of both situations. It is apparent that the date is a better match
to the community classes than the site, which is con�rmed with a comparison between the classi�cations (Suppl.
Table 3).
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and Suppl. Table 6). This result supports the hypothesis that the classes had di�erentiated functional capacities161

(Suppl. Table 7 and Suppl. Fig. 15).162

The model showed that measurements related with uptake of nutrients were all exogenous, including ATP163

production, cell yields and CO2 production (Fig. 3). In addition, ATP production in�uenced yield, which in turn164

in�uenced CO2. Among exoenzyme variables, N in�uenced ATP and, notably, only X a�ected yield, while G and165

P in�uenced both ATP and CO2. Analysis and clustering of the standarized partial regression coe�cients (Suppl.166

Fig. 11) established a classi�cation of the classes in three groups according to their function, with Paenibacillus167

and the reference classes being the most similar, then Streptomyces and P. putida classes, and Klebsiella and168

Serratia.169

We then explored if distinctive pathways for each class could be determined. Given the complexity of the170

SEM models, we �rst ruled out the possibility that di�erences in pathway coe�cients were due to the in�uence171

of other (confounding) variables. To control for this possibility, for each pair of endogenous-exogenous variables,172

we searched for its set of confounding variables with dagitty [42]. Next, for each pair of variables involved in a173

pathway, we performed a linear regression including its adjustment set of confounding factors, and an interaction174

term with a factor coding for the di�erent classes. Coe�cients should be interpreted as deviations with respect to175

the reference class (see Methods). The signi�cant interaction terms (Fig. 3, panel D) show how the relationships176

among the functional variables di�ered among the community classes. For example, the analysis revealed that177

cell yield was negatively in�uenced by β−chitinase activity for the Paenibacillus class, for ATP production for178

the Serratia class, while being positive related with β−glucosidase for the classes of Klebsiella and P. putida. We179

therefore concluded that the community classes had signi�cantly di�erent functional capacities, thus producing180

di�erent relationships in the models.181

Community classes depict di�erent genetic repertoires182

To get a more mechanistic understanding of the above results, we analysed the genetic repertoire of each com-183

munity class by performing metagenomic predictions with PiCRUST [43], and further statistical analysis with184

STAMP [44]. The Nearest Sequence Taxon Index is 0.059, re�ecting a high quality prediction [43]. This is because185

most of the dominant genera in this system are found in gut microbiomes (e.g. Fig. 5 in Ref. [45]).186

The fraction of exo-enzymatic genes belonging to Paenibacillus, Streptomyces and P. putida classes was sig-187

ni�cantly larger than the fractions found for the Klebsiella, Serratia classes and the reference class, suggesting188

that the former classes are specialized in degrading a wider array of substrates (Fig. 4).189

Clustering the KO annotations into KEGG pathways (see Methods) showed that the 6 community classes190

di�ered in their genetic repertoires. Furthermore, these divergent genetic repertoires suggested di�erent ecological191

adaptations, which are summarized in Fig. 5. Consistent with PCA analysis of the KEGG pathways (Suppl.192

Figs. 18�21), we divided the classes in two groups: the reference, Klebsiella and Serratia classes carried the193

genetic machinery for fast growth, while Paenibacillus, Streptomyces and P. putida classes carried the genetic194

machinery for autonomous amino-acid biosynthesis. Evidence for fast growth in the reference, Klebsiella and195

Serratia classes comes from the large fraction of genes related with genetic information processing (Suppl. Fig.196

24), mostly related with DNA replication such as DNA replication proteins genes, transcription factors, mismatch197

repair, homologous recombination genes or ribosome biogenesis �the latter being a good genetic predictor of fast198

growth [46]. Secondly, communities from these classes also carried a larger fraction of genes related with intake199

of readily-available extracellular compounds (Suppl. Fig. 25), including ABC transporters, phosphotransferase200

system, or peptidases, and environmental adaptations including motility proteins, synthesis of siderophores, and201

the two-component systems. Rapid replication often requires a more accurate control of protein folding and202

tra�cking. Consistent with this hypothesis, we found a signi�cantly in�ated fraction of genes involved in folding203

stability, sorting and degradation, including chaperones and genes involved in the phosphorelay system (Suppl.204

Fig. 26).205

A second series of evidences pointing towards orthogonal ecological strategies came from di�erences in the206

metabolic pathways associated with the community classes. Serratia-dominated class (5) had an in�ated fraction207

of genes related to carbohydrate degradation, including genes involved in glycolysis and in the trycaborxylic208

acid (TCA) cycle (Suppl. Fig. 27). In contrast, the Paenibacillus, Streptomyces and P. putida classes were209

associated with genes involved in alternative pathways like nitrogen/methane metabolism, and in secondary210

metabolic pathways related with degradation of xenobiotics/chlorophyl metabolism. Notably, the genes involved211

in the exoenzymes that were experimentally assayed were higher in these classes, suggesting that they were adapted212

to environments with more recalcitrant nutrients (Fig. 5). In addition, Paenibacillus, Streptomyces and P. putida213

classes had a remarkable repertoire of genes for amino acids biosynthesis �possibly at odds with the reference class214
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A.
1 2 3 4 5 6

B.

C.

Measurement (units) Abbr.

CO2 dissipation (ug) CO2
Cells Count (Cells/mL) Cells
ATP production (uM) ATP
phosphatase (uM) P
β-chitinase (uM) N
xylosidase (uM) X

β−glucosidase (uM) G

D.

Formula Var Class Var * Class

Cells ∼ (N +X +ATP ) ∗ Class N (2) -1.29 (*)
CO2 ∼ G ∗ Class G

(4)
-0.19 (**)

CO2 ∼ (X +G+ P ) ∗ Class X 0.86 (*)
Cells ∼ ATP ∗ Class ATP

(5)
-0.57 (*)

ATP ∼ (X +N +G+ P ) ∗ Class X
-1.38 (**)

(3)
-0.71 (*)

Cells ∼ (G+X +ATP ) ∗ Class G
0.31 (*)

(6)
0.44 (*)

CO2 ∼ P ∗ Class P 0.18 (*)

Figure 3: Functional capacity of the the communities classes. (A) Diagrams of the �nal SEMs. The
standarized coe�cients for each of the six classes are shown on the corresponding pathway. (B) R2 values for
the three endogenous variables in the SEM model. (C) Experimental measurements used in this study and
their abbreviations. (D) Causal analysis of the in�uence of the exogenous variable (Var) for each SEM pathway
(determined by the response variable and Var in Formula) when the identity of the classes is included as a factor.
Confounding factors involved in the pathway are also included (remainder variables in Formula). The column
Class re�ects the class identity of any signi�cant coe�cient found with its value shown in the column Var * Class
(signi�cance code: * = p-val<0.01, ** = pval<0.001).
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Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Enzyme
● chitinase

xylosidase
phosphatase
glucosidase

Significance
●

●

●

not significant
p−val<0.05
p−val<0.01

p−val<0.001

Diff. Mean Proportions
●

●

●

 ~ 0
 < 0
 > 0

Figure 4: Summary of post-hoc analysis of exo-enzymatic genes predictions. The signi�cance of di�er-
ences in mean proportions of chitinase (circles), β-xylosidase (squares), β-glucosidase (triangles) and phosphatase
(diamonds) were tested across all pairwise combinations of community classes. Red (blue) symbols denote that
the class in the correspondent column has a signi�cantly lower (higher) mean proportion of the enzyme for the
class shown in the row. The size of the symbol is larger for more signi�cant di�erences. All tests are provided in
Suppl. Fig. 4.

and Klebsiella and Serratia classes, which invested in proteases for amino acid uptake (Suppl. Fig. 28 and 29).215

The apparently low glycolytic capabilities of these communities could result in pyruvate de�ciencies, which would216

hindered the production of su�cient acetyl-CoA and oxaloacetate required to activate the TCA cycle. Consistent217

with this observation, we observed that these communities exhibited a signi�cantly larger proportion of genes218

related with glyoxylate metabolism and degradation of benzoate, that may be used as alternatives to glycolysis219

(Suppl. Fig. 30). Finally, we observed that communities in the reference class and Klebsiella and Serratia classes220

had a signi�cantly larger repertoire of genes needed to synthesise amino acids requiring pyruvate (valine, leucine221

and isoleucine), and which, according to our interpretation, they would generate through glycolysis (Suppl. Fig.222

27). By contrast, Paenibacillus, Streptomyces and P. putida classes had a signi�cantly larger proportion of genes223

used to degrade these amino acids (Suppl. Fig. 28) and hence, either they take these essential amino acids from224

the environment or they generate them from other pathways. Consistent with this observation, genes in these225

classes were enriched for glycine, serine and threonine metabolism (Suppl. Fig. 28), through which it is possible226

to obtain valine, leucine and isoleucine, and which could provide an alternative source of acetyl-CoA (Fig. 5).227

Discussion228

Our analysis of a large set of tree-hole bacterial communities found a strong distance-decay in the similarity of the229

communities across several orders of magnitude. The existence of spatial autocorrelation has previously reported230

in soil environments [47, 12], but this study extends the �ndings to scales above the short distances (<10m)231

previously reported [47]. The high ANOSIM statistics require unrealistic levels of dispersal for the pattern to be232

explained by stochastic processes alone (Suppl. Figs. 28), and therefore points towards a hypothesis that similar233

environmental conditions occur at distant locations.234

We observed that the communities could be arranged into classes, and that the classes corresponded to the site235

and the date of collection, which are tightly entangled. There was a geographic in�uence that was particularly236

apparent at larger distances, which suggests the in�uence of broad environmental conditions and perhaps historical237

processes [26]. The �nding is consistent with the idea that environmental conditions on a particular day strongly238
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Figure 5: Scheme describing the genetic repertoires of the six community classes. Pathways from the
KEGG database that were most relevant for describing the classes are shown. We ranked the mean proportion
of genes in each pathway (see Suppl. Material), indicated by the size of the circles (Fig. 4). Only classes
with signi�cant pairwise post-hoc comparisons are shown. P. putida (gray) and Serratia (blue) classes appear
to dominate orthogonal pathways. We therefore indicated how the pathways were in�uenced by the dominant
community (indicated by the arrow colour). The link between the TCA cycle and amino acid synthesis (black
arrow) is unclear. We further illustrate the substrates and hypothetical environmental conditions expected for
Serratia (rain/cold) and P. putida (dry/hot) communities. We suggest the other communities are intermediates
between these two classes. The Paenibacillus class, with a large number of sporulation and germination genes,
may re�ect conditions of very low nutrient availability.
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in�uenced species composition, consistent with previous �ndings on macro-invertebrate tree-holes communities239

[48]. Moreover, particular classes were found in di�erent seasons suggesting that factors like temperature were240

of secondary importance, despite results highlighting their importance in similar systems [25]. Communities241

collected within the same day were more similar if they were closer in space, demonstrating signi�cant spatial242

autocorrelation, which has previously been reported in soil environments [47, 12].243

Laboratory experiments con�rmed that these classes were associated with di�erent functional capacities, which244

we believe strongly implies that the classes are ecologically meaningful subgroups. The result was compatible with245

a scenario of ecological succession in which there was a transition from communities dominated by r-strategists246

to K-strategists [49]. We suggest that early successional stages were characterized by the Serratia class. This247

class had a negative relationship between ATP and cell yield, indicating low resource use e�ciency. In addition,248

investing in xylosidase had a much lower transfer into ATP production than for the reference class, implying a249

preference for labile substrates like sugar monomers. Analysis of the metagenome revealed pathways responsible250

for extracellular degradation and uptake of nutrients, and metabolic processes associated with glycolysis. The251

class also had many genes associated with environmental processing, fast replication and accurate molecular252

control of protein folding and tra�cking. The mean Shannon diversity of communities belonging to this class253

was almost the lowest (Suppl. Table 2) which might be expected in a rich environment dominated by a few well254

adapted fast growers, consistent with the notion of r-strategists.255

The next communities in the succession were the reference and Klebsiella classes. Although still sharing some256

of the features of the Serratia class, they had distinctive features such as a higher conversion of ATP into yield.257

Later successional stages were characterized by the P. putida and Streptomyces classes, exhibiting high respiration258

values. These classes contained an in�ated fraction of genes related to oxidative phosphorylation and were able to259

synthesise most amino acids. They were also associated with secondary metabolic pathways that may be valuable260

in environments in which resources are low but where it is possible to scavenge the metabolic by-products of261

former inhabitants. This is particularly apparent for the P. putida class, which also had a higher Shannon262

diversity including many rare species, consistent with communities dominated by K-strategists competing for rare263

and heterogeneous resources.264

Finally, the Paenibacillus class contained many of the metagenomic characteristics of the P. putida and Strep-265

tomyces classes. It was the class with lowest Shannon diversity, and also a large fraction of sporulation and266

germination genes (Suppl. Fig. 31). These results imply that these communities lived particularly unproductive267

environments. The laboratory results are consistent with this hypothesis: this community had the largest con-268

version of chitinase activity into yield, which may re�ect its ability to take advantage of the remaining nutrients269

such as dead arthropod exoskeletons or fungi. Water volume is among the main driver of fungi sporulation in this270

system [50], which would match our interpretation. Taken together, the results imply this class is the last stage271

of the succession, where nutrients have been depleted to low levels.272

There are several environmental conditions that might be driving succession. First, succession may be due to273

nutrients dynamics in the tree-holes. A main source of carbon is beech leaf litter, supports meio- and macrofaunal274

communities [51, 52]. Degradation of leaf litter would be compatible with the succession described. Following leaf275

fall, any imple sugars would rapidly be used over days to weeks, while starch and cellulose degrade much more276

slowly [53]. If this is the main driver of succession in tree-holes, we would expect a strong seasonal signal, with277

a class dominating in autumn. Our data do not support these observations because the month of the year was a278

relatively poor classi�er of the samples, and members of the classes we identi�ed were often from di�erent times279

of year.280

Second, succession may be due to patterns of rainfall. Rainwater can bring nitrogen, sulfate, and other ions281

into the tree-hole, but the pathway followed by the water (stem�ow or throughfall) will in�uence the �nal chemical282

compositions [29, 31]. For example, �ushing after heavy rain can reduce phosphate levels to a minimum [30],283

and labile orthophosphate is expected to increase at later successional stages [31]. In addition, a progressive284

acidi�cation in tree-holes that do not receive water inputs for long periods is also expected due to nitri�cation285

[29, 31]. Rain pulses can therefore have rapid impacts on tree-hole conditions and may explain the similarity of286

some samples collected at the same date even at distant locations, while other properties of the tree-holes like287

size, litter content, and the modes of water collection may preclude complete synchronization.288

We envisage a scenario in which rain events were the primary drivers of bacterial composition, illustrated in289

bottom-left corner of Fig. 5, which would be modi�ed by tree-hole features (e.g. volume, leaf inputs). Rain would290

generate pulsed resources of di�erent type and frequency [54], and tree-holes features would determine the rate291

of resource attenuation [55]. For instance, large tree-holes or those with large leaf contents would have a slower292

rate of succession since resources are depleted less rapidly. This hypothesis would explain why, on some dates, all293
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the tree-holes had similar compositions (recent rain or long standing drought conditions) while, beyond that, the294

classes are distributed across di�erent dates and sites (due to the di�erential tempos of succession in tree-holes295

with di�erent features).296

Dissolved oxygen may be a third environmental component that in�uences community composition. The297

P. Putida class were associated with genes involved in aerobic respiration and high levels of phosphate. We298

observed an increase in abundances of strict aerobes, including Brevundimonas, Paucimonas and Phyllobacterium.299

There was also an increase in genes related with metabolism of nitrate, methane, degradation of benzoate (likely300

associated with the presence of resines), or chlorophyl (which indicates an increase in photo-heterotrophs). This301

class might also be able to run the TCA cycle generating acetyl-CoA from acetate, and from the degradation of302

valine, leucine and isoleucine, further complemented with glyoxylate metabolism and the degradation of benzoate303

to generate oxaloacetate. Finally, the class was found in summer and winter, and clustered in speci�c areas. This304

makes it less likely that temperature is an important variable, and points towards the amount of water and oxygen305

as key variables. This observation could also hold for the Paenibacillus class, for which long drought periods could306

lead to lack of water regardless of other tree-holes features (Suppl. Fig. 10).307

We cannot rule out other site-based conditions like the type of forest management. A study analysing this308

factor did not �nd substantial di�erences in enzymatic activities despite di�erent community compositions [56],309

perhaps because the low number of samples did not bring su�cient resolution. Another possible local in�uence310

for the composition are trophic ecological interactions, like the prevalence of invertebrates in certain areas ( e.g.311

mosquito larvae) [57]. Insects with �ying stages may also in�uence dispersal among tree-holes, which might312

contribute to microbial community similarity within a site [58], resulting in a metacommunity structure [48].313

The approach taken here provides detailed insights into the community ecology of the bacterial communities314

inhabiting rainwater pools. By identifying community classes a priori, we were able to piece together the natural315

history of this environment from the perspective of the bacterial taxa. The spatial and temporal distribution316

of these classes, combined with the inferred metagenomes, indicate how environmental conditions re�ect the317

metabolic specialisations of the dominant members. In this way, we were able to identify classes resembling r- vs.318

K-strategists [49] inhabiting tree-holes that were at di�erent successional stages, a distinction also apparent in gut's319

microbiomes [?]. Although this is no doubt an oversimpli�cation, in general we �nd this conceptual framework320

is useful for microbes [34], since this ecological dichotomy may well be supported by thermodynamic [59] and321

protein-allocation trade-o�s [60], which might also underlie other observed life history tradeo�s in microbes (e.g.322

olitgotrophic vs. copiotrophic strategies, [61]). We believe this approach therefore holds great promise for reducing323

the complexity of microbial community datasets [62], particularly in systems where the microbial communities324

have not yet been well characterised. In these systems, the approach we have used would generate hypotheses325

that could become the focus of future experiments or more detailed sampling strategies, therefore forming the326

basis of a bottom-up synthetic ecology that can be predictive in the wild.327

Methods328

Dataset329

We analyzed 753 bacterial communities sampled in from rainwater-�lled beech tree-holes (Fagus spp.) from330

di�erent locations in the South West of United Kingdom, see Suppl. Table 1. 95% of the samples were collected331

between 28 of August and 03 of December 2013, being the remaining 5% collected in April 2014. Spatial distances332

between samples spanned �ve orders of magnitude (from <1m to >100km). Sampled communities were grown in333

standard laboratory conditions using a tea of beech leaves as a substrate. After 7 days of growth, communities334

were characterized by sequencing 16S rRNA amplicon libraries from Ref. [32]. We considered only samples with335

more than 10K reads, and species with fewer than 100 reads across all samples were removed. This led to a �nal336

dataset comprising 680 samples and 618 Operational Taxonomic Units (OTUs) at the 97% of 16 rRNA sequence337

similarity. In previous work [32], four replicates of each of these communities were revived and regrown in the338

same media, further supplemented with low quantities of 4 substrates labelled with 4-methylumbelliferon. After339

7 days, the experiments quanti�ed the capacity of the communities to degrade xylosidase (abreviated X in the340

text, cleaves the labile substrate xylose, a monomer prevalent in hemicellulose), of β-chitinase (N, breaks down341

chitin, which is the major component of arthropod exoskeletons and fungal cell walls), β-glucosidase (G, break342

down cellulose, the structural component of plants), and phosphatase (P, breaks down organic monoesters for the343

mineralisation and acquisition of phosphorus). Cells were also counted at the end of the experiment and CO2344

dissipation quanti�ed as a single accumulative measure along the seven days of experiment. Full experimental345
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details can be found in [32].346

Determination of classes347

We computed all-against-all communities dissimilarities with Jensen-Shannon divergence [35], DJSD, and a trans-348

formation of the SparCC metric [36], DSparCC (see Suppl. Material), and then clustered the samples following349

a similar approach to the one proposed in Ref. [18] to identify enterotypes. In the text, we call these clusters350

community classes. The method consists of a Partition Around Medoids (PAM) clustering for both metrics, with351

the function pam implemented in the R package cluster [63]. This clustering requires as input the number of352

output clusters desired k. We performed the clustering considering a wide range of k values and also computing353

the Calinski-Harabasz index (CH) that quanti�es the quality of the classi�cation, and selecting as optimal clas-354

si�cation kopt = argmaxk(CH), shown in Fig. 2b. Processing of data and taxa summaries provided as Suppl.355

Material were generated with QIIME [64] and Phyloseq [65].356

Relation between community similarity and the sampling date and location357

To investigate the relationship between the sampling location, the sampling date and the similarity in composition358

of bacterial communities, we performed analysis of the similarities of the communities grouping them with di�erent359

criteria and testing if the similarities within groups were signi�cantly di�erent than the similarities between360

groups, using both DJSD and DSparCC. We considered as grouping units one automatic spatial classi�cation and361

two temporal classi�cations in which samples are joined in clusters depending on whether they were collected in362

the same day, or in the same month. Details for the spatial automatic classi�cation and results for two other363

de�nitions of sampling sites (see Suppl. Material). We clustered the communities in spatial areas A of increasing364

sizes every order of magnitude, from 10 m2. to 100 km2, which we approximate considering spatial distances'365

cut-o�s of
√
A meters. We then computed the ANOSIM, MRPP and PERMANOVA tests (see Refs. [37, 38]) for366

each of the resultant classi�cations, using the R functions anosim, mrpp and adonis2, respectively (available in367

the R package vegan [66]) and assessing the signi�cance with permutation tests (103 permutations). To interpret368

the observed trends of these metrics we created synthetic distance matrices following di�erent criteria, available369

in Suppl. Material.370

Structural equation modelling371

Structural equation models [41] were built and analysed with lavaan (version 0.523) and visualized with semPlot372

R package [67, 68]. The modelling procedure was split into di�erent stages detailed in Suppl. Material. First, a373

global model considering all data was investigated following several theoretical assumptions about the relationship374

between the functions, until a �nal model was achieved. Then, we looked for a second series of models in which it375

was possible to �t a di�erent coe�cient for each of the parameters in the global model, constraining the data into376

subsets corresponding to the community classes (i.e., six possible coe�cients for each SEM pathway). Minor re-377

speci�cation of the model was performed (see Suppl. Material). We investigated whether altering the constraints378

on the models provided better �ts, and penalized the models according to the number of degrees of freedom.379

The main criterion to accept a change was that the AIC of the modi�ed model was smaller than the original380

model [69]. We veri�ed that a several estimators were improved after any modi�cation, including the RMSEA,381

the Comparative Fit Index and the Tucker-Lewis Index [70, 71].382

Investigating causal relationships between endogenous and exogenous variables within the �nal speci�ed model383

required controlling for confounding factors. For each pathway in the regression in the SEM model, we identi�ed384

its adjustment set with dagitty [42]. We then performed a linear regression of each pathway adjusted by the385

confounding factors, adding a factor coding for the di�erent classes. The coe�cients obtained from the regression386

were estimated with respect to the reference class. Finally, we identi�ed signi�cant interaction terms between387

classes and the exogenous variable under investigation in the pathway. A signi�cant interaction coe�cient involv-388

ing a given class was interpreted as a di�erent performance of that class with respect to the reference class, and389

was therefore used to identify distinctive functional features of each class.390

Metagenomic analysis391

Metagenomics predictions were performed using PiCRUST v1.1.2 [43] and quality controls computed (Suppl.392

Table. 8). A subset of genes appearing at intermediate frequencies was selected (Suppl. Fig. 17) and aggregated393

into KEGG pathways [72]. The mean proportion of genes assigned to a speci�c pathway was computed across394
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communities belonging to the same class. Then we tested if the di�erences in mean proportions between classes395

were statistically signi�cant using post-hoc tests with STAMP [73] (see Suppl. Material). To create Fig. 5 we396

visually inspected each post-hoc test and ranked the classes according with the number of pairwise tests in which397

they appeared signi�cantly in�ated (Suppl. Figs. 22�32). We qualitatively represent this ranking with circles of398

di�erent sizes. Classes that do not appear in�ated in any pairwise test in the pathway are not represented.399
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