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Abstract 43	
 44	
In our daily life we often make complex actions comprised of linked 45	
movements, such as reaching for a cup of coffee and bringing it to our mouth 46	
to drink. Recent work has highlighted the role of such linked movements in the 47	
formation of independent motor memories, affecting the learning rate and  48	
ability to learn opposing force fields. However, while such work has described 49	
the angular generalization function representing the neural tuning of motor 50	
memory formation in state space, we have no understanding of how different 51	
movement kinematics (such as distance, speed or duration) affects the 52	
formation of these independent motor memories. Here we investigate such 53	
kinematic generalization for both passive and visual lead-in movements to 54	
probe their individual characteristics. After participants adapted to opposing 55	
force fields using training lead-in movements, the lead-in kinematics were 56	
modified on random trials to test generalization. For both visual and passive 57	
modalities, predictive compensation was sensitive to lead-in duration and 58	
peak speed, falling off away from the training condition. However, little decay 59	
was found with increasing lead-in distance. Interestingly, asymmetric transfer 60	
between lead-in movement modalities was also observed, with partial transfer 61	
from passive to visual, but very little vice versa. Overall these tuning effects 62	
were stronger for passive compared to visual lead-ins demonstrating the 63	
difference in these sensory inputs in regulating motor memories. Our results 64	
suggest these effects are a consequence of state estimation, with differences 65	
across modalities reflecting their different levels of sensory uncertainty arising 66	
as a consequence of dissimilar feedback delays.  67	
 68	
 69	
Significance Statement 70	
 71	
Using a force field interference paradigm, we show that the generalization of 72	
motor memory is strongly tuned to variations in lead-in kinematics, with 73	
passive lead-ins exhibiting a stronger influence and sharper tuning than visual 74	
lead-ins. This asymmetry is mirrored in the transfer of adaptation between 75	
modalities, with stronger transfer from the passive to visual condition. We 76	
suggest these differences arise due to state estimation during the lead-in, with 77	
larger delays in visual signals increasing their uncertainty. This reduces their 78	
feedback weighting compared to proprioceptive signals, producing a smaller 79	
estimated state change, and therefore smaller decay in predictive force. 80	
Overall these results provide further evidence that the human motor system 81	
uses observer-based control, based on a forward model to estimate state. 82	
  83	
 84	
Introduction 85	
 86	
Recent studies have highlighted key aspects for neural rehabilitation using 87	
robotic systems (Reinkensmeyer et al., 2016). However, continual progress in 88	
this area depends on understanding the mechanisms of human sensorimotor 89	
learning in order to determine the optimal presentation of sensory information 90	
to improve the rate, retention and generalization of adaptation. Although 91	
adaptation is often studied on single movements in the laboratory, we rarely 92	
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produce movements in isolation in everyday life. Rather, one movement often 93	
directly leads into another. For example, to catch a ball, we make use of 94	
visual motion information to estimate its state in order to plan and execute an 95	
interception movement. Thus, natural movements often follow directly from 96	
previous movements or from visual motion.  97	
 98	
Recent work has shown that closely linking multiple movements together in 99	
time reduces interference in learning opposing tasks (Howard et al., 2012; 100	
2015; Sheahan et al., 2016; Howard et al., 2017). In particular, distinct past 101	
movements act like a contextual cue, enabling adaptation to opposing viscous 102	
curl fields when these movements are preceded by unique lead-in motions, 103	
each associated with one of the dynamics (Howard et al., 2012). This shows 104	
that motor learning and recall depends not only on the current state of the arm 105	
during a movement, but also on its preceding states. Interestingly, active, 106	
passive or visual lead-in movements were all equally effective at reducing 107	
interference. This indicates that sensory feedback relating to motion is 108	
sufficient to affect adaptation, even when no active movement is involved. The 109	
contextual effect of this prior movement disappears as the time between lead-110	
in and adaptation movements exceeds about half a second, indicating that the 111	
representation of past state decays quickly over time. This suggests a strong 112	
link between the representation of state and the theory of neural population 113	
dynamics (Churchland et al., 2012; Pandarinath et al., 2015). 114	
 115	
Dynamic adaptation to a single force field occurs locally; after training in a 116	
specific movement, the recall of predictive compensation decays as the 117	
movement angle (Thoroughman and Shadmehr, 2000; Donchin et al., 2003; 118	
Howard and Franklin, 2015; 2016) or distance (Gandolfo et al., 1996; 119	
Goodbody and Wolpert, 1998; Mattar and Ostry, 2007) deviates from the 120	
training condition. The Gaussian-like angular generalization observed in these 121	
studies has also be found for lead-in movements, with different lead-in 122	
modalities exhibiting different characteristics, both in terms of their absolute 123	
level of influence, but also in their sharpness of tuning. In particular both 124	
active (Sarwary et al., 2015) and passive lead-in movements (Howard and 125	
Franklin, 2015) show narrower and deeper tuning than visual lead-in 126	
movements (Howard and Franklin, 2016).  127	
 128	
Interference studies have been widely adopted to investigate contextual 129	
effects on motor learning, and to examine if contextual cues can assist in the 130	
learning of opposing dynamics (Brashers-Krug et al., 1996; Gandolfo et al., 131	
1996; Krakauer et al., 1999; Karniel and Mussa-Ivaldi, 2002; Caithness et al., 132	
2004; Nozaki et al., 2006; Howard et al., 2013). Such interference paradigms 133	
are more sensitive to generalization effects of contextual cues than single field 134	
paradigms, and have been used effectively to examining the angular 135	
generalization characteristics of lead-in movements (Howard and Franklin, 136	
2015; 2016). Using these paradigms it has been possible to extract features 137	
of the neural basis functions underlying dynamical adaptation, allowing for the 138	
development of simple computational models (Howard et al., 2017). However, 139	
we still lack basic information on the generalization features of lead-in 140	
movements for different kinematics such as duration or distance.  141	
 142	
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Here, we first characterize the generalization of passive and visual lead-in 143	
movements across different kinematics using an interference paradigm. In two 144	
separate experiments, we examine generalization across distance and 145	
duration (and the dependent variable of speed) of passive and visual lead-in 146	
movements. Second, in order to gain insight into any commonality between 147	
the neural resources employed in passive and visual lead-in movements, we 148	
also investigate how adaptation transfers between these two different lead-in 149	
modalities. 150	
 151	
 152	
Methods 153	
 154	
Experimental Design 155	
 156	
Subjects. Sixteen human participants were randomly allocated to two 157	
experimental groups that each performed one experiment. Eight participants 158	
(7 female, aged 24.8 ± 5.0 years, mean ± sd) performed the passive lead-in 159	
experiment. Eight further participants (6 female; aged 27.4 ± 6.7 years) 160	
participated in the visual lead-in experiment. All participants were right handed 161	
according to the Edinburgh handedness questionnaire (Oldfield, 1971), and 162	
naïve to the aims of the study. All participants provided written informed 163	
consent to the protocol before participating in the experiment, which had been 164	
approved by the University of Cambridge Ethics Committee. The methods 165	
were carried out in accordance with the approved guidelines. 166	
 167	
Apparatus. Experiments were performed using a vBOT planar robotic 168	
manipulandum and its associated virtual reality system (Howard et al., 2009). 169	
Handle position is measured using optical encoders sampled at 1000 Hz, and 170	
motors operating under torque control allow the application of end-point 171	
forces. A force transducer (Nano 25; ATI), mounted under the handle, 172	
measures the applied forces, and its output signals were low-pass filtered at 173	
500 Hz using analogue 4th pole Bessel filters prior to digitization. To reduce 174	
body movement participants were seated in a sturdy chair in front of the 175	
apparatus and firmly strapped against the backrest with a four-point seatbelt. 176	
During an experiment, participants grasped the robot handle in their right 177	
hand while their right forearm was supported by an air sled, constraining arm 178	
movement to the horizontal plane. Participants could not view their hand 179	
directly. Instead veridical visual feedback was used to overlay images of the 180	
starting location, via point, final target, (all 1.25 cm radius disks) and a hand 181	
cursor (0.5 cm radius red disk) using the virtual reality system. This ensured 182	
that the visual cursor appeared to the participant in the same plane and at the 183	
same location as their hand. Data was collected at 1000 Hz and logged to 184	
disk for offline analysis using Matlab (Matlab, The MathWorks Inc., Natick, 185	
MA, USA). 186	
 187	
Force Fields. In the adaptation movement, participants performed reaching 188	
movements either in a null field condition, a velocity-dependent curl force field 189	
(Gandolfo et al., 1996), or a mechanical channel (Scheidt et al., 2000). The 190	
curl force field was implemented as: 191	
 192	
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 194	
where the field constant k was set to a value of ±16 Nm-1s, and the sign 195	
determines the direction (CW or CCW) of the force-field. Each participant 196	
experienced both force field directions. The direction of the force field was 197	
always associated with a specific direction of a prior contextual movement. 198	
The relationship between the contextual movement direction and curl field 199	
direction (CW/CCW) was counterbalanced across participants. 200	
 201	

Condition Duration [ms] Distance [cm] 
Passive training 700 10 
Visual training 700 10 
   
Passive/Visual test channel  700 10 
   
Passive/Visual probe channel  1400 20 
Passive/Visual probe channel  1050 15 
Passive/Visual probe channel  420 6 
Passive/Visual probe channel  210 3 
Passive/Visual probe channel  1400 10 
Passive/Visual probe channel  1050 10 
Passive/Visual probe channel  420 10 
Passive/Visual probe channel  350 10 
Passive/Visual probe channel  700 20 
Passive/Visual probe channel  700 15 
Passive/Visual probe channel  700 6 
Passive/Visual probe channel  700 3 
Passive/Visual probe channel  1050 20 
Passive/Visual probe channel  350 3 

 202	
Table 1. Generalization conditions 203	

 204	
Mechanical channel trials were implemented using a spring constant of 6,000 205	
Nm-1 and a damping constant of 30 Nm-1s perpendicular to the direction of 206	
motion throughout the movement between the central location and the final 207	
target. Channel trials were only produced on the movements to the 0° target 208	
with corresponding lead-in movements starting at 135° or 225°. 209	
 210	
Protocol 211	
 212	
Two separate experiments were performed to examine the generalization of 213	
the learning associated with one contextual movement to other contextual 214	
movements with different kinematic profiles (within the same modality), as 215	
well as the transfer of learning between passive and visual lead-in conditions 216	
(across the modalities).  217	
 218	
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After an initial pre-learning session in a null field, participants were exposed to 219	
the curl force fields (learning phase). Channel trials were used to examine 220	
adaptation to the novel dynamics, in which the lead-in movement duration, 221	
speed and distance were varied. In addition, the modality of the lead-in 222	
movement was occasionally changed to examine transfer. The trial 223	
parameters for both experiments are shown in Table 1 and the kinematics of 224	
the lead-in movements can be seen in Fig 1. On these trials, the lead-in 225	
movement was chosen from one of 15 different movements with distances 226	
ranging from 3 cm to 20 cm and durations ranging between 210 ms to 1400 227	
ms.  228	
 229	
 230	

 231	
 232	
Figure 1. Kinematics of lead-in movements used for testing generalization. A 233	
Profiles of movement distance versus duration of lead-in probe conditions 234	
across all conditions. Thick black line indicates the training lead-in motion. 235	
Colors indicate specific conditions that are matched across duration (red), 236	
peak speed (green), or duration (blue). B Lead-in movement kinematics of 237	
peak speed as a function of duration. 238	
 239	
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 240	
 241	
Figure 2. Experimental Design. A-C: Passive lead-in generalization 242	
experiment. A Participants first experienced an initial passive lead-in motion 243	
from a starting position (grey circle) to the central target (green circle) and 244	
then immediately made a second active movement to the target (yellow circle) 245	
on which a curl force field (blue arrows) could be applied. B An initial 246	
movement from a different starting target was associated with the opposite 247	
force field on the second movement. The direction of curl force field and lead-248	
in movements were counterbalanced across participants. C In order to 249	
examine learning rate and generalization, random trials in which the 250	
contextual movement was followed by a mechanical channel on the second 251	
movement to the target were applied. D-F: Visual lead-in generalization 252	
experiment. D Participants initially observed an initial visual cursor movement 253	
(red circle) from the grey starting circle to the central target (green circle). 254	
Once the cursor entered the central target, participants immediately 255	
performed a second active movement to the target (yellow circle) on which a 256	
curl force field (blue arrows) could be applied. E An initial cursor movement 257	
from a different starting target was associated with the opposite force field on 258	
the second movement. F On random trials, after the visual lead-in motion, a 259	
mechanical channel was applied on the active movement to the target to 260	
measure predictive compensation.   261	
 262	
Experiment 1. Passive lead-in movements.  263	
 264	
All trials consisted of a two-part movement: an initial lead-in movement 265	
followed directly by an adaptation movement (Fig 2A-C). The first part was a 266	
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contextual lead-in movement from a starting location to a central via point. 267	
This contextual lead-in movement was normally 10 cm in length during all null 268	
and force field training conditions. The second part was an 18cm adaptation 269	
movement to the final target. Only during the adaptation part of the movement 270	
could participants experience a force field (or channel trial). The lead-in 271	
movement direction (+45° or -45° relative to final target direction) was 272	
indicative of the direction of the curl force field on the adaptation movement 273	
(clockwise or counterclockwise). The adaptive part of the movement was 274	
made to one of two final targets, located at 0° and 270° degrees relative to the 275	
via point. The preceding contextual movements started from one of 3 276	
locations, namely at 135° or 225° and 45° or 135° degrees respectively, and 277	
end at a central via-point. Together this produced four possible two-part 278	
movements (combinations of lead-in and adaptation movement). 279	
 280	
In experiment 1, the contextual lead-in movement was comprised of a passive 281	
movement of the participant’s hand. This passive movement was produced by 282	
the robotic manipulandum passively moving the participant’s hand while no 283	
cursor was presented. Each trial began by displaying the start location for the 284	
lead-in movement, the central location and final target. The vBOT then moved 285	
the participant’s hand to the lead-in start location. Once the handle was 286	
stationary within the start location for 300 ms, a beep was generated 287	
indicating the start of the trial. At this time, the handle of the robotic system 288	
moved to the central via-point following a minimum jerk trajectory. The training 289	
contextual movement was a 10cm movement of duration 700 ms. Once the 290	
hand reached the central location, participants were required to produce an 291	
active adaptation movement from the central location to the final target 292	
location. The dwell time of the hand within the central via point was required 293	
to between 0-250 ms, otherwise a warning was provided. If dwell time 294	
exceeded 500ms then the trial was aborted and repeated. If the second 295	
movement (adaptation movement) duration was between 450 ms and 600 ms 296	
a “Great” message was displayed; otherwise an appropriate “Too Fast” or 297	
“Too Slow” warning was shown. Force fields and channel trials were only ever 298	
presented during this second movement. 299	

As many trials were required, each experiment was performed in two separate 300	
sessions on different days. There were 1546 and 1580 trials on days 1 and 2 301	
respectively, providing a total of 3126 trials. Participants were required to take 302	
short rest breaks approximately every 200 trials (195-205 trials) but could rest 303	
at any time between trials. The trials were organized as follows: 304	
 305	
Day 1 306	
 307	
Pre-exposure: The pre-exposure phase started with 2 blocks of 40 trials. A 308	
block consisted of 36 Null trials and 4 channel trials (Total 80 trials: 72 null 309	
trials, 8 training condition channel trials). Next, participants were provided with 310	
three repetitions of each of the 34 generalization channel trials (Total 102 311	
generalization condition channel trials) to ensure they had prior experience of 312	
the generalization trial conditions. Finally, 2 blocks of null field trials (36 null 313	
trials and 4 channel trial) were performed. 314	
 315	
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Exposure Training: During the exposure phase, the participants were exposed 316	
to the curl force fields during the adaptation movement. This phase consisted 317	
of 12 blocks of 40 trials (Total 480 trials: 432 field trials, 48 training condition 318	
channel trials).  319	
 320	
Generalization Testing: This examined generalization of the learned predictive 321	
compensation by pseudo-randomly interspersing trials with curl field exposure 322	
with trials in which channel trials were preceded by the full range of contextual 323	
movements (different durations and distances). This consisted of 6 blocks of 324	
134 trials, which meant that there were 6 repetitions of each of the 34 325	
generalization channel trials. (Total 804 trials: 600 field trials, 204 326	
generalization condition channel trials). Generalization conditions are 327	
graphically illustrated in Fig. 1.  328	
 329	
Day 2  330	
 331	
Exposure Training: In the second session, training was briefly resumed. The 332	
phase consisted of 6 blocks of 40 trial blocks (Total 240 trials: 216 field trials, 333	
24 training condition channel trials).  334	
 335	
Generalization Testing: Similar to the session of Day 1, participants performed 336	
10 blocks of 134 trials, providing 10 repetitions of each of the 34 337	
generalization channel trials. (Total 1340 trials: 1000 field trials, 340 338	
generalization condition channel trials).  339	
 340	
Generalization lead-in conditions, which were always followed by a channel 341	
trial on the adaptation movement, were chosen to sample lead-in distances 342	
between 3 - 20 cm, peak speeds between 8.04 - 53.57 cms-1 and durations 343	
between 210 – 1400 ms. In addition, a transfer condition was included in 344	
which the lead-in motion was occasionally substituted by a visual moving 345	
cursor and a reversed direction visual cursor. 346	
 347	
Experiment 2. Visual lead-in movements.  348	
 349	
Experiment 2 was had a similar design to Experiment 1, except that the 350	
contextual lead-in movements for both training and testing consisted of a 351	
visual movement of the cursor (Fig 2D-F). The training contextual lead-in 352	
movement again followed a minimum jerk trajectory of duration 700 ms from 353	
the start to the central location. During this time, the participant’s hand 354	
remained stationary at the central location. Immediately after the cursor 355	
reached the central location, the participant made an active reaching 356	
adaptation movement from the central location to the final target. The same 357	
variations of generalization movement trials were performed (but with visual 358	
instead of passive motion). In addition, a transfer condition was used in which 359	
a passive movement lead-in was performed. Again, a reversed visual cursor 360	
condition was also employed. 361	
 362	
 363	
Data Analysis 364	
 365	
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The experimental data was analyzed offline using Matlab R14. Statistics to 366	
examine differences between the generalization from visual lead-in and 367	
passive lead-in movements were performed in JASP 0.9.2 (JASP Team, 368	
2018) using both the ANOVA and Bayesian ANOVA. To examine learning, 369	
kinematic error on the adaptation movements and force compensation on the 370	
channel trials were used.  371	
 372	
Kinematic error. For each null and curl field trial, the kinematic error was 373	
calculated on the adaptation portion of the movement. This was quantified as 374	
the maximum perpendicular error (MPE), which is the maximum deviation of 375	
the hand path to the straight line joining the movement starting location to the 376	
target. For each participant, the average MPE over 8 trials was calculated. 377	
The sign of the MPE was flipped appropriately so that results from CW and 378	
CCW field trials could be appropriately combined together in this calculation. 379	
The mean and standard error (SE) of MPE was then computed across all 380	
participants.  381	
 382	
Force compensation. On each channel trial, force exerted by participants 383	
perpendicularly into the wall of the simulated channel was measured to 384	
estimate predictive feedforward adaptation. This method is preferable to 385	
relying on a reduction in kinematic error during force field learning, which can 386	
also arise from muscle co-contraction (Burdet et al., 2001; Franklin et al., 387	
2003; Milner and Franklin, 2005). The measured channel force was regressed 388	
with the velocity of movement along the channel during the same period and 389	
then scaled by the field strength. This yielded an estimate of the level of force 390	
compensation present on the given channel trial (Smith et al., 2006). For 391	
plotting purposes, the force compensation data was averaged across 2 392	
channel trials for each participant. The mean and standard error (SE) of 393	
compensation was then computed across all participants to examine the 394	
generalization functions. 395	
 396	
 397	
Results 398	
 399	
In the passive lead-in experiment, participants performed active reaching 400	
movements to a target after being passively moved from a start position to a 401	
central target. After initial movements in a null field, participants were 402	
presented with a curl force field during the active movement. The direction of 403	
the curl field depended on the angle between the passive movement and 404	
active movement (Fig 2A,B). When presented with the curl force field, 405	
participants’ adaptation movements were disturbed, producing large errors 406	
that were gradually reduced over the exposure phase (Fig 3A). Throughout 407	
the experiment channel trials were introduced on random trials in order to 408	
measure the predictive force compensation throughout adaptation (Fig 2C). 409	
Over a similar timescale as the reduction in kinematic error, force 410	
compensation increased, reaching just over 63% compensation averaged 411	
over both force fields (Fig 3B). A small decay in the force compensation and 412	
increase in the kinematic error can be seen between day 1 and the start of 413	
day 2.  414	
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 415	
 416	

Figure 3. Adaptation to two opposing force fields. A Mean and SE of MPE 417	
across over 8 participants for the passive lead-in experiment as a function of 418	
blocks of 8 trials. B Mean and SE of percentage force compensation for pairs 419	
of channel trials (one for each force field direction) throughout the passive 420	
lead-in experiment where the lead-in movement was the same as the training 421	
trials. C Mean and SE of MPE for the visual lead-in experiment. E Mean and 422	
SE of percentage force compensation for the visual lead-in experiment.  423	
 424	
Participants in the visual lead-in experiment performed a similar protocol but 425	
where the lead-in movements were purely visual in nature (Fig 2D-F). Again, 426	
when presented with the curl force field, participants’ adaptation movements 427	
were disturbed, producing large errors that were gradually reduced over the 428	
exposure phase (Fig 3C). Over a similar timescale, force compensation 429	
increased, reaching approximately 70% compensation averaged over both 430	
force fields (Fig 3D). 431	
 432	
On random trials late in the adaptation phase, channel trials were applied with 433	
a range of different lead-in movement kinematics (Fig 1) in order to examine 434	
generalization. After learning the force fields with the passive lead-in 435	
movement, variations in the kinematics of this lead-in movement produced a 436	
range of generalization levels (Fig 4A). As the testing lead-in movements 437	
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varied further away from the training kinematics the predictive force level 438	
decreased. A similar finding is shown for the generalization after learning a 439	
visual lead-in movement (Fig 4B). However, in this condition only small 440	
decreases in the predictive force is seen over a wide range of changes in the 441	
lead-in kinematics.  442	
 443	

 444	
 445	
Figure 4. Generalization surface plots for passive and visual lead-in 446	
movements. A Surface plot of generalization for passive lead-in movements. 447	
The percentage force compensation is represented by color and plotted 448	
against lead-in duration and lead-in distance. The black circle with a white 449	
center indicates the result at the training condition. The solid black dots 450	
indicate points for which measurements were made on probe trials. The black 451	
dotted lines correspond to conditions with the same training lead-in distance 452	
of 10cm, same training lead-in duration of 0.7s or same training lead-in speed 453	
of 26.7cm/s. The legend shows the correspondence between color and 454	
percentage perfect force compensation. B Surface plot of generalization for 455	
the visual lead-in condition. 456	
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 457	
 458	

Figure 5. Generalizations results for both passive and visual lead-in conditions 459	
plotted for fixed values of lead-in distance, lead-in duration and lead-in speed. 460	
A-C Results of passive lead-in experiments. The dotted lines indicate the 461	
training values of lead-in distance and lead-in duration. Error bars indicate 462	
standard error of the mean. A Effect of changing lead-in duration for fixed 463	
10cm lead-in distance. In this panel, lead-in distance is held constant and the 464	
movement duration (shown on the x-axis) and speed vary. B Effect of 465	
changing lead-in distance (and peak speed) across conditions with a fixed 466	
700ms lead-in duration. C Effect of changing lead-in duration (and distance) 467	
across conditions with a fixed 26.7cm/s lead-in speed. D-F Corresponding 468	
results for visual lead-in condition. 469	
 470	
Across the different lead-in movement kinematics, several conditions had the 471	
same duration, peak velocity or distance as the learned training condition 472	
(dotted lines in Fig 4). Here we examine the predictive force compensation 473	
values over these conditions in more detail (Fig 5). The results for the passive 474	
lead-in condition show strong variations over changes in all three parameters 475	
(Fig 5A-C). In panel A, lead-in distance is held constant and the movement 476	
duration (shown on the x-axis) and speed vary. In panel B, lead-in duration is 477	
held constant and the movement distance (shown on the x-axis) and speed 478	
vary. In panel C, lead-in speed is held constant and the movement duration 479	
(shown on the x-axis) and the distance vary. The dotted lines indicate the 480	
training values of lead-in distance and lead-in duration. It can be seen that the 481	
recall of predictive compensation was strongly affected by changes in the 482	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2019. ; https://doi.org/10.1101/636266doi: bioRxiv preprint 

https://doi.org/10.1101/636266
http://creativecommons.org/licenses/by/4.0/


14	
	

duration of the movement (shown for constant distance conditions in Fig 5A 483	
and constant speed conditions on Fig 5C). There was a strong tuning effect 484	
centered around the movement duration used for training, with compensation 485	
falling off as movement duration either increased or decreased from that 486	
value. However, changing lead-in distance produced different effects. While 487	
reducing lead-in distance again reduced compensation, increasing movement 488	
distance from the training value had little effect (Fig 5B). 489	
 490	
In the visual lead-in condition, we found slightly less pronounced decay as the 491	
some of the kinematics were varied while others remained constant (Fig 5 D-492	
F). Again, it can be seen that compensation was affected by changes in the 493	
duration of the movement. Although there was a tuning effect centered around 494	
the movement duration using for training, the fall off as duration deviated from 495	
the training value was less than in the passive lead-in condition (Fig 5D). As 496	
the training distance varied but duration was fixed, we saw the least decay, 497	
especially for longer distances (Fig 5E). Finally, as the peak speed was fixed, 498	
we found small decay the other variables were changed. (Fig 5F).  499	
 500	

 501	
 502	

Figure 6. Comparison of transfer across sensory modality or to reversed 503	
visual cursor. A Transfer from passive lead-in to visual lead-in or reversed 504	
visual lead-in. For comparison the learned force compensation on passive 505	
movements is shown. Black circles indicate the results of individual 506	
participants. Error bars indicate standard error of the mean. B Transfer from 507	
visual lead-in to passive lead-in or reversed visual lead-in. 508	
 509	
If we compare the generalization of the predictive compensation across the 510	
two experiments, we can see one major finding; namely that the overall tuning 511	
effects were much more pronounced for the passive lead-in condition 512	
compared to the visual lead-in condition. Visual lead-in generalization showed 513	
much less sensitivity to variations in lead-in kinematics. Indeed, whereas 514	
passive lead-ins resulted in a 2D monotonic curved surface in the dimensions 515	
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of duration and distance (Fig. 4A), the corresponding surface for visual lead-516	
ins (Fig. 4B) exhibits a large region consisting of a flat planar surface. To test 517	
if this difference in the generalization across kinematics between passive and 518	
visual lead-in movements is statistically significant, we performed ANOVAs on 519	
the force compensation results (with main effects of kinematic condition (14 520	
levels) and lead-in modality (2 levels: visual or passive)). To do so, the force 521	
compensation for each testing condition was normalized with respect to the 522	
value at the trained condition for each participant. We found strong 523	
differences between the generalization results of the visual and passive lead-524	
in movements (lead-in modality) using both frequentist (F1,196=32.477; 525	
p<0.001) and Bayesian (BF=13.664) ANOVAs. This highlights a clear 526	
difference between visual inputs and passive inputs as a contextual signal for 527	
motor adaptation, extending our previous findings (Howard and Franklin, 528	
2015; 2016). 529	
 530	
We also investigated how learning opposing force fields with contextual cues 531	
in one sensory modality would transfer to the other sensory modality. To 532	
investigate this, occasional channel trials were used with a lead-in in the other 533	
modality. It can be seen that there is asymmetric transfer between passive 534	
lead-in and visual lead-in movements (Fig 6). Although there was partial 535	
transfer from passive to visual lead-in movements (Fig 6A) with values 536	
reaching just above 20%, there was much less transfer from visual to passive 537	
lead-in movements (Fig 6B) with values just under 10%. To compare the level 538	
of transfer between the two modalities, the transferred adaptation was scaled 539	
according to the final level of adaptation in each experiment. The transfer from 540	
passive to visual was significantly larger than the transfer from visual to 541	
passive (F1,14=15.9, p<0.001; BF=23.2). Thus, there is a clear asymmetry 542	
between the transfer of adaptation between these two sensory modalities.  543	
 544	
Finally, we examined how learning the visual lead-in movement would transfer 545	
to a completely reversed visual cursor (with the same duration and distance). 546	
To balance conditions and the number of trials across experiments, this was 547	
also tested for the passive lead-in. As expected, there was little transfer from 548	
passive lead-in to reverse visual lead-ins, although this value was only about 549	
75% of the forward visual lead-in transfer. The transfer from the visual training 550	
to the reversed visual lead-in was also low (approximately 20%) showing that 551	
the predictive compensation is sensitive to the direction of the visual motion. 552	
The recall of compensation in the reversed cursor transfer conditions were 553	
quite variable, as indicated by the spread of data points (black dots) shown as 554	
the mean of each individual participant. 555	
 556	
 557	
Discussion 558	
 559	
We investigated the kinematic generalization characteristics of passive and 560	
visual lead-in movements using a force field interference paradigm. 561	
Participants first experienced a lead-in movement and then immediately made 562	
an active movement in a curl force field where the field direction was 563	
associated with the lead-in movement. Channel trials within the active 564	
movement examined how predictive compensation varied as lead-in 565	
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kinematics were varied. In the first experiment lead-in movements were 566	
passive, whereas in the second experiment they were visual. For both 567	
modalities, recall of predictive compensation decreased as the duration of the 568	
lead-in movements deviated from the training condition. Reducing lead-in 569	
distance also reduced compensation but increasing lead-in distance had little 570	
effect on the force generalization. Our results show that although passive and 571	
visual lead-in movements influence memory formation and recall in 572	
subsequent movement, passive motion exhibits narrower generalization 573	
characteristics, whereas visual motion is much less sensitive to kinematic 574	
change.  575	
 576	
These generalization results further characterize the neural tuning exhibited 577	
by lead-in movements, extending beyond the directional tuning seen 578	
previously. The observation that passive lead-ins were more sensitive to 579	
changes in kinematics than visual lead-ins is consistent with the prior 580	
observations examining angular generalization (Howard and Franklin, 2015; 581	
Sarwary et al., 2015; Howard and Franklin, 2016). Namely that active and 582	
passive tuning was more pronounced and narrower than the wider tuning 583	
seen in the visual condition. More recently it was shown that the tuning 584	
characteristics of different lead-in modalities could explain why angular 585	
variability of active lead-in movements affects the learning rate in two-part 586	
movement tasks, whereas no such effect exists for visual lead-in movements 587	
(Howard et al., 2017). Our current results suggest that variations in the speed 588	
or duration of lead-in movements could provide similar decrements in learning 589	
rate, whereas an increase in movement distance would not have much effect. 590	
This might have important implications for rehabilitation, suggesting learning 591	
and recovery would be faster for training routines with consistent lead-in 592	
kinematics. One caveat is that such routines might also produce less 593	
generalization across tasks, as the adaptation is more likely to be learned 594	
specifically for the trained lead-in movement.  595	
 596	
In both experiments, to examine transfer of adaptation across modality, a 597	
visual lead-in cursor motion occasionally replaced the passive lead-in, and 598	
vice versa. Interestingly, there was an asymmetric transfer between passive 599	
and visual lead-in movements, with partial transfer from passive lead-in 600	
movements to visual lead-in movements, but almost no transfer from visual to 601	
passive lead-in movements. Transfer could arise because passive lead-in 602	
movement partially engages neural mechanisms shared by the visual 603	
observation of movement, but not the converse. This result may be due to 604	
asymmetry in the connections between the neural substrates. Alternatively, it 605	
could arise because the visual feedback pathway has a lower gain due to the 606	
uncertainly introduced by the longer time delay associated with visual 607	
information (Crevecoeur et al., 2016). The current observation that passive 608	
lead-in are more strongly tuned in duration than visual lead-ins, as well as the 609	
former results that the absolute level of influence of passive lead-ins (Howard 610	
and Franklin, 2015) is higher than for visual lead-in (Howard and Franklin, 611	
2016) supports the latter hypothesis.  612	
 613	
The wide ranging results from studies examining contextual cues for learning 614	
opposing dynamics have demonstrated that not all sensory signals are able to 615	
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influence motor learning (Hwang et al., 2003a; 2003b; Wainscott, 2004; 616	
Cothros et al., 2009; Addou et al., 2011; Yokoi et al., 2011; Hirashima and 617	
Nozaki, 2012; Howard et al., 2013; Sarwary et al., 2015; Nozaki et al., 2016). 618	
For example, color has essentially no effect (Howard et al., 2013). In addition 619	
to the strong effects of prior movements, it has been shown that particularly 620	
effective contextual cues relate to state; for example limb state and physical 621	
locations (Hwang and Shadmehr, 2005; Yeo et al., 2015), or different visual 622	
locations of the cursor and targets (Hirashima and Nozaki, 2012). Indeed, a 623	
location cue could constitute a complete physical shift of the movement task, 624	
or just a shift of one of its two essential components; namely a change in the 625	
location of the visual feedback, or a change in the physical location of the task 626	
with identical visual feedback. Further experiments have shown that future 627	
state also effects motor learning in an analogous way (Howard et al., 2015), 628	
with this effect depending on movement planning rather than execution 629	
(Sheahan et al., 2016). 630	
 631	
On the face of it, it appears that there are multiple types of contextual cues 632	
that strongly influence motor memory formation. Here we propose that a 633	
factor they all have in common is that they are related to either past, current, 634	
or future state of the limb; or are signals used in the estimation of such limb 635	
states. That is, setting up the sensorimotor system in a different state before 636	
(or at the end of) a movement allows the formation and recall of different 637	
motor memories. This suggests that some contextual cues (such as visual 638	
lead-in movement or location in the visual workspace) are simply effective 639	
because the motor system makes use of these signals within a state 640	
estimation mechanism to determine the state of the arm. Such state 641	
estimation can only be made on the basis of sensory feedback and efference 642	
copy. This hypothesis would be consistent with the observation that visual or 643	
proprioceptive movements are as effective an active movement. It would also 644	
explain why a visual change of state can be as effective as a complete 645	
change in the physical state of the limb. Moreover, it can explain why 646	
vestibular inputs could also be used to learn opposing dynamics (Sarwary et 647	
al., 2015) but why color cues have much less effect on the adaptation system 648	
(Howard et al., 2013). 649	
 650	
In order to reach with our arm to a specific location, our sensorimotor control 651	
system needs to know the initial limb state, and then activate the appropriate 652	
muscles in a specific pattern to generate forces that bring the arm into the 653	
final state to meet the task requirements. To make this movement robust in 654	
the face of noise and disturbances, this process does not simply rely on 655	
feedforward control, but makes use of sensory feedback of our arm’s state, 656	
enabling online correction in any task-relevant deviation from the goal of our 657	
movement. Arm state can be estimated through the combination of 658	
appropriate sensory feedback signals such as proprioception from the skin 659	
muscles and joints, visual information, and vestibular inputs. However due to 660	
neural signal transmission and processing delays, motor responses to 661	
proprioceptive and visual feedback only start producing force after delays of 662	
50 ms and 140 ms respectively. Such delays represent a challenge in the 663	
design of a feedback control systems, since using direct feedback from 664	
delayed signals can lead to instability.  665	
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 666	
To deal with delay, Smith proposed an architecture which involves using 667	
immediate feedback from the output of a forward model of the plant, (known 668	
as an observer), rather than from the plant output directly (Smith, 1959). Miall 669	
and Wolpert suggested that the Smith predictor architecture could account for 670	
delays in the human motor system (Miall et al., 1993; Miall and Wolpert, 671	
1996). This approach is also often use engineering applications, where an 672	
observer is used to estimate the state of the plant, which can then be used in 673	
feedback control. To make an observer robust to inaccuracies of the forward 674	
model and to deal with disturbances, there is normally a state correction 675	
pathway term based on actual output error calculated as the difference 676	
between the actual output and a delayed prediction of plant output. This 677	
results in the state prediction based on the efference copy of the motor 678	
command being combined with a correction term based on the delayed 679	
sensory feedback, something which has been shown to occur during the 680	
control of human movement (Wolpert et al., 1995).  681	
 682	
Within such an observer-based controller framework, the observer performs 683	
state estimation for an active movement using efference copy, while 684	
improving the estimate using the delayed feedback signals. In the case of a 685	
purely visual observation or passive movement of the arm, the observer can 686	
still make a state estimate, but only based on the state corrections from 687	
feedback. From the premise that state is the key issue in formation of 688	
separate motor memory, such a framework would account for the observation 689	
that either active, passive or visual lead-in movements would influence state 690	
estimation. 691	
 692	
To conclude, we have shown the current and previous observations of lead-in 693	
phenomena are consistent with the hypothesis that the human motor system 694	
operates as an observer-based controller mechanism, that makes use of a 695	
forward model to estimate state. In particular, our results support the proposal 696	
(Crevecoeur et al., 2016) that even though the variances of visual positional 697	
information is known to be lower than that obtained from proprioception, its 698	
longer temporal delay reduces its weighting in state estimation. As a 699	
consequence of this, visual information has less effect on the motor system 700	
than proprioceptive information, an effect that we have extended to the 701	
learning and generalization of opposing dynamics. 702	
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