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Abstract

Supervised machine learning methods have been increasingly used in biomedical 1

research and in clinical practice. In transcriptomic applications, RNA-seq data have 2

become dominating and have gradually replaced traditional microarray due to its 3

reduced background noise and increased digital precision. Most existing machine 4

learning methods are, however, designed for continuous intensities of microarray and are 5

not suitable for RNA-seq count data. In this paper, we develop a negative binomial 6

model via generalized linear model framework with double regularization for gene and 7

covariate sparsity to accommodate three key elements: adequate modeling of count data 8

with overdispersion, gene selection and adjustment for covariate effect. The proposed 9

method is evaluated in simulations and two real applications using cervical tumor 10

miRNA-seq data and schizophrenia post-mortem brain tissue RNA-seq data to 11

demonstrate its superior performance in prediction accuracy and feature selection. 12

In the past two decades, microarray and RNA sequencing (RNA-seq) are routine 13

procedures to study transcriptome of organisms in modern biomedical studies. In recent 14

years, RNA-seq [5, 20] has become a popular experimental approach for generating a 15

comprehensive catalog of protein-coding genes and non-coding RNAs [13], and it largely 16

replaces the microarray technology due to its low background noise and increased 17

precision. The most important difference between RNA-seq and microarray technology 18

is that RNA-seq outputs millions of sequencing reads rather than the continuous 19

fluorescent intensities in microarray data. Unlike microarray, RNA-seq can detect novel 20

transcripts, gene fusions, single nucleotide variants, and indels (insertion/deletion). It 21

can also detect a higher percentage of differentially expressed genes than microarray, 22

especially for genes with low expression [24]. 23

In machine learning, classification methods are used to construct a prediction model 24

based on a training dataset with known class label so future independent samples can 25

be classified with high accuracy. For example, labels in clinical research can be 26

case/control, disease subtypes, drug response or prognostic outcome. Many popular 27

machine learning methods have been widely applied to microarray studies, such as 28

linear discriminate analysis [9], support vector machines [3] and random forest [7]. 29

However, for discrete data nature in RNA-seq, many powerful tools for microarray 30

assuming continuous data input or Gaussian assumption may be inappropriate. A 31

common practice to solve this problem is to transform RNA-seq data into continuous 32

values such as FPKM or TPM [6] and possibly taking additional log-transformation. 33

However, such data transformation can lead to loss of information from the original 34

data [14, 18], producing less accurate inference. Particularly, the transformation often 35
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produces greater loss of information for genes with lower counts [15]. To accommodate 36

discrete data in RNA-Seq, Poisson distribution and negative binomial distribution are 37

two common distributions expected to better fit the data generation process and data 38

characteristics. Witten [22] proposed a sparse Poisson linear discriminant analysis 39

(sPLDA) based on Poisson assumption for the count data. However, Poisson 40

distribution assumes equal mean and variance, which is often not true. In real RNA-seq 41

data, the variance is often larger than the mean, leading to the need of an overdispersion 42

parameter. Witten [22] reconciled this problem by proposing a power transformation to 43

the data for eliminating overdispersion. However, as we will see later, the power 44

transformation can perform well when the overdispersion is small but performs poorly 45

when overdispersion becomes large. Hence, direct modeling by negative binomial 46

assumption rather than a Poisson distribution is more appropriate. To this end, Dong et 47

al. [8] proposed negative binomial linear discriminant analysis (denoted as NBLDAPE) 48

by adding a dispersion parameter. They, however, borrowed the point estimation from 49

sPLDA in [22] and did not pursue a principled inference such as maximum likelihood, 50

consequently producing worse performance than the method we will propose later. 51

Since the number of genes is often much larger than the number of samples in 52

transcriptomic studies (a standard “small-n-large-p” problem), feature selection is 53

critical to achieve better prediction accuracy and model interpretation. Witten [22] 54

proposed a somewhat ad hoc soft-thresholding operator, similar to univariate Lasso 55

estimator in regression, for gene selection in sPLDA but the method is not applicable to 56

the NBLDAPE model due to the addition of dispersion parameter. In the NBLDAPE 57

model proposed by [8], feature selection issue was not discussed, except that they used 58

“edgeR” package to reduce the number of genes in the input data. Such a two-step 59

filtering method is well-known to have inferior performance than methods with 60

embedded feature selection. In fact, Zararsiz et al. [23] have compared sPLDA and 61

NBLDAPE, and showed that the power transformed sPLDA generally performed better 62

than NBLDAPE in their simulations and the worse performance in NBLDAPE mainly 63

came from the lack of feature selection. Finally, another critical factor to consider in 64

transcriptomic modeling is the adjustment of covariates such as gender, race and age 65

since it is well-known that many genes are systematically impacted by these factors. For 66

example, Peters et al. [16] have identified 1,497 genes that are differentially expressed 67

with age in a whole-blood gene expression meta-analysis of 14,983 individuals. A 68

classification model allowing for covariate adjustment is expected to provide better 69

accuracy and deeper biological insight. 70

To account for all aforementioned factors, we propose a sparse negative binomial 71

model (snbClass) for classification analysis with covariate selection and adjustment. 72

The method is based on generalized linear model (GLM) with a first regularization for 73

feature sparsity. The GLM framework also allows straightforward covariate adjustment 74

and a second regularization term on covariates, facilitating further covariate selection. 75

Such covariate adjustment is not possible through existing sPLDA or NBLDAPE 76

methods. The paper is structured as following. In Section 1.1, we will briefly describe 77

the two existing methods sPLDA [22] and NBLDAPE [8], and then followed by our 78

proposed methods sNBLDAGLM and sNBLDAGLM.sC in Section 1.2. Section 1.3 and 1.4 79

will discuss parameter estimation and model selection of the proposed method. 80

Benchmarks for evaluation are described in Section 1.5. Section 2 presents simulation 81

studies and Section 3 shows two real applications of cervical tumor miRNA data and 82

schizophrenia RNA-seq data. Conclusion and discussion are included in Section 4. 83
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1 Existing and proposed methods 84

In this section, we will first describe two existing methods for classification analysis of 85

count data from RNA-seq and then propose our new method. To unify the notation, 86

denote by X the count data matrix with elements Xij referred to the sequence count for 87

the j-th gene and the i-th sample (i = 1, 2, . . . n and j = 1, 2, . . . p). In addition, 88

xi = (Xi1 . . . Xip)
T denotes i−th row of X, corresponding to feature measurements of 89

observation i. Also, define X.j =
n∑
i=1

Xij , Xi. =
p∑
j=1

Xij and X.. =
∑
i,j Xij . Moreover, 90

in the classification setting where each observation belongs to one of the K classes, we 91

let disjoint sets Ck ⊂ {1, . . . , n} contain the indices of observations in class k. That is, 92

class label yi = k if and only if i ∈ Ck. Furthermore, we denote XCkj =
∑
i∈Ck

Xij . 93

1.1 Two existing methods for classification of RNA-seq data 94

1.1.1 Sparse Poisson linear discrimination analysis (sPLDA) 95

Witten [22] introduced a log-linear Poisson model with feature selection, which resulted 96

in a simple diagonal linear discriminant analysis suitable for count data (referred as 97

“sPLDA” hereafter in this paper). Under the assumption of gene independence, the 98

model is based on the following formulation, 99

Xij |yi = k ∼ Poisson(Nij · dkj), Nij = si · gj ,

where si is the normalizing factor (a.k.a. size factor) for sample i and gj is the ground 100

mean for the j-th gene, allowing for variations both in samples and genes. For a given 101

gene j, d1j , . . . , dkj allows the j-th gene to be differentially expressed between the 102

classes if any of dkj 6= 1(1 ≤ k ≤ K). 103

RNA-Seq data often contain over-dispersion such that variances are larger than 104

means, whereas an important constraint in Poisson model is the equivalent mean and 105

variance. To overcome this, Witten [22] proposed a transformation of count data 106

X
′

ij ← Xu
ij with a proper choice of u such that,

n∑
i=1

p∑
j=1

(X
′
ij−X

′
i.X

′
.j/X

′
..)

2

X
′
i.X

′
.j/X

′
..

≈ (n− 1)(p− 1) 107

. From simulations of the original paper, this correction performs well in the presence of 108

weak to moderate overdispersion. 109

Suppose x∗ = (X∗1 , . . . , X
∗
p )T be a future new sample for prediction. The

discriminant score for assigning x∗ to class k is,

log p(y∗ = k|x∗) =

p∑
j=1

X∗j · log d̂kj − s∗ ·

 p∑
j=1

ĝj · d̂kj

+ log π̂k + c′

where y∗ is the predicted label, ĝj = X.j , π̂k is the estimate of prior probability of 110

belonging to the kth class estimated by the fraction of samples belonging to class k and 111

s∗ is the estimated normalization factor for the new sample x∗ for which we do not 112

know the class label. The classifier assigns x∗ to the class with the largest discriminant 113

score. The paper also implemented a somewhat ad hoc soft-thresholding operator for 114

feature selection in the classifier, which is motivated from univariate lasso regularization 115

in regression for feature selection: d̂kj = 1 + S(a/b− 1, v/
√
b), where a = XCkj + β, 116

b =
∑
i∈Ck

N̂ij + β, β is the hyperparameter pre-determined in the estimation of dkj , v 117

is the tuning parameter chosen by cross validation and S(x, a) = sign(x)(|x| − a)+ is 118

the soft thresholding parameter. d̂1j = d̂2j = · · · = d̂kj = 1 means gene j is not 119

differentially expressed across the classes and thus, is not selected in the classifier. 120
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1.1.2 Negative binomial linear discrimination analysis (NBLDAPE) 121

Dong et al. [8] extended sPLDA into a negative binomial model to explicitly allow 122

overdispersion property in RNA-seq data: 123

Xij |yi = k ∼ NB(µij · dkj , φj), µij = si · gj
Under the formulation, E(Xij) = µij and V ar(Xij) = µij + µ2

ij/φj . Similar to sPLDA, 124

for a new observation x∗, prediction is made by the maximized discriminant score: 125

logP (y∗ = k|x∗) =

p∑
j=1

X∗j [log d̂kj + log ĝj − log(φj + s∗ĝj d̂kj)]

−
p∑
j=1

φj log(φj + s∗ĝj d̂kj) + log π̂k + c′,

where φj is the dispersion parameter for the jth gene, 126

d̂kj = (
∑
i∈Ck

Xij + 1)/(
∑
i∈Ck

ŝiX.j + 1) and ĝj is the same as defined previously. We 127

note that the point estimate of d̂kj and ĝj are borrowed directly from Witten’s sPLDA 128

model without theoretical justification and the similar soft-thresholding in sPLDA 129

cannot be easily incorporated into the procedure due to the increased complexity with 130

φj . 131

In the literature, several popular procedures have been used for estimating the size 132

factor, including simple sum of counts, median ratio [1] and quantile method [4]. Witten 133

[22] and Dong et al. [8] showed that the performance is comparable among the three 134

methods. Here, we will use the quantile method for all methods for a fair comparison. 135

In quantile method, the normalization factor for sample i (1 ≤ i ≤ n) is estimated as 136

si = qi/
n∑
i=1

qi (or equivalently some papares also use si = n · qi/
n∑
i=1

qi, which is what we 137

adopt in this paper), where qi is the 75th quantile of sequence counts of all genes for the 138

ith sample. For a new sample x∗, the normalizing factor is estimated as s∗ = q∗/
n∑
i=1

qi, 139

where qi (1 ≤ i ≤ n) come from training data and q∗ is the 75th count quantile for 140

sample x∗. Note that the vector of normalization factors and dispersion denoted by s 141

and φ respectively will be pre-estimated in all negative binomial models in this paper 142

before inference. φ are estimated by weighted likelihood empirical Bayes method using 143

the edgeR package [17] with class label considered. We denote the method proposed by 144

[8] as “NBLDAPE” to emphasize the ad hoc “point estimation” procedure inherited 145

from sPLDA in [22]. 146

1.2 Proposed method: sparse negative binomial classifier via 147

generalized linear model 148

We first consider a model without covariate in section 1.2.1. Then we extend it to 149

covariate in section 1.2.2. 150

1.2.1 Sparse negative binomial classifier without covariate adjustment 151

(sNBLDAGLM) 152

Similar to NBLDAPE, we specify the following negative binomial model in a generalized
linear model (GLM) setting:

Xij |yi = k ∼ NB(µijk, φj); log(µijk) = log(si) + βjk,
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where si is the normalization factor of the i-th sample, βjk is the mean count in 153

log-scale of the k-th class for the j-th gene and φj is the dispersion parameter of the 154

j-th gene. Under the assumption of independence between genes, the corresponding 155

log-likelihood can be written as, 156

logL(Θ,φ;x,y) =
n∑
i=1

K∑
k=1

I(yi = k) ·
p∑
j=1

log f(Xij ;βjk, φj)

 ,
where, Θ = {(βk,φ); k = 1, . . . ,K}, βk = (β1k, . . . , βpk), φ = (φ1, . . . , φp), I(yi = k) is 157

the indicator function taking value 1 if yi = k and 0 otherwise, and f(Xij ;βjk, φj) is 158

the density function of NB(si exp (βjk), φj). Now, suppose we have a new observation 159

x∗ for which we intend to predict the class label. By Bayes theorem, we can derive the 160

discriminant score as 161

logP (y∗ = k|x∗) ∝ log π̂k−
p∑
j=1

φj log[φj+s
∗ exp(β̂jk)]+

p∑
j=1

X∗j [β̂jk−log(φj+s
∗ exp(β̂jk))

(1)
Here, x∗ is assigned to class k for which the discriminant score is maximized. Note that 162

the form of the discriminant score in the current model is identical to that proposed in 163

[8], except that we reparametrize µijk = sigjdkj to log(µijk) = log(si) + βjk. The major 164

difference is in the parameter estimation. [8] directly borrows the point estimation of 165

µijk from the Poisson model in [22], while we will derive MLE of Equation (2) (see 166

below) using iteratively reweighted least squares (IRLS) method to be shown in the 167

next subsection. 168

In order to incorporate variable (gene) selection, we add a penalty term 169

h(β) =
∑K
k=1

∑G
j=1 |βjk − β̄j |. Here, β̄j is the average of βjk’s over the K classes for a 170

given j-th gene. Hence, the following penalized likelihood is maximized to obtain 171

estimation of β with pre-estimated φ: 172

logL(β;x,y,φ) =
n∑
i=1

K∑
k=1

I(yi = k) ·
p∑
j=1

log f(Xij ;βjk, φj)

− λh(β) (2)

Here, λ is a tuning parameter controlling sparsity of the variable selection. The form of 173

the discriminant scores for prediction is the same as in equation 1. 174

1.2.2 Sparse negative binomial classifier with covariate adjustment 175

(sNBLDAGLM.C and sNBLDAGLM.sC) 176

In real applications, information of multiple clinical variables is often available and some 177

of them may be associated with subsets of genes. Commonly encountered clinical 178

variables can include age, gender, race, etc. Failure of covariate adjustment can greatly 179

reduce prediction accuracy and replicability. In our GLM framework, covariate 180

adjustment can be straightforwardly incorporated in the linear regression term: 181

Xij |yi = k ∼ NB(µijk, φj); log(µijk) = log(si) + βjk +

Q∑
q=1

αqjziq, (3)

Here, zq = (Z1q, . . . , Znq) includes values of the q-th covariate over n samples and 182

parameter αqj corresponds to the coefficient of the q-th covariate in the j-th gene. 183

Under the assumption of gene independence and adding penalty terms for both genes 184

and covariates, the problem can be presented as maximization of the following penalized 185

log-likelihood with double regularization: 186

5/17

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2019. ; https://doi.org/10.1101/636340doi: bioRxiv preprint 

https://doi.org/10.1101/636340
http://creativecommons.org/licenses/by-nd/4.0/


logL(β, α;y,x, z1, . . . , zQ,φ) =
n∑
i=1

K∑
k=1

I(yi = k)

p∑
j=1

log f(Xij , Zi1, . . . , ZiQ;βjk, ~αj , φj)

−λ1h(β)− λ2

Q∑
q=1

p∑
j=1

|αqj |,

(4)

where, β is the collection of all βjk parameters and α is the collection of all αqj 187

parameters. λ1 and λ2 are tuning parameters controlling for levels of sparsity of 188

variable selection in genes and covariates, respectively. 189

Similarly, for a new sample x∗ with vector of clinical vector z∗ = (z∗1 , . . . z
∗
Q) under 190

this framework, we can derive the following discriminant score: 191

logP (y∗ = k|x∗) ∝ log π̂k −
p∑
j=1

φj log[φj + s∗ exp(β̂jk +

Q∑
q

z∗q α̂qj)]

+

p∑
j=1

X∗j [β̂jk +

Q∑
q

z∗q α̂qj − log(φj + s∗ exp(β̂jk +

Q∑
q

z∗q α̂qj)]

(5)

As before, x∗ is assigned to the class with the highest discriminant score. We note 192

that when λ2 = 0, Equation 4 performs covariate adjustment using all covariates for all 193

genes without regularization in covariate parameters αqj . We will denote this method as 194

“sNBLDAGLM.C”. In this case, when the number of covariates Q becomes large, 195

performance of parameter estimation and prediction accuracy are expected to decline. 196

With proper choice of λ2 in Equation (4), the method can adequately select a subset of 197

covariates in each gene to improve the performance. For illustration purpose, we refer to 198

this method as “sNBLDAGLM.sC ” in this paper, where “sC” means sparsity on 199

covariates. This is the method we recommend in general applications when clinical 200

covariates are available and will be referred to as “snbClass” in the R package and 201

future applications. When clinical covariates do not exist, the method naturally reduces 202

to “sNBLDAGLM”. 203

1.3 Estimation in sNBLDAGLM and sNBLDAGLM.sC 204

1.3.1 Estimation of sNBLDAGLM 205

Maximizing the log-likelihood derived in Equation (2) is equivalent to minimizing the 206

following penalized weighted least square function, 207

n∑
i=1

K∑
k=1

I(yi = k)

p∑
j=1

wijk(τijk − log(si)− βjk)2

+ λ

p∑
j=1

K∑
k=1

|βjk − β̄j |, (6)

where wijk = µijk/(1 + φ−1
j µijk) and τijk = log(si) + βjk + (xij − µijk)/µijk. 208

Given the estimates at the t-th step, the updates of (t+1) step is:, 209

1. Calculate w
(t+1)
ijk = µ

(t)
ijk/(1 + φ−1

j µ
(t)
ijk) 210

2. Update τ
(t+1)
ijk = log(si) + β

(t)
jk + (xij − µ(t)

ijk)/µ
(t)
ijk 211

3. Solve β
(t+1)
jk = argmin 1

2

∑
i I(yi = k)w

(t+1)
ijk (τ

(t+1)
ijk − log(si)− βjk)2 + λ|βjk − β̄j | 212
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4. Update µ
(t+1)
ijk = exp(β

(t+1)
jk + log(si)) 213

This is repeated until convergence of β̂jk. The update of β̂jk in Step (3) is given by,

β
(t+1)
jk = β̄

(t+1)
j + sign(β̃

(t+1)
jk − β̄(t+1)

j )[∣∣∣∣∣
∑
i w

(t+1)
ijk (τ

(t+1)
ijk − log(si))− λ(1− 1/K) sign(β̃

(t+1)
jk − β̄(t+1)

j )∑
i w

(t+1)
ijk

∣∣∣∣∣− |β̄(t+1)
j |

]
(+)

Here, [ ](+) is soft thresholding function such that [u](+) takes the value u when u is 214

positive and 0 otherwise, β̃
(t+1)
jk is the estimate of βjk under no penalization and 215

β̄
(t+1)
j =

K∑
k=1

β̃
(t+1)
jk /K. 216

1.3.2 Estimation of sNBLDAGLM.sC 217

Similar to sNBLDAGLM, the problem of maximizing the penalized log-likelihood in 218

Equation (4) can be represented as minimizing the penalized weighted least square 219

function given below in Equation (7), 220

n∑
i=1

K∑
k=1

I(yi = k)

p∑
j=1

wijk(τijk − log(si)− βjk −
Q∑
q=1

ziqαqj)
2

+λ1

p∑
j=1

K∑
k=1

|βjk − β̄j |+ λ2

Q∑
q=1

p∑
j=1

|αqj |

(7)

where, wijk = µijk/(1 + φ−1
j µijk) and 221

τijk = log(si) + βjk +
Q∑
q=1

ziqαqj + (xij − µijk)/µijk. The estimation of each of the β̂jk 222

and αqj is given by the following algorithm. The steps involved in IRLS given the 223

estimates obtained at the t-th step is given below, 224

1. Calculate w
(t+1)
ijk = µ

(t)
ijk/(1 + φ−1

j µ
(t)
ijk) 225

2. Update τ
(t+1)
ijk = log(si) + β

(t)
jk +

Q∑
q=1

ziqαqj + (xij − µ(t)
ijk)/µ

(t)
ijk 226

3. Solve β
(t+1)
jk = argmin 227

1
2

∑
i w

(t+1)
ijk (τ

(t+1)
ijk − log(si)− βjk −

Q∑
q=1

ziqα
(t)
qj )2 + λ1|βjk − β̄j |+ λ2

Q∑
q=1

p∑
j=1

|α(t)
qj | 228

4. Solve α
(t+1)
qj = argmin 1

2

∑
i

K∑
k=1

I(yi = 229

k)w
(t+1)
ijk (τ

(t+1)
ijk −log(si)−β(t+1)

jk −
Q∑
q=1

ziqαqj)
2+λ1|β(t+1)

jk −β̄(t+1)
j |+λ2

Q∑
q=1

p∑
j=1

|αqj | 230

5. Update µ
(t+1)
ijk = exp(β

(t+1)
jk +

Q∑
q=1

ziqα
(t+1)
qj + log(si)) 231

The steps are repeated until convergence of the parameters βjk, α1j , . . . , αqj . Then the 232

penalized estimate of the parameters in step 3 and step 4 are respectively given by, 233
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β
(t+1)
jk = β̄

(t+1)
j + sign(β̃

(t+1)
jk − 234

β̄
(t+1)
j )

[∣∣∣∣∣
∑

i w
(t+1)
ijk (τ

(t+1)
ijk −log(si)−

Q∑
q=1

α
(t)
qj zqj)−λ1(1−1/K) sign(β̃

(t+1)
jk −β̄(t+1)

j )∑
i w

(t+1)
ijk

∣∣∣∣∣− |β̄(t+1)
j |

]
(+)

235

and, α
(t+1)
qj = sign(α̃qj)

[
|α̃qj | −

∣∣∣∣∣ λ2
n∑

i=1

K∑
k=1

I(yi=k)wijkz2iq|

∣∣∣∣∣
]

(+)

where, 236

α̃qj =
n∑
i=1

K∑
k=1

I(yi = 237

k)w
(t+1)
ijk (τ

(t+1)
ijk − log(si)− β(t+1)

jk −
∑

1≤m≤Q,m6=q
zimαmj)/

n∑
i=1

K∑
k=1

I(yi = k)z2
iqwijk. 238

1.4 Selection of tuning parameters in regularization 239

Both sNBLDAGLM and sNBLDAGLM.sC methods involve selection of regularization 240

parameters λ or (λ1, λ2). We apply V-fold cross validation as a tool to determin the 241

tuning parameter [19]. For each given tuning parameter, we divide the dataset into V 242

equal folds and samples in the K classes are split into V folds as even as possible. In 243

each iteration, one fold is set aside as the test set and the remaining (V − 1) folds are 244

used as the training set. The classifier is built from the training set and then validated 245

in the test set for evaluating accuracy. This procedure is repeated until all V folds have 246

been chosen as the test set and the averaged accuracy is calculated. The tuning 247

parameter corresponding to the highest averaged accuracy is chosen for the final model 248

construction. We apply 10-fold (V=10) cross validation for all simulations and real 249

applications in this paper. We note that nested cross validation is used for real 250

applications for a fair accuracy evaluation. In this case, the outer loop of 10-fold cross 251

validation is conventionally used to estimate accuracy. In each cross validation, the 9 252

folds of training set undergo an inner loop of 10-fold cross validation to determine λ or 253

(λ1, λ2). 254

1.5 Benchmarks for evaluation 255

Performance of different methods will be judged by two major criteria: accuracy of 256

prediction and accuracy of feature selection. For prediction performance, simple 257

averaged accuracy is used when true class labels are known: 258

Accuracy = Number of test samples correctly classified
Number of test samples . For feature selection performance, we 259

derive the area under the curve (AUC) [2] values of the receiver operating characteristic 260

(ROC) curves. We also evaluate the performance of sNBLDAGLM, sNBLDAGLM.sC 261

and sPLDA in terms of estimating the true parameters βjk when the gene expression is 262

affected by covariates. Here, we define RMSE=

√
(1/BpK)

B∑
b=1

p∑
j=1

K∑
k=1

(β̂
(b)
jk − βjk)2

263

where B is the number of datasets simulated. 264

2 Simulations 265

In this section, we will devise two simulation schemes to compare the performance of 266

sPLDA and NBLDAPE to our proposed model sNBLDAGLM and sNBLDAGLM.sC under 267

different settings. In Simulation 1, there is no covariate effect over the expression levels 268

of the genes. Here, we compare sPLDA, NBLDAPE and sNBLDAGLM over different 269

level of signal strength under three different levels of dispersion in the data. In 270

Simulation 2, we develop a simulation scheme where two covariates are introduced which 271
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can affect expression level of certain proportion of the genes. Here, we compare sPLDA, 272

NBLDAPE, sNBLDAGLM and sNBLDAGLM.sC in the presence of covariate effects. 273

In order to mimic real data, we use a real RNA-seq dataset downloaded from Gene 274

Expression Omnibus (GEO, GSE47474) to retrieve key parameters and perform the 275

simulation. The dataset includes 72 samples with 36 coming from HIV-1 transgenic and 276

36 from control rat strains [12]. We compute the mean counts of each gene over all 277

samples to obtain an empirical distribution of mean counts, which will be used for 278

obtaining baseline expression levels in all the simulations. Each simulation is repeated 279

100 times and the average result is reported. 280

2.1 Simulation settings 281

Simulation 1: Without covariate effect 282

In this simulation, we sample the count data by 283

xij |Ci = k ∼ NB(sibj exp (δjk∆j), φj) for each gene j(1 ≤ j ≤ 1000) and sample 284

i(1 ≤ i ≤ 120) in class k(1 ≤ k ≤ 3), where the number of informative feature is 300. 285

The notation of the parameters as well as the settings are given below: 286

• The library size factor si is sampled from Unif(0.75,1.25) for each sample i. 287

• bj is the baseline which is sampled from the empirical distribution of the mean 288

expression described previously. 289

• δjk represents the pattern of genes j in class k. For all δjk ∈ {−1, 0, 1}, 1 290

indicating a up-regulated trend of genes in this class relative to other classes, -1 291

indicating it is down-regulated and 0 indicating no difference. 292

• There exists three gene patterns for the 300 informative genes: (δj1, δj2, δj3) = 293

(1,0,-1), (0,1,1) and (-1,-1,0). For non-informative genes, the pattern is (0,0,0). 294

• Sample the main effect size parameter ∆j for each gene j from a truncated 295

normal distribution TN(ζ, 0.12, ζ/2,∞), where ζ is the mean and values smaller 296

than ζ/2 are truncated. 297

• φj ∼ TN(ν, 0.1, 0,∞) and ν is chosen as 1, 5 and 10 . 298

• 100 of the samples are used as training set and the remaining 1,000 samples are 299

used as testing set 300

Simulation 2: Incorporating covariate effect 301

We sample the count data by xij |Ci = k ∼ NB(sibj exp (δjk∆j +
2∑
q=1

γqjεqjzqi)), φj) 302

for each gene j(1 ≤ j ≤ 1000) and sample i(1 ≤ i ≤ 120) in class k(1 ≤ k ≤ 3) with two 303

covariates (z1 and z2; Q=2), where the number of informative feature is 300. The 304

notation of parameters are as follows: 305

• We generate a binary covariate (e.g. gender) for each sample i from 306

Ber(0.5)(i.e.z1i ∼ Ber(0.5)) and generate a continuous covariate (e.g. age) for 307

each sample i from Gamma(5, 10) 308

• φj ∼ TN(ν, 0.1, 0,∞) where ν ∈ {10, 1} 309

• γqj represents the pattern of gene j in covariate q for all γqj ∈ {0, 1}; there exist 310

three patterns: (γ1j , γ2j) = (1, 1), (1, 0), (0, 1), and (0, 0) with probablity 311

(ρ/3,ρ/3,ρ/3 and 1-ρ) respectively. When ρ = 0, all genes are not impacted by 312

covariates. We choose the proportion of covariate-impacted genes ρ to be 0.125, 313

0.25 and 0.5. 314
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• Sample the main effect size parameter ∆j for each gene j in class k from a 315

truncated normal distribution TN(0.25, 0.12, 0.125,∞) 316

• The effect size parameter of covariates εqj for each gene j in covariate q is drawn 317

from the product of random sign (i.e. half probability to be 1 and half to be -1) 318

and a truncated normal distribution TN(η, 0.12, η/2,∞)× κ where κ takes value 319

1 with probability 0.5 and -1 otherwise. We use the different value of 320

η ∈ {0.1, 0.3, 0.5, 0.7} for different level of signal strength. 321

• Other parameters are set the same as Simulation 1 except that ζ is set at 0.25. 322

• 100 of the samples are used as training set and the remaining 1,000 samples are 323

used as testing set. 324

2.2 Simulation results 325

Results of Simulation 1 are summarized in Figure 1. In Figure 1(a), average prediction 326

accuracy of the three models sPLDA, NBLDAPE and sNBLDAGLM were compared over 327

three different levels of dispersions ν ∈ {1, 5, 10}. The larger the value of ν, the smaller 328

the level of dispersion in the simulated datasets. In all different levels of ζ and ν, 329

sNBLDAGLM outperformed the other two methods. As expected, NBLDAPE was 330

superior to sPLDA when ν was small (large overdispersion) but their performances 331

became comparable when ν was large, confirming good performance of power 332

transformation to correct dispersion in sPLDA only for small overdispersion. Figure 333

1(b) shows results of variable selection by AUC. sNBLDAGLM clearly outperformed 334

sPLDA in all cases while NBLDAPE could not perform variable selection and was not 335

applicable in this plot. The new method was also compared to three popular 336

classification methods such as support vector machines (SVM), random forest (RF) and 337

classification and regression tree (CART) in supplement Figure S3. The result showed 338

inferior performance in these methods due to ignorance of count data and 339

transformation to continuous inputs. 340

Figure 2 demonstrates results of Simulation 2 using sPLDA, NBLDAPE, 341

sNBLDAGLM (no covariate adjustment) and sNBLDAGLM.sC (with covariate 342

adjustment and regularization) when varying percent of genes impacted by covariates 343

ρ = 0.125, 0.25 and 0.5. Figure 2(a) shows averaged prediction accuracy of varying η 344

and ν = 1 or 10. When ν = 1 (high level of dispersion), sNBLDAGLM.sC outperformed 345

all other methods as the impact of covariates on gene expression η increased. The 346

prediction accuracy for sNBLDAGLM.sC remained high with increased η due to its 347

capacity of adjusting covariate effect, while prediction accuracy of the other three 348

methods dropped with increased η although sNBLDAGLM still outperformed sPLDA 349

and NBLDAPE. When ν = 10, similar pattern was observed. The margin between 350

sNBLDAGLM.sC and sNBLDAGLM became much smaller but sNBLDAGLM.sC was still 351

the best performer. Supplementary Figure S4 includes comparison with SVM, RF and 352

CART, all of which performed much worse than sNBLDAGLM.sC. 353

Variable selection performance between sPLDA, sNBLDAGLM and sNBLDAGLM.sC 354

is shown in 2(b). Similarly, we observed stable and high performance of sNBLDAGLM.sC 355

with increasing η, while performance of sNBLDAGLM dropped for increased η due to 356

the lack of covariate adjustment. sPLDA performed the worst in all cases. It is 357

intriguing that the variable selection gap between NBLDAGLM.sC and NBLDAGLM was 358

larger in ν = 10 than in ν = 1, which is contrary to the prediction accuracy in Figure 359

2(a). An evaluation of the parameter estimates between sPLDA, sNBLDAGLM and 360

sNBLDAGLM.sC was carried out in terms of RMSE in supplement Figure S1, where 361

sNBLDAGLM.sC performed the best. To examine the advantage of covariate 362

regularization, we compared sNBLDAGLM.C (i.e. λ2 = 0 in Equation 4; all covariates 363
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Figure 1. Results for Simulation 1 without covariate effect
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Figure 3. Prediction accuracy (y-axis) of sNBLDAGLM (dashed line) and sPLDA
(dotted line) with varying number of selected miRNAs (x-axis) in the cervical tumor
application. NBLDAPE does not allow variable selection and is shown with “X” symbol.

are used) with sNBLDAGLM.sC (with covariate regularization) in Supplement Figure S2 364

. The result shows clear improvement of covariate regularization on prediction accuracy 365

but less on feature selection. 366

3 Real applications 367

3.1 Cervical tumor miRNA data 368

This RNA-seq dataset measures expression level of miRNAs in tumor and nontumor 369

cervical tissues in human samples [21]. The data contains information of over 714 370

microRNAs for 29 control samples (samples with no tumor) and 29 tumor samples. No 371

clinical information (covariates) is available for adjustment. This dataset has been used 372

in both sPLDA and NBLDAPE papers and thus is a good dataset to evaluate our new 373

method. [8] found that NBLDAPE performed better than sPLDA in terms of prediction 374

accuracy because of high dispersion estimate in this dataset. In Figure 3 , we compare 375

prediction accuracy (y-axis) between sPLDA and sNBLDAGLM based on 10-fold 376

cross-validation when different number of genes are selected (x-axis) as proposed for the 377

corresponding models. Since there is no variable selection in NBLDAPE, we only 378

perform cross-validation considering all miRNAs (shown as “X” in the figure). 379

sNBLDAGLM generally outperforms the other two methods in different number of 380
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selected genes. Specifically, it achieves 95% prediction accuracy with a small number of 381

37 genes while NBLDAPE and sPLDA generally achieves 91% accuracy. The result 382

shows clear improvement of sNBLDAGLM in prediction accuracy and variable selection. 383

3.2 Schizophrenia RNA-seq dataset 384

The schizophrenia RNA-seq dataset (http://www.synapse.org/CMC) was obtained from 385

the CommonMind Consortium [11] using post-mortem human dorsolateral prefrontal 386

cortex tissues from 258 schizophrenia patients and 279 controls. Here we restrict our 387

analysis to patients with age below 50 and post-mortem interval (PMI; time relapsed 388

from the person has died to the tissues are frozen) less than 30 hours, producing 150 389

subjects where 100 are controls and 50 suffer from schizophrenia. Five clinical variables 390

are available: age of death, gender, PMI, pH level and ethnicity (Caucasian or African 391

American). At first, we ran a differential expression analysis on each covariate and 392

found a higher percentage of DE genes affected by age of death, ethnicity, PMI and pH. 393

However, since pH had some missing values, we only considered the other three clinical 394

variables in the sNBLDAGLM.sC model. We performed routine data preprocessing and 395

filtering to keep genes with at least 70% of the samples having gene expression level 396

greater than 0 and mean count across the samples greater than 10, producing a count 397

data matrix with 16989 genes for machine learning. Similar to simulation and previous 398

application, 10-fold cross-validation was performed to evaluate sPLDA, NBLDAPE, 399

sNBLDAGLM and sNBLDAGLM.sC. We further perform DE analysis to narrow down to 400

250, 500, 750, 1000, 1500, 2000 and 5000 genes in each training set before adopting the 401

four machine learning methods.Even though three of the four methods have embedded 402

feature selection capacity, the feature selection is usually difficult for ultra-high 403

dimensionality (e.g. 16,989 gene features in our case). We performed a pre-screening by 404

differential expression analysis to reduce dimensionality to 250-5000. This procedure is 405

similar to the sure independence screening idea in [10] and can usually improve 406

prediction performance. Figure 4 shows the 10-fold cross validation accuracy of the four 407

methods for different gene size after DE analysis pre-selection. For the three methods 408

with embedded feature selection (sPLDA, sNBLDAGLM and sNBLDAGLM.sC), varied 409

tuning parameter for feature selection was applied and the best prediction accuracy was 410

reported in Figure 4. The result clearly demonstrates better prediction performance of 411

sNBLDAGLM.sC, especially when the pre-screening by DE analysis reduce the input gene 412

size to 250-1000. However, when large number of genes are input to the sNBLDAGLM.sC 413

algorithm (e.g. 2000 or 5000 genes after pre-screening), its performance dropped to close 414

to sNBLDAGLM and the advantage of covariate adjustment is diminished. Nevertheless, 415

our proposed GLM approach generally outperforms sPLDA and NBLDAPE. As a result, 416

we recommend pre-screening of ultra-high dimensional data, such as regular RNA-seq 417

datasets, down to 250-5000 features before applying sNBLDAGLM.sC. The result shows 418

inferior performance of sNBLDAGLM.C, showing necessity of covariate regularization. 419

The accuracy performance of the methods discussed in this paper is compared with 420

other methods appropriate for continuous data is summarized in Figure S5. 421

4 Conclusion and Discussion 422

In this paper, we proposed a sparse negative binomial classifier based on a GLM 423

framework with and without covariate adjustment. The method incorporates three key 424

elements in RNA-seq machine learning modeling: adequate modeling for count data, 425

feature selection and adjustment of covariate effects. Existing methods such as sPLDA 426

does not consider overdispersion properly, NBLDAPE does not embed regularization for 427

feature selection and both methods cannot adjust for covariate effect in gene expression. 428
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Figure 4. Prediction accuracy (y-axis) of sNBLDAGLM.sC, sNBLDAGLM, NBLDAPE

and sPLDA with varying input gene number after DE analysis pre-screening (x-axis) in
the schizophrenia post-mortem brain RNA-seq data.
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Our new approach assumes a negative binomial model to allow overdispersion, adopts 429

GLM to allow covariate adjustment and facilitates double regularization for feature 430

selection and covariate selection. Extensive simulations and two real applications 431

showed superior performance of the proposed approach in terms of prediction accuracy 432

and feature selection. Particularly, the new methods achieved higher prediction 433

accuracy with smaller number of selected genes or miRNAs in the two real applications. 434

One major limitation of all methods in this paper is that the methods are based on 435

independent assumption of gene expression. Due to the complex form of multivariate 436

negative binomial model and the potentially heavy computational cost, this is not 437

addressed in this paper but will be a future direction. 438
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