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ABSTRACT  

Gene set enrichment analysis (GSEA) is a popular tool to identify underlying biological 

processes in clinical samples using their gene expression phenotypes. GSEA measures the 

enrichment of annotated gene sets that represent biological processes for differentially 

expressed genes (DEGs) in clinical samples. GSEA may be suboptimal for functional gene 

sets, however, because DEGs from the expression dataset may not be functional genes per se 

but dysregulated genes perturbed by bona fide functional genes. To overcome this 

shortcoming, we developed network-based GSEA (NGSEA), which measures the enrichment 

score of functional gene sets using the expression difference of not only individual genes but 

also their neighbors in the functional network. We found that NGSEA outperformed GSEA in 

identifying pathway gene sets for matched gene expression phenotypes. We also observed 

that NGSEA substantially improved the ability to retrieve known anti-cancer drugs from 

patient-derived gene expression data using drug-target gene sets compared with another 

method, Connectivity Map. We also repurposed FDA-approved drugs using NGSEA and 

experimentally validated budesonide as a chemical with anti-cancer effects for colorectal 

cancer. We, therefore, expect that NGSEA will facilitate both pathway interpretation of gene 

expression phenotypes and anti-cancer drug repositioning. NGSEA is freely available at 

www.inetbio.org/ngsea. 
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INTRODUCTION 

Molecular phenotypes of clinical samples have proven useful in disease diagnosis, patient 

stratification, and drug discovery. Gene expression profiling is probably the most accessible 

strategy for molecular phenotyping of clinical samples. DNA chip technology and RNA 

sequencing have been widely used for molecular profiling of patient-derived primary cells 

and cell lines. Numerous gene expression profiles of clinical samples are now freely available 

from public data repositories such as the Gene Expression Omnibus (GEO) (Barrett et al., 

2013) and the National Cancer Institute Genomic Data Commons (NCI GDC) (Jensen et al., 

2017). Functional analysis of genome-wide expression phenotypes is generally more 

interpretable with annotated gene sets rather than individual genes; therefore, many 

bioinformatics methods for gene set analysis have been developed over the past several years 

(de Leeuw et al., 2016). For clinical samples, the general purpose of gene set analysis of 

genome-wide expression profiles is to identify underlying disease-associated molecular 

processes, which can facilitate disease diagnosis and therapeutic intervention.  

Two major approaches for gene set analysis of gene expression phenotypes are available: 

over-representation approaches and aggregate score approaches (Irizarry et al., 2009). In the 

over-representation approach, a set of differentially expressed genes (DEGs) from the 

expression data set is selected, and then the significance of the over-representation of each 

annotated gene set among the selected DEGs is computed through a statistical test such as the 

hypergeometric test (Huang da et al., 2009). This approach is reasonable but has some 

shortcomings (Pavlidis et al., 2004; Irizarry, Wang et al., 2009). For example, in this 

approach, less-significant genes are treated as insignificant genes in the expression phenotype; 

the results, therefore, are highly dependent on the cutoff used for selecting DEGs. In addition, 

relative order information among the significant genes is not considered.  

The analytical limitations of over-representation approaches can be overcome by aggregate 

score approaches, which assign scores to each annotated gene set based on all the gene-

specific scores of the member genes. Gene set enrichment analysis (GSEA) (Subramanian et 

al., 2005) is the most popular aggregate score approach available to date. In GSEA, genes for 

the expression profile are first rank-ordered by the gene-specific scores based on the 

expression difference, and then the enrichment score of each annotated gene set is computed 
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based on a modified Kolmogorov-Smirnov (K-S) test. Despite its popularity, however, GSEA 

also has some shortcomings. For example, GSEA was designed to identify sets of genes that 

are differentially regulated in one direction, i.e., either up-regulated or down-regulated. If a 

gene set has matched genes for DEGs in which up-regulation and down-regulation are 

equally distributed, then its association with the expression phenotype may not be detected by 

GSEA. To overcome this limitation, a modified GSEA called absolute enrichment (AE) was 

developed that computes the absolute values of gene scores for both up- and down-regulated 

genes (Saxena et al., 2006).  

Another shortcoming of GSEA is that DEGs do not necessarily represent the functional genes 

that are responsible for the molecular processes represented by the gene sets. Instead, 

observed DEGs may be dysregulated genes perturbed by genuine functional genes in the 

molecular process of interest. Given that GSEA assigns a score to each gene set based on the 

scores of significant DEGs, a gene set comprising bona fide functional genes that exhibit no 

significant expression changes would not be captured by this method. This analytical 

limitation may be partially overcome by using annotated gene sets that are based on 

expression signatures rather than functional genes. For example, MSigDB, which was 

designed explicitly for use with GSEA, contains many signature gene sets derived from gene 

expression data (Liberzon et al., 2011). The majority of databases of annotated genes for 

biological processes and diseases, however, are based on functional genes, such as disease-

causing genes.  

Network-based analysis of differential gene expression has been used to prioritize disease-

causing genes (Nitsch et al., 2009) and essential genes of cancer cell lines (Jiang et al., 2015). 

These methods are based on the idea that functional genes for disease processes, such as 

tumorigenesis, tend to be surrounded by DEGs for that disease condition in the functional 

network. We, therefore, hypothesized that ordering genes by the differential expression of 

their local subnetworks (i.e., networks connecting each gene and its neighbors) will improve 

the ability to capture functional gene sets associated with the relevant biological processes. In 

this study, we present a network-based GSEA (NGSEA) that measures the enrichment scores 

of functional gene sets by utilizing the expression difference of not only individual genes but 

also their neighbors in the functional network. Although several network-based gene set 

analysis methods already have been proposed, these methods are modified from the over-
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representation approach, which identifies associations between two pre-selected gene sets, 

annotated gene sets from databases, or query gene sets from experiments based on relative 

closeness within the molecular network (Alexeyenko et al., 2012; Glaab et al., 2012; Wang et 

al., 2012; McCormack et al., 2013). To the best of our knowledge, NGSEA is the first 

network-based gene set analysis method that applies the aggregate score approach. 

We found that NGSEA outperformed GSEA in retrieving KEGG pathway gene sets 

(Kanehisa et al., 2017) for matched gene expression data sets. We also applied NGSEA to 

drug prioritization for several diseases and found that NGSEA performed substantially better 

than Connectivity Map (CMap) (Lamb et al., 2006) in the ability to retrieve known drugs for 

matched cancer-associated gene expression data sets. We analyzed FDA-approved drugs to 

determine whether they had anti-cancer effects on colorectal cancer using NGSEA and 

experimentally validated the anti-cancer effect of budesonide, a chemical that is currently 

used as an anti-inflammatory drug. NGSEA is freely available for use as web-based software 

(www.inetbio.org/ngsea).  

 

MATERIALS AND METHODS 

Gene expression profiles, annotated gene sets, and a functional human gene network 

To evaluate the gene set analysis performance for gene expression phenotypes, we used a 

gold-standard expression dataset composed of expression profiles in which their matched 

KEGG pathway terms are already annotated. We used KEGG disease datasets from GEO 

(KEGGdzPathwaysGEO) obtained from Bioconductor 

(https://bioconductor.org/packages/release/data/experiment/html/KEGGdzPathwaysGEO.htm

l) as our gold-standard dataset to evaluate gene set enrichment analysis methods. This 

collection includes 24 expression data sets based on an AffyMetrix HG-U133a chip for which 

the phenotype is a disease with a corresponding pathway in the KEGG database 

(Supplemental Table 1). For example, the GSE21354 dataset of KEGGdzPathwaysGEO was 

annotated by the KEGG pathway term ‘glioma’ (hsa05214) and contains microarray-based 

gene expression data comprised of 14 samples from tumor tissues and four samples from 

normal tissues. These datasets have been previously used as a gold-standard dataset in 
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comparing the performance of 16 gene set analysis methods (Tarca et al., 2013).  

We obtained pathway gene sets from human KEGG pathways 

(https://www.genome.jp/kegg/pathway.html as of June 2016) (Kanehisa, Furumichi et al., 

2017) and drug-target gene sets from DSigDB version 1 

(http://tanlab.ucdenver.edu/DSigDB/DSigDBv1.0/) (Yoo et al., 2015) D1 data. Gene sets 

containing less than 15 genes were excluded from the analysis; this same criterion is used in 

the default parameter setting for GSEA. For data derived from DSigDB, drug names were 

mapped to the compound ID (CID) from the PubChem database 

(ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/). A total of 276 KEGG pathway gene 

sets and 165 DSigDB gene sets were used in our final analysis. We used the following 

additional gene sets for web server construction: Gene Ontology biological process (GOBP) 

annotations (http://www.geneontology.org as of April 4, 2018) (Ashburner et al., 2000), 

curated annotations of DisGeNET (http://www.DisGeNET.org as of June 8, 2018) (Pinero et 

al., 2017), and disease gene annotations with more than three-star scores in DISEASES 

(https://diseases.jensenlab.org) (Pletscher-Frankild et al., 2015). 

To benchmark the ability to retrieve drugs for diseases, we compiled 17,063 links between 

2,109 diseases and 1,481 chemicals based on a direct evidence of association as determined 

from the ‘therapeutic’ category of the Comparative Toxicogenomics Database (CTD) 

(http://ctdbase.org/ as of October 4, 2016) (Davis et al., 2017). We combined information for 

drugs with synonyms in the CID.  

For network-based analysis of the differential expression of genes, we employed a genome-

scale functional gene network, HumanNet-EN (manuscript submitted), which is available 

from www.inetbio.org/humannet. Briefly, HumanNet-EN was constructed by integrating the 

functional associations between genes inferred not only from protein-protein interactions but 

also from diverse types of omics data using Bayesian statistics. The HumanNet-EN contains 

424,501 functional links between 17,790 human genes (i.e., 94.6% of the coding genome). 

We also included a functional gene network for mouse, MouseNet 

(www.inetbio.org/mousenet), which contains 788,080 links between 17,714 mouse genes (i.e., 

88% of the coding genome) (Kim et al., 2016), to allow users to analyze mouse gene 

expression phenotypes with NGSEA. 
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Running GSEA, AE, and NGSEA 

We obtained the freely available software program javaGSEA version 3.0 from the Broad 

Institute (http://software.broadinstitute.org/gsea/downloads.jsp) and used it for the analyses 

and web server implementation. javaGSEA can analyze the input data as either a gene 

expression matrix (GSEA) or a pre-ranked list of genes (GSEA-preranked). The gene 

expression matrix needs to contain both control samples and case samples. One goal of our 

analysis was to improve GSEA by modifying the rank-order of genes; therefore, we used the 

GSEA-preranked function for the analyses in this study. In particular, we used ‘weighted 

GSEA-preranked’ with the default parameters. The original GSEA ranked genes based on 

either gene-based scores, the signal-to-noise ratio (SNR), or the log base 2 of the expression 

ratio (i.e., log2(Ratio)) from the most upregulated gene. SNR is calculated as the average 

expression value difference between the case samples and control samples divided by the 

sum of the standard deviations of each group of samples. The log2(Ratio) is computed by 

taking the logarithm (base 2) of the ratio between the average expression value of the case 

samples and the average expression value of the control samples.  

In NGSEA, the original gene-based score was modified via network-based integration of the 

gene-based scores for network neighbors. We assigned a network-based score (NS) for each 

gene by integrating the absolute value of its gene-based score with the mean of the absolute 

value of the gene-based scores of its network neighbors using the following equation: 

��� � |��| �
1
��	
��


��

���

 

where ��  is the number of network neighbors of the ���  gene and ��  represents the score 

of the ���  gene. If a gene has no expression data, then we assigned the gene-based score to 

be zero. We initially tested both SNR and log2(Ratio), and found that the log2(Ratio) 

performed better in general; therefore, all the results presented in this report were based on 

the log2(Ratio). For the AE analysis, we ordered genes based on the absolute values of the 

log2(Ratio). 

We performed GSEA, AE, and NGSEA with a gene list ordered by the log2(Ratio) value, the 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/636498doi: bioRxiv preprint 

https://doi.org/10.1101/636498
http://creativecommons.org/licenses/by-nc/4.0/


8 

 

absolute value of the log2(Ratio), and the NS, respectively, using the GSEA-preranked 

function, from which we computed enrichment scores (ES), normalized enrichment scores 

(NES), P-values, and false discovery rate (FDR) values for each gene set based on a modified 

K-S test. To evaluate gene set recovery performance, we prioritized gene sets based on their 

absolute NES; this measure was used because gene sets with high scores for both positive and 

negative directions are equally weighted in GSEA. 

 

Drug repositioning using Connectivity Map (CMap) 

We prioritized FDA-approved drugs for the 24 KEGG disease gene expression datasets using 

the CMap web server (https://portals.broadinstitute.org/cmap). CMap requires up and down 

tag lists (AffyMetrix HG-U133a probe ID) as input data; therefore, we selected the 50 highest 

up- and down-regulated probe IDs from each of the 24 disease expression data sets. If input 

genes were not based on AffyMetrix HG-U133a probe IDs, then we converted them to 

AffyMetrix HG-U133a probe IDs to run the CMap analysis.  

 

Anti-cancer activity analysis using a cell viability assay 

We conducted MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium) assays to measure cell viability following drug treatment. We 

used two colorectal cancer cell lines, HCT116 and HT-29, which were obtained from the 

Korean Cell Line Bank, for the assay. We purchased two candidate drugs, dobutamine, and 

budesonide, from Sigma (St. Louis, MO, USA). We dissolved chemicals in dimethyl 

sulfoxide (DMSO) prior to treatment. Cells were treated with the candidate drugs at 

concentrations ranging from 50 to 250 μM for 24, 48, and 72 hours. MTS reagents then were 

added to the cells. The number of viable cells was counted based on the absorbance at 490 

nm on an ELISA microplate reader (Molecular Devices, San Jose, CA, USA), and the cell 

viability percentage was calculated. All experiments were repeated six times. 

 

RESULTS 
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Overview of NGSEA 

As summarized in Figure 1, NGSEA differs from GSEA in the method of scoring genes, 

resulting in different gene orders between the two methods. The list of genes generated by 

GSEA is ordered by the log2(Ratio) gene score. In contrast, the list of genes generated by 

NGSEA is ordered using a network-based score. This score was based on two assumptions. 

The first assumption is that the annotated gene set for biological processes that are truly 

associated may contain both up- and down-regulated genes. Whereas GSEA was designed to 

find gene sets that are regulated in one direction, groups of genes or systems are often 

regulated in both directions. To address this problem, NGSEA uses the absolute value of the 

log2(Ratio) for analyses; a similar approach was employed previously in an AE analysis 

(Saxena, Orgill et al., 2006). The second assumption is that the expression perturbation of 

gene regulators may cause severe dysregulation of their downstream genes such that the 

functional importance of a regulator for a given biological context would, in fact, be much 

greater than estimated by its own expression change. Thus, we expected that the expression 

difference in the local subnetwork would assign higher scores than the original gene-based 

score to truly functional genes. To address this problem, NGSEA integrated the mean of the 

absolute value of the log2(Ratio) for the network neighbors of each gene to account for the 

regulatory influence on its local subsystem. 

 

NGSEA outperformed GSEA and AE in identifying KEGG pathways for matched 

disease expression data sets 

We evaluated the ability of GSEA, AE, and NGSEA to retrieve annotated gene sets for 

matched gene expression data sets. For this analysis, we used gold-standard gene expression 

datasets from the Bioconductor’s KEGGdzPathwaysGEO package. We used a total of 24 

expression data sets associated with 12 different diseases (Supplemental Table 1), which 

were previously used as gold-standard datasets in comparing the performance of 16 gene set 

analysis methods (Tarca, Bhatti et al., 2013). We scored 276 human KEGG pathway gene sets 

(Kanehisa, Furumichi et al., 2017) that contained more than 15 member genes for each of the 

24 expression datasets with GSEA, AE, and NGSEA, with an aim of retrieving the associated 

KEGG pathway term for each disease expression data set within the top predictions. 
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We observed a significantly higher rank distribution using NGSEA compared with GSEA and 

AE (P=2.35e-3 and P=4.0e-3, respectively, by Wilcoxon signed-rank test) (Figure 2A). The 

ranks for matched KEGG pathway terms were improved in NGSEA compared with GSEA in 

18 of the 24 (75%) tested disease expression datasets (Figure 2B). For example, the KEGG 

pathway term for ‘Glioma’ was ranked as 131 via GSEA but as 18 by NGSEA for a gene 

expression dataset derived from glioma samples (GSE21354). Notably, the performance of 

the AE method was not significantly improved from GSEA (P=0.11 by Wilcoxon signed-rank 

test). These results clearly indicate that the major factor contributing to the improvement in 

NGSEA was the network-based analysis of the gene expression data. 

Next, we tested the robustness of the three enrichment analysis methods by comparing the 

assigned scores for the KEGG pathway terms between the different expression profiles for 

the same disease. The 24 expression data sets were derived from 12 diseases, and nine of the 

diseases have multiple expression data sets. We hypothesized that if an enrichment analysis 

retrieved pathways based on disease-specific signals rather than technical variation, then 

scores for the pathways between two different expression datasets for the same disease 

should have a higher correlation than those for different diseases. We, therefore, computed 

Pearson’s correlation coefficients (PCC) between expression data sets using the normalized 

enrichment scores (NES) for all the test KEGG pathways. Then, we compared the 

distributions of PCC values between the same diseases or between different diseases. As 

expected, higher correlations were observed between the same diseases compared with 

different diseases for all three enrichment analyses (Figure 2C). Notably, we observed an 

improvement in the significance of the correlations difference between the same disease 

groups and different disease groups using NGSEA compared with GSEA (P=2.72e-6 and 

P=3.44e-5, respectively, by Wilcoxon rank-sum test). These results suggest that the 

enrichment analysis conducted using NGSEA may be less affected by variation among 

expression profiles for the same disease processes. 

As expected, the improved ranks for the matched KEGG pathways were due to improved 

ranks of their member genes in the gene list used for the enrichment analysis. For example, 

the network-based scoring method improved the rank of the KEGG term ‘Alzheimer’s 

disease’ from 17th to 5th and reduced the rank of an irrelevant KEGG term ‘Staphylococcus 

aureus infection’ from 6th to 267th for the gene expression data set for Alzheimer’s disease 
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(GSE5281_VCX). The majority of relevant pathway genes were ranked higher by NGSEA 

(red color) compared with GSEA (Figure 2D). As another example, we observed similar 

trends in the rank changes between relevant and irrelevant pathway terms for the KEGG term 

‘acute myeloid leukemia’ (Figure 2E). These results demonstrate that the use of network-

based scoring in enrichment analysis increases the ranks of truly functional genes within the 

ordered gene list, resulting in the assignment of higher scores to gene sets truly associated 

with the underlying biological process.  

 

Application of NGSEA to drug-target gene sets improved retrieval of known drugs 

compared with Connectivity Map  

GSEA is the algorithmic foundation of the most popular drug repositioning system, the 

Connectivity Map (CMap) (Lamb, Crawford et al., 2006). The previous CMap database, 

which was based on the AffyMetrix HG-U133a chip, contained more than 7,000 expression 

profiles representing 1,309 compounds. A recent release of CMap included a database of 

reference expression profiles with more than 1000-fold scale-up based on L1000 platform 

technology, which is a low-cost, high-throughput reduced representation expression profile 

method (Subramanian et al., 2017). The CMap system prioritizes drugs for diseases based on 

an inverse relationship between disease expression profiles and drug treatment expression 

profiles. To conduct a web-based CMap analysis, users submit signature genes for a given 

disease (e.g., the 50 most up-regulated and 50 most down-regulated genes from the disease-

associated gene expression dataset). GSEA is applied to assign scores to each drug based on 

the anti-correlation of disease signature genes with the genes ordered by expression changes 

in drug condition, which represents the strength of the drug response. In contrast to CMap, 

which uses expression data from drug-treated samples, the NGSEA-based drug prioritization 

method uses functional genes for the drug’s mode of action; target genes. We used target 

genes for each FDA-approved drug as functional gene sets to test the association to diseases 

based on a list of genes ordered by network-based scores computed from disease-associated 

expression data (Figure 3A). We compiled target gene sets for drugs from drug-target links 

based on active bioassays from the Drug Signature Database (DSigDB) (Yoo, Shin et al., 

2015). We performed drug prioritization using NGSEA on 24 gene expression datasets for 12 
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diseases from KEGGdzPathwaysGEO and target gene sets for 165 FDA-approved drugs (i.e., 

those with more than 15 targets) from DSigDB. 

We compared the ability of CMap and NGSEA to retrieve known drugs for each of the 24 

disease-associated gene expression data sets. For benchmarking, we compiled 17,063 

associations between 2,109 diseases and 1,481 chemicals based on direct evidence of an 

association from the ‘therapeutic’ category of the CTD (Davis, Grondin et al., 2017). The 

performance of both CMap and NGSEA were determined using the area under the receiver 

operating characteristic curve (AUROC). To avoid a biased evaluation due to differences in 

the number of drugs tested, we included only drugs that were considered in both CMap and 

NGSEA for the AUROC analysis. We found significantly improved AUROC for drug 

recovery using NGSEA compared with CMap (P=9.62e-4 by Wilcoxon signed-rank test). 

Recovery of known drugs was improved in 16 of 24 (67%) tested expression datasets using 

NGSEA compared with CMap (Figure 3B). NGSEA was particularly effective for retrieving 

cancer drugs; we observed improved performance in 14 of 16 (87.5%) cancer-associated 

expression datasets using NGSEA compared with CMap. These results suggest that using 

NGSEA with drug-target information may be an effective approach for anti-cancer drug 

repositioning.  

 

Identification of budesonide as a novel drug candidate to treat colorectal cancer 

The effective retrieval of known drugs for various types of cancers suggested that we would 

be able to identify novel anti-cancer drugs using NGSEA. NGSEA yielded the highest 

improvement in the recovery of known anti-cancer drugs for colorectal cancer (GSE9348: 

AUROC=0.488 and 0.775 by CMap and NGSEA, respectively) (Figure 4A). We, therefore 

considered it highly likely that NGSEA would be able to identify novel drugs to treat 

colorectal cancer among the top repurposed FDA-approved chemicals. Among the top 30 

chemicals predicted as candidates for colorectal cancer by NGSEA, six chemicals were 

currently used for the treatment of colorectal cancer and three additional chemicals had been 

tested in clinical trials for colorectal cancer (https://clinicaltrials.gov/) (Figure 4B). We also 

found evidence in the literature (via manual examination of the PubMed database) for anti-

cancer effects in colorectal cancer for 13 additional chemicals predicted by NGSEA. We, 
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therefore, considered the remaining eight candidates, for which there was no prior evidence 

of an anti-cancer effect in colorectal cancer, for follow-up experimental validation. Among 

the commercially available and affordable chemicals on our candidate list, we were able to 

obtain and test both dobutamine (5th) and budesonide (17th). We observed that budesonide 

significantly inhibited cell growth in two different colorectal cancer cell lines (HCT116 and 

HT-29) (Figure 4C-D and Supplemental Table 2). Budesonide was ranked 37th by CMap 

compared with 17th by NGSEA, suggesting budesonide would not be identified as a treatment 

for colorectal cancer using existing drug-repositioning analyses. 

 

Development of the NGSEA web server 

To increase the usability of NGSEA, we have developed a web-based gene set enrichment 

analysis server (www.inetbio.org/ngsea). Users can prioritize functional gene sets 

representing biological and disease processes using various databases, including KEGG 

pathway (Kanehisa, Furumichi et al., 2017), GO biological process (Ashburner, Ball et al., 

2000), DisGeNET (Pinero, Bravo et al., 2017), and DISEASES (Pletscher-Frankild, Palleja et 

al., 2015). Users can perform both GSEA and NGSEA simultaneously by submitting the gene 

expression phenotype. Both expression matrix (.gct format) data and the pre-scored list of 

genes (.rnk format) are allowed to be submitted as input data for the analysis. The default 

analysis runs for human genes, but enrichment analysis is also available for mouse genes 

using a genome-scale mouse functional gene network (Kim, Hwang et al., 2016; Kim and 

Lee, 2017). Users also can prioritize the gene sets by ES, NES, and FDR. Enrichment plots 

also are provided as output. 

 

DISCUSSION 

In this report, we presented a network-based gene set enrichment analysis, NGSEA, which 

modified existing gene scoring methods by incorporating the differential expression 

information from neighbors in the functional gene network. We then demonstrated that 

NGSEA outperformed GSEA in retrieving both KEGG pathway terms and drugs for matched 

disease-associated gene expression data sets. Based on the benchmarking results, we have 
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concluded that NGSEA will provide reliable functional information for interpretation of gene 

expression phenotypes of clinical samples. Most importantly, NGSEA performed well with 

functional gene sets. Because the original GSEA was designed to detect relationships 

between biological processes and chemicals based on expression signature genes, which are 

not necessarily functional genes, GSEA exhibited suboptimal performance with functional 

gene sets. MSigDB was designed explicitly to provide gene sets, many of which were derived 

from expression signatures, for GSEA. There are many other public databases, however, that 

contain annotated gene sets for diseases and pathways, and the majority of these gene sets 

include functional genes. We expect that NGSEA will be a useful tool for utilizing these 

available resources. 

There are several existing methods that combine networks and gene set analysis. These 

methods measure the network distance between two gene sets (Alexeyenko, Lee et al., 2012; 

Glaab, Baudot et al., 2012; Wang, Hwang et al., 2012; McCormack, Frings et al., 2013). 

Although the sensitivity to detect the relationship between two gene sets was successfully 

improved using these methods compared with over-representation approaches, these methods 

still require the user to pre-select the query gene set by applying what is often an arbitrary 

differential expression score cutoff. These over-representation approaches to gene set analysis 

with network-based modification are therefore still limited by a lack of information regarding 

the relative orders between differentially expressed genes. We hypothesized that applying the 

network-based modification to an aggregate score approach to gene set analysis, which uses 

the differential expression values for the gene set analysis, would further improve the 

sensitivity to detect the relationship between two gene sets. To the best of our knowledge, 

NGSEA is the first method that combines network-based gene set analysis with an aggregate 

score approach.  

We demonstrated that NGSEA could effectively retrieve known anti-cancer drugs for 

matched gene expression data sets. It is not clear why drug recovery using NGSEA was 

highly effective for different cancer types but not for neurodegenerative diseases such as 

Alzheimer’s disease, Parkinson’s disease, or Huntington’s disease (Figure 3B). One 

possibility is that the current human gene network model is short of predictive power for 

brain cells because we also observed low performance of NGSEA for brain cancer. We 

observed similar results using another high-quality genome-scale human gene network, 
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STRING (Szklarczyk et al., 2017). These findings suggest that we need to improve human 

functional gene networks before NGSEA can be used effectively for certain applications. 

Nevertheless, our results show that NGSEA is an effective tool for repurposing chemicals as 

anti-cancer drugs with the current functional gene networks. 
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FIGURE LEGENDS 

Figure 1. Overview of NGSEA. In the original gene set enrichment analysis (GSEA), genes 

of a given expression dataset are ordered by gene-based scores (e.g., signal-to-noise ratio 

[SNR] or log2(Ratio)) based on the gene expression difference between control and case 

samples. In network-based GSEA (NGSEA), the genes are ordered by network-based scores, 

which integrates the gene-based score with the mean of the scores of its neighbors in the 

functional gene network. This method is based on the observation that functional genes tend 

to cause expression changes in their network neighbors and therefore are more likely to be 

correlated with network-based scores.  

Figure 2. Recovery of KEGG pathways for matched disease expression datasets by 

GSEA, AE, and NGSEA. (A) Rank distribution of the matched KEGG pathway terms (out 

of 273 terms in total) for each of 24 gold-standard expression datasets from 

KEGGdzPathwaysGEO using gene set enrichment analysis (GSEA), absolute enrichment 

(AE), and network-based GSEA (NGSEA). The significance of the difference in the rank 

distribution was assessed by Wilcoxon signed-rank test (asterisk (*) indicates P < 0.05). (B) 

Rank comparison of the matched KEGG pathway terms between GSEA and NGSEA for each 

of the 24 gold-standard expression data sets. (C) Distribution of the Pearson’s correlation 

coefficient (PCC) of the normalized enrichment scores (NES) between the same diseases and 

different diseases. The significance of the difference in the rank distributions was assessed by 

Wilcoxon rank-sum test (asterisk (*) indicates P < 0.05). (D) Subnetworks for the KEGG 

pathway terms ‘Alzheimer’s disease’ (HSA05010) and ‘Staphylococcus aureus infection’ 

(HSA05150). The difference between the ranks assigned by GSEA and NGSEA is indicated 

by the color code (red and blue for higher ranking by NGSEA and GSEA, respectively) for 

each pathway member gene. (E) Subnetworks for the KEGG pathway terms ‘acute myeloid 

leukemia’ (HSA05221) and ‘taste transduction’ (HSA04742). The color code is the same as in 

(D). 

Figure 3. Retrieval of known drugs for matched disease expression datasets using CMap 

and NGSEA. (A) Overview of how network-based gene set enrichment analysis (NGSEA) 

retrieves drugs for the matched disease of the given gene expression data. Drug A targets 

genes with high network-based scores, whereas Drug B targets genes with a wide range of 
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network-based scores; therefore, Drug A but not Drug B will be highly ranked. If Drug A but 

not Drug B is a known drug for the given disease, the prediction performance of NGSEA, as 

measured by the area under the receiver operating characteristic curve (AUROC) will be high. 

(B) Comparison of the AUROC between Connectivity Map (CMap) and NGSEA for the 

ability to retrieve known drugs for the matched disease of each gene expression data set. 

Figure 4. (A) Comparison of receiver operating characteristic (ROC) curves between 

Connectivity Map (CMap) and network-based gene set enrichment analysis (NGSEA) for the 

ability to retrieve known drugs to treat colorectal cancer using a gene expression data set 

from patients with colorectal cancer (GSE9348). (B) The top 30 chemicals for colorectal 

cancer as predicted by NGSEA. The color code indicates how the anti-cancer effect on 

colorectal cancer was validated for each predicted chemical. The asterisk (*) indicates the 

two drugs tested in this study. (C) Cell viability in the HCT-116 cell line after treatment with 

various concentrations of budesonide. (D) Cell viability in the HT-29 cell line after treatment 

with various concentrations of budesonide.  
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