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ABSTRACT

The evolution of maize yields under drought is of particular concern in the context of 

climate change and human population growth. To better understand the mechanisms associated with

the genetic polymorphisms underlying the variations of traits related to drought tolerance, we used a

systems genetics approach integrating high-throughput phenotypic, proteomics and genomics data 

acquired on 254 maize hybrids grown under two watering conditions. We show that water deficit, 

even mild, induced a strong proteome remodeling and a reprogramming of the genetic control of the

abundance of many proteins. We identify close co-localizations between QTLs and pQTLs, thus 

highlighting environment-specific pleiotropic loci associated to the co-expression of drought-

responsive proteins and to the variations of phenotypic traits. These findings bring several lines of 

evidence supporting candidate genes at many loci and provide novel insight into the molecular 

mechanisms of drought tolerance. 
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INTRODUCTION

Maize is the main crop worldwide (Shiferaw et al. 2011) in terms of production. Although it 

exhibits a high water use efficiency thanks to its C4 metabolism, it is also highly sensitive to water 

deficit. As an illustration, maize is twice as much affected by drought as wheat, with 39.3% and 

20.6% respective yield reductions associated with 40% reduction of water (Daryanto et al. 2016). 

Improving maize yield under drought has been an important goal of breeding programs for several 

decades (Campos et al. 2004, 2006; Cooper et al. 2014). However, despite the overall genetic 

progress obtained, increases in drought sensitivity have been reported in several regions (Lobell et 

al. 2014; Zipper et al. 2016; Meng et al. 2016). In addition, severe drought stress episodes are 

projected to become more frequent in the near future due to climate change (Harrison et al. 2014). 

Therefore, the evolution of maize productivity under water deficit is of particular concern and large 

efforts are still required to design varieties able to maintain high yields in drought conditions. 

One lever to accelerate the genetic progress is to better understand the genetic and molecular

bases of drought tolerance. This highly complex trait is associated to a series of mechanisms 

occurring at different spatial and temporal scales to (i) stabilize the plant water and carbon status, 

(ii) control the side effects of water deficit including oxidative stress, mineral deficiencies and 

reduced photosynthesis and (iii) maintain the plant yield (Chaves et al. 2003). At the physiological 

level, short-term responses include stomata closure, osmotic and hydraulic conductance 

adjustments, leaf growth inhibition and root growth promotion (Tardieu et al. 2018). At the 

molecular level, complex signaling and regulatory events occur, involving several hormones, of 

which abscisic acid (ABA) is a key player, and a broad range of transcription factors (Golldack et 

al. 2014; Osakabe et al. 2014; Tripathi et al. 2014). Molecular responses also include the 

accumulation of metabolites involved in osmotic adjustment, membrane and protein protection or 

scavenging of reactive oxygen species and the expression of drought-responsive proteins like 

dehydrins, late embryogenesis abundant (LEA) and heat shock proteins (HSP) (Valliyodan and 
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Nguyen 2006; Seki et al. 2007). All these responses depend on the drought scenario, the 

phenological stage, the genetic potential and the surrounding environment (Tardieu et al. 2018). 

Altogether, the multiplicity and versatility of the mechanisms coming into play explain the 

difficulty to select for drought tolerance.

Breeding new drought-tolerant varieties would greatly benefit from a better understanding 

of the genotype-phenotype relationship. Systems genetics is a recent approach allowing to gain 

better insight into this relationship by deciphering the biological networks and molecular pathways 

underlying complex traits and by understanding how they are regulated at the genetic and epigenetic

levels (Nadeau and Dudley 2011; Civelek and Lusis 2014; Feltus 2014; van der Sijde et al. 2014; 

Markowetz and Boutros 2015). It consists in comparing the position of quantitative trait loci 

(QTLs) underlying phenotypic traits variation to that of QTLs underlying the variation of upstream 

molecular phenotypes such as transcript expressions (eQTLs) or protein abundances (pQTLs). Until

now, this approach has been mostly applied in human and animals (Johnson et al. 2015; Williams et 

al. 2016; Moreno-Moral and Petretto 2016) and to a lesser extent in plants (Moreno-Moral and 

Petretto 2016; Munkvold et al. 2013; Ogura and Busch 2016; Basnet et al. 2016; Christie et al. 

2017; Mizrachi et al. 2017). 

The first studies that compared QTLs and pQTLs used 2D gel proteomics to quantify 

proteins (Bourgeois et al. 2011; de Vienne et al. 1999). Since then, proteome coverage and data 

reliability have been widely improved by the use of mass spectrometry (MS)-based proteomics 

(Wasinger et al. 2013). Despite these progress, the systems genetics studies published so far have 

preferentially used transcripts rather than proteins as intermediate level between the genome and 

end-point phenotypes. One reason is that large-scale proteomics experiments remain challenging 

(Blein-Nicolas et al. 2015) due to technical constraints (Balliau et al. 2018) and to the trade-off 

between depth of coverage and sample throughput (Keshishian et al. 2017). Yet, proteins are 

particularly relevant molecular components to link genotype to phenotype. Due to the buffering of 
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transcriptional variations and to the role of post-translational regulations in phenotypes 

construction, proteins are indeed expected to be more highly related to end-point phenotypes than 

transcripts (Foss et al. 2011; Battle et al. 2015; Chick et al. 2016; Albertin et al. 2013; Vogel and 

Marcotte 2012). 

Here, we aimed to better understand the molecular mechanisms associated with the genetic 

polymorphisms underlying the variations of traits related to drought tolerance. To this end, we 

performed a unique systems genetics study where MS-based proteomics data acquired for 254 

maize genotypes grown in two watering conditions were integrated with high-throughput genomic 

and phenotypic data. Protein abundances were first analyzed by using genome wide association 

study (GWAS) and co-expression networks. Then they were integrated with phenotypic data 

measured for drought-related trait in the same conditions (Prado et al. 2018) through correlation 

analysis and search for QTL/pQTL co-localizations. We showed that water deficit, even mild, 

caused a deep proteome remodeling associated to changes in the genetic architecture of protein 

abundances. Some of these changes could also affect drought-related traits, as indicated by 

QTL/pQTL co-localizations. These were underlied by exciting candidate genes. In particular, we 

identified two transcription factors likely involved in the condition-specific co-regulation of 

drought-responsive proteins as well as in the genetic variations of several phenotypic traits. We also

highlighted many cases of QTL/pQTL co-localizations with a reduced number of underlying 

candidate genes. 
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RESULTS

Mild water deficit has extensively remodeled the proteome

Using MS-based proteomics, we analyzed more than 1,000 leaf samples taken from 254 

genotypes representing the genetic diversity within dent maize and grown in well-watered (WW) 

and water deficit (WD) conditions. After data filtering, our peptide intensity dataset included 977 

samples corresponding to 251 genotypes from which we reliably quantified 1,950 proteins. For 977 

of them that exhibited too many missing peptide intensity values, quantification was performed 

based on the number of chromatographic peaks (PC-based set). For the remaining 973 proteins that 

were on average more abundant (Sup. Figure 1A), quantification was performed based on peptide 

intensities, that provide a higher precision of quantification than counting data (Sup. Figure 1B, 

XIC-based set). Functional categories involving highly abundant proteins, such as energy 

metabolism, were better represented in the XIC-based than in the PC-based set (Sup. Figure 1C).

Heatmap representations of protein abundances show that the two watering conditions were 

well separated by two large protein clusters (Figure 1A), indicating that, although moderate, water 

deficit has extensively remodeled the proteome of most genotypes. Accordingly, 82.4% and 71.7% 

of the proteins of the XIC-based and PC-based sets respectively responded significantly to water 

deficit (adjusted P-value < 0.05, WD/WW ratio > 1.5 or < 0.66, Sup. Table 1). These included 

several proteins known to be involved in responses to drought or stress (hereafter named drought-

responsive proteins) such as dehydrins (GRMZM2G079440, GRMZM2G373522), ABA-responsive

protein (GRMZM2G106622), LEA protein (GRMZM2G352415), HSPs (GRMZM2G360681, 

GRMZM2G080724, GRMZM2G112165), phospholipase D (GRMZM2G061969), glyoxalase I 

(GRMZM2G181192) or gluthathione-S-transferase (GRMZM2G043291). Induced and repressed 

proteins constituted two populations highly differentiated in terms of function (Figure 1B). In 

particular, transcription, translation, energy metabolism and metabolism of cofactors and vitamins 
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A

Figure 1. Effect of a mild water deficit on the proteome. (A) Heatmap representations of the 
abundances estimated for the XIC-based protein set (left) and the PC-based protein set (right). 
Each line corresponds to a protein and each column to a genotype x watering condition 
combination. For each protein, abundance values were scaled and represented by a color code 
as indicated by the color-key bar. Hierarchical clusterings of the genotype x watering condition 
combinations (top) and of the proteins (left) were built by using the 1-Pearson correlation 
coefficient as distance and the unweighted pair group method with arithmetic mean (UPGMA) 
as aggregation method. (B) Functions of the 200 most induced and 200 most repressed proteins 
under water deficit. (C) Abundance profiles of the RAB17 dehydrin (GRMZM2G079440 
quantified based on the number of chromatographic peaks) and of a LEA protein 
(GRMZM2G352415 quantified based on peptide intensities) in the two watering conditions. 
Genotypes on the x axis were ordered according to the WD/WW abundance ratio. 
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were better represented within repressed proteins, while carbohydrate and amino acid metabolisms, 

environmental adaptation, signaling molecules and interaction were better represented within 

induced proteins. 

The global impact of a genotypic change on the proteome was less extensive than that of 

water deficit, since the proteomes of two different genotypes grown in the same watering condition 

were more similar than the proteome of a same genotype grown in different conditions (Figure 1A).

However, the maximum amplitudes of abundance variations were similar (Sup. Figure 2). In 

addition, 94.9% of the proteins from the XIC-based set exhibited significant genetic variations of 

abundance (adjusted P-value < 0.05, fold change > 1.5 or < 0.66). This was confirmed by broad 

sense heritability, the median of which was 0.47 and 0.46 for the WW and WD conditions, 

respectively (Sup. Figure 3A). By contrast, in the PC-based set, only 37.4% of the proteins showed 

significant genetic variations of abundance and the median of broad sense heritability was 0.07 and 

0.09 in the WW and WD conditions, respectively (Sup. Figure 3B). 

Regarding the genotype x environment (GxE) interactions, several results indicate that they 

were larger in the PC-based than in the XIC-based set. The correlations of protein abundances 

between the two watering conditions were lower in the former than in the latter (median of r =0.08 

and 0.44, respectively; Sup. Figure 4A). Furthermore, the contribution of the GxE interactions to 

the total variability of protein abundances was higher in the PC-based than in the XIC-based set 

(Sup. Figure 4B-D). However, significant GxE interactions were detected for only four and 15 

proteins of the PC-based and XIC-based sets, respectively, probably because of a lack of statistical 

power. These proteins included a LEA protein (GRMZM2G352415) and the ZmRab17 dehydrin 

(GRMZM2G079440), the latter being undetectable in the WW condition and more or less expressed

depending on the genotype in the WD condition (Figure 1C).
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Genetic architecture of protein abundance is related to protein function

To identify pQTLs, we submitted the 3,900 molecular phenotypes (1,950 proteins x 2 

watering conditions) obtained from the proteomics analysis to GWAS. In total, we detected 583,288

(163,674 in the PC-based set and 419,614 in the XIC-based set) significant associations (P-value < 

10-5) for 3,759 (96.4%) molecular phenotypes. Associated SNPs explained between 0.3 and 83.2% 

of variance, with an average at 8.7% (Sup. Figure 5). 

To summarize associated SNPs into pQTLs, we developed a geometric method based on the 

P-value signal of SNPs. Compared to classical methods based on the genetic distance or on linkage 

disequilibrium (LD), it allowed to detect the lowest number of pQTLs per molecular phenotype 

(median at 8, 10 and 7, respectively) and the lowest maximum number of pQTLs per chromosome 

(57, 209 and 15, respectively). It also produced the lowest correlation between the number of 

pQTLs per chromosome and the P-value of the most strongly associated pQTL on the 

corresponding chromosome (Sup. Figure 6). In total, we thus detected 29,004 pQTLs (16,911 and 

12,093 in the XIC-based and PC-based sets, respectively; sup. Table 2). The median number of 

pQTLs per molecular phenotype was 8 and 5 for the XIC-based and PC-based sets, respectively 

(Sup. Figure 7A). 1,385 (4.8%) pQTLs were local, i.e. located at less than 106 bp from the protein 

encoding gene, of which 442 were located within the genes. Among the distant pQTLs, 81.7% were 

located on a chromosome different than that of the protein encoding gene. Local pQTLs had 

stronger effects than distant pQTLs (average R2=19.3% and 5.5%, respectively; Sup. Figure 7B). 

For 992 proteins, no local pQTL was detected in any of the conditions. Compared to the 816 

proteins showing a local pQTL in at least one condition, these proteins were significantly enriched 

in proteins involved in translation (13.6% vs 4.2%, adjusted P-value = 4.8e-11) and energy 

metabolism (11.2% vs 6.9%, adjusted P-value = 0.016) and depleted in proteins involved in 

carbohydrate metabolism (10.5% vs 18.1%, adjusted P-value = 4.2e-05). They also exhibited less 

distant pQTLs (Sup. Figure 8 A, B) and were much less heritable (Sup Figure 8 C, D). These results
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Figure 2. Relationship between the mean number of pQTLs per KEGG category and the 
mean heritability per KEGG category.
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indicate that genetic regulation of protein abundances depends on protein function. This observation

is supported by the positive correlation between the mean number of pQTLs and the mean 

heritability per functional category (Figure 2).

Identification of genomic regions with pleiotropic effects on the proteome

pQTLs were not uniformly distributed in the genome (Figure 3). Instead, there were 

genomic regions enriched with pQTLs. We detected 25 and 23 of such hotspots that contained more

than 20 pQTLs in the WW and WD conditions, respectively (Sup. Table 3). For 15 and 13 of them 

respectively, the abundances of the associated proteins were more strongly correlated than expected 

by chance (P-value < 0.01; sup. Figure 9, Sup. Table 3), which indicates an enrichment in co-

expressed proteins. These hotspots might thus represent regulatory loci with pleiotropic effects on 

the proteome. 

To complement these results, we performed a weighted gene co-expression network analysis

(WGCNA) of protein co-expression across the 251 genotypes in the two watering conditions 

separately. Co-expression networks in the WW and WD conditions captured 1,671 proteins in 11 

modules and 1,578 proteins in 14 modules, respectively (Figure 4, Sup. Table 4). Each module 

contained 31 to 377 proteins. The WD network was well structured according to protein function 

with many modules showing significant functional enrichments (Figure 4, Sup. Table 5). Because 

most modules were well preserved between conditions (Sup. Figure 10A, B), we could build a 

consensus network capturing 698 proteins and composed of 15 modules containing 14 to 197 

proteins (Figure 4, Sup. Figure 10C; Sup. Table 4). Consensus modules were more particularly 

enriched in photosynthesis proteins, ribosomal proteins and in proteins involved in mitochondrial 

electron transport, ATP synthesis and in the tetrapyrrole pathway (Figure 4, Sup. Table 5). Two 

modules were condition-specific (Figure 4, Sup. Figure 10). Note that the module specific of the 

WD condition and was significantly enriched for drought-responsive proteins (Sup. Table 5). 
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A

B

Figure 3. Distribution of pQTLs along the genome. (A) In the well-watered condition. (B) In 
the water deficit condition. Each point indicates the number of proteins controlled by a pQTL 
located in a given genomic region defined by the linkage disequilibrium interval around a SNP. 
Dashed horizontal lines indicate the arbitrary threshold used to detect pQTL hotspots. Names 
and positions of the pQTL hotspots are indicated above each graph. Names in bold indicate 
pQTL hotspots confidently detected as potential pleiotropic loci (see Sup. Table 3 for details). 
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Protein abundances within each module were summarized into variables called eigengenes 

that were considered as molecular phenotypes and submitted to GWAS. In total, we detected 2,859 

significant associations (-log10(P-value) > 5) for 55 eigengenes (11, 14 and 30 for WW, WD and 

consensus modules, respectively). Significantly associated SNPs were summarized into 369 co-

expression QTLs (coQTLs, Sup. Table 2). When a coQTL co-localized with a pQTL hotspot, we 

checked whether the proteins associated to the hotspot were significantly enriched for proteins 

belonging to the module controlled by the coQTL (P-value < 0.01). Thus crossing the results, we 

confirmed nine hotspots as potential pleiotropic loci. Five of them were in the WW condition 

(Hs22, Hs42, Hs71, Hs72 and Hs92) and four were in the WD condition (Hs11d, Hs23d, Hs41d and

Hs52d; Sup. Table 3). Remarkably, several of these hotspots were associated to proteins exhibiting 

consistent functions. For example, hotspots Hs42 and Hs23d were mainly associated to ribosomal 

proteins (Sup. Table 6) and hotspots Hs71 and Hs72 were associated to proteins involved in energy 

metabolism and more particularly ATP synthesis and photosynthesis. 

The genetic architecture of protein abundances depends on the environment

Of the 14,432 pQTLs detected in the WW condition, only 1,212 (8.4%) had a co-localizing 

pQTL in the WD condition. These pQTLs were generally of strong effects (Sup. Figure 11A) and 

were enriched for local pQTLs (37.7% vs 4.8% in the whole dataset). Interestingly, while most of 

the pQTLs shared across conditions had similar effects in the two conditions, 80 of them (6.6%) 

exhibited contrasted effects (Sup. Figure 11B). Half of these pQTLs were local, suggesting that 

gene promoters may be involved in the GxE interaction or that the pQTLs detected in each 

condition corresponded to different polymorphic sequences with different effects on protein 

abundances. These pQTLs were associated to 75 proteins, several of which were drought-

responsive (Sup. Table 7). 
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Figure 4. Graphical representation of the co-expression networks resulting from the WGCNA 
analyses. Only proteins showing adjacencies > 0.02 are shown. The consensus network contains 
the proteins that were co-expressed in the two watering conditions. The three views were created 
by Cytoscape v3.5.1 using an unweighted, spring-embedded layout. The colors displayed on each 
network represent the different modules identified by WGCNA. Functional enrichments of modules 
are indicated in grey boxes. Condition-specific modules are surrounded by dashed circles. 
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As observed for individual proteins, eigengenes for consensus modules were poorly to 

moderately correlated between conditions (r between -0.03 to 0.62, Sup. Figure 12) and only one 

coQTL was shared across conditions. Regarding the nine cross-validated pQTL hotspots, one co-

localization was found between Hs22 and Hs23d. However, these two hotspots shared only one 

associated protein, suggesting that they represented two different loci. Altogether, these results 

indicate that the positions of genomic regions with pleiotropic effects on the proteome also 

depended on the environment. 

Identification of genomic regions involved in multi-scale genetic control

To gain insight into the molecular mechanisms associated to drought tolerance, we searched 

for co-localizations between the pQTLs, coQTLs or hotspots detected in our study and the 160 

QTLs detected by Alvarez Prado et al. (2018) on the same plant material. These QTLs controlled 

eight phenotypic traits related to growth and transpiration rate in the WW and WW conditions: leaf 

area early (i.e. before water deficit; LAe), leaf area late (LAl), biomass early (Be), biomass late 

(Bl), water use (WU), water use efficiency (WUE), stomatal conductance (gs) and transpiration rate

(Trate). To select for robust co-localizations, we took into account the correlations corrected by the 

structure and kinship between the trait values and the protein abundances or the module eigengenes 

(|rcorrected| > 0.3). 

In total, we identified 59 pairs of SNPs corresponding to QTL/pQTL co-localizations 

(Figure 5, Sup. Table 8). They involved six phenotypic traits (Bl, LAl, WU, WUE, Trate and gs) and

42 proteins, many of which were drought-responsive (Table 1). Most QTL/pQTL co-localizations 

(96.6%) were detected in the WD condition, where they corresponded to 40 of the 91 QTLs 

reported in this condition (Prado et al. 2018). All but one involved distant pQTLs. For 12 cases out 

of 59 (20%), the co-localizing QTL and pQTL were represented by the same SNP. In most of the 

remaining cases, the QTL/pQTL distance was less than 100 Kb (Figure 6A). Seventeen proteins 
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exhibited multiple QTL/pQTL co-localizations (eight at maximum, Table 1). In particular, the 

ZmRab17 protein presented seven QTL/pQTLs co-localizations involving four traits (Bl, Trate, WU

and gs with respectively 3, 2, 1 and 1 co-localizations; Sup. Table 8). LAl was the trait that 

exhibited the highest number of co-localizations (44) involving 29 proteins and 16 QTLs (Sup. 

Table 8). 

We further identified 13 pairs of SNPs corresponding to QTL/coQTL co-localizations, all in 

the WD condition (Sup. Table 9). They involved four phenotypic traits (WU, Bl, LAl and Trate) and

three modules including the WD-specific module (Figure 5). Eleven of the 13 QTLs co-localizing 

with coQTLs also co-localized with pQTLs. The remaining two QTLs (at SNPs S5-88791868 on 

chromosome 5 for Trate and AX-91801223 on chromosome 9 for LAl) actually also co-localized 

with pQTLs, but with low correlations between the trait values and the protein abundances (|rcorrected| 

< 0.06; Sup. Table 9). By contrast, the correlations between the trait values and the module 

eigengenes were much higher (|rcorrected| = 0.32 and 0.50, Sup. Table 9). 

Taken together, these results indicate the presence of genomic regions involved in the 

genetic control of traits at different levels of biological complexity. Some of these regions may 

control multiple proteins which are more strongly related to end-point phenotypes when taken 

collectively through co-expression module rather than individually. These results also revealed two 

genomic regions showing evidences for pleiotropy both at the proteome and phenotype levels 

(Figure 5). The first, located on chromosome 5 and spanning 1,8 Mb between SNPs AX-91657926 

and AX-90612012, contained pQTLs for seven proteins, coQTLs for two modules and QTLs for 

four phenotypic traits (LAl, BL, WU, and Trate). This region was also covered by hotspot Hs52d. 

The second is on chromosome 7 where a single SNP (S7_162671160) determined the positions of 

pQTLs for seven proteins, coQTLs for three modules and QTLs for two phenotypic traits (LAl and 

WU). 
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Figure 6. Identification of genomic regions involved in multi-scale genetic control. 
(A) Distribution of the distances between co-localizing QTLs and pQTLs. (B) Detailed view of 
the QTL, pQTL, coQTL detected in the region covered by the hotspot Hs52d on 
chromosome 5. Dots represent the SNPs determining the position of the QTLs and 
horizontal bars represent the linkage disequilibrium-based window around each SNP. Black 
circled dots indicate the pQTLs that co-localize with QTLs or coQTLs with high correlations 
between the protein abundance and the phenotypic trait value or the module eigengene. 
Vertical dashed lines indicate the position of SNPs S5_88793314 (on the left) and 
AX-91658235 (on the right). The position of two transcription factors (a SBP gene, 
GRMZM2G111136, and a C2C2-CO-like transcription factor, GRMZM2G148772) 
representing promising candidate genes are indicated.  
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Unraveling the molecular mechanisms associated to genetic factors underlying the variations 

of traits related to drought tolerance

Assuming that the genetic determinants controlling the variations of both phenotypic traits 

and protein abundances (or module eigengenes) were genes, we retrieved the genes underlying the 

QTL/pQTL (or QTL/coQTL) co-localizations. We thus obtained a list containing one to 45 

candidate genes for each of the 64 pairs of SNPs corresponding to QTL/pQTL or QTL/coQTL co-

localizations (Sup. Table 10). Based on gene annotation and literature, we identified in most cases 

interesting candidate genes involved in hormone metabolism, regulation of transcription, signaling, 

stress or drought response. Three cases especially caught our attention. 

First, on chromosome 7, the SNP S7_162671160, mentioned above for its pleiotropy, was 

located in the ZmGH3.8 gene (GRMZM2G053338 encoding an auxin-response factor). In 

agreement with the role of ZmGH3.8 in drought response (Feng et al. 2015), S7_162671160 was 

associated to the WD-specific module and to five stress proteins (endochitinase 

GRMZM2G051943, beta-D-glucanase GRMZM2G073079, peroxidase GRMZM2G085967, 

polyphenol oxydase GRMZM5G851266 and phospholipase D GRMZM2G061969). These results 

indicates that ZmGH3.8 may be the regulator underlying the QTLs, pQTLs and coQTLs located at 

SNP S7_162671160.

Second, on chromosome 5, we identified a QTL for Trate which co-localized with a pQTL 

associated to the ZmRab17 dehydrin in the WD condition. Among the six genes underlying both the

QTL and the pQTL is the transcription factor ZmWRKY48 (GRMZM2G120320), which has been 

shown to be induced by water deficit (Song et al. 2017). This gene is orthologous to AtWRKY40, 

which can bind to a W-box sequence in the promoter of the AtRab18 gene and repress its expression

(Shang et al. 2010). ZmRab17 is orthologous to AtRab18 and also contains a W-box sequence in a 

region upstream of the 3'UTR. Altogether, these results indicate that ZmWRKY48 probably controls 

the abundance of ZmRab17.
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Third, in the region of chromosome 5 covered by hotspot Hs52d (Figure 5), there were 14 

candidate genes, of which two can potentially control a high number of genes. One is a squamosa 

promoter-binding (SBP) gene (GRMZM2G111136) shown to be induced by various abiotic stresses 

including drought (Mao et al. 2016). The other, a C2C2-CO-like transcription factor 

(GRMZM2G148772), was shown to be significantly induced by drought and salinity stress in B73 

leaves (Forestan et al. 2016). Hotspot Hs52d covered a region of ca 4 Mb in which we detected 26 

pQTLs, many of which were located between the SBP gene and the C2C2-CO-like transcription 

factor (Figure 6B). In this region, there were also coQTLs for two modules and QTLs for WU, Bl, 

Trate and LAl. Interestingly, a single SNP, AX-91658235 located only one kbp from the C2C2-CO-

like transcription factor, determined the position of two QTLs, two pQTLs and one coQTL. 

Furthermore, SNP S5_88793314, that fell into the coding sequence of the SBP gene, determined the

position of a QTL for Trate and of a pQTL. Based on these results, we can hypothesize that hotspot 

Hs52d may in fact correspond to two trans-acting regulators for which the SBP gene and the C2C2-

CO-like transcription factor represent good candidates. 
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DISCUSSION

In order to better understand the molecular mechanisms associated with the genetic 

polymorphisms underlying the variations of traits related to drought tolerance, we analyzed the 

proteomes of 254 dent maize genotypes grown in two watering conditions. By combining two 

complementary MS-based quantification methods (XIC and PC-based), we reliably quantified 

nearly 2,000 proteins in an unprecedented number of samples (>1,000). To our knowledge, this is 

the best compromise ever obtained in MS-based proteomics between the number of samples 

analyzed and the number of proteins quantified. Compared to the PC-based set, the proteins of the 

XIC-based set exhibited higher heritabilities and more genetic variations of their abundances. These

discrepancies probably partly arose from the difference of precision in protein quantification. 

Based on high-density genotyping data, we subsequently performed GWAS for ca. 4,000 

molecular phenotypes, thus mapping 29,004 pQTLs at high-resolution. To achieve this result, we 

had to summarize associated SNPs into pQTLs. This issue emerged only recently with the advent of

high marker densities and no gold standard method is currently available. Here, we developed a 

geometric method based on the P-value signal of SNPs which allowed to take into account that the 

number of significantly associated SNPs increased with the association strength. To our knowledge, 

this relationship has never been reported before. We did not go further on this issue which was 

outside the scope of this study. Nonetheless, our work opens the way towards new methodological 

developments accounting for the strength of SNP associations for the detection of pQTLs. 

Local pQTLs explained a higher proportion of the variance of protein abundance than 

distant pQTL. They also revealed that the genetic architecture of protein abundances is related to 

protein function. Notably, proteins involved in translation and in energy synthesis exhibited few 

associated pQTLs with a lack of local pQTLs. These two functional categories were also 

particularly well represented in consensus modules, in agreement with previous results showing that
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genes in consensus modules had few associated eQTLs (Munkvold et al. 2013). As translation and 

energy metabolism mainly contain ancient and evolutionarily conserved proteins (Goldman et al. 

2010; Nelson and Junge 2015), our results suggest that the expression of evolutionarily ancient 

proteins is more constrained with fewer associated pQTLs (Mähler et al. 2017; Popadin et al. 2014; 

Zhang and Yang 2015). They also support the recent hypothesis of Mähler et al. (2017) that, for 

genes experiencing reduced rates of molecular evolution, purifying selection on individual SNPs is 

associated to stabilizing selection on gene expression. 

pQTLs were distributed throughout the genome but some of them clustered into hotspots, 

suggesting the presence of regulatory loci with large pleiotropic effects on the proteome. The 

detection of such hotspots is highly dependent on the mapping resolution and on the method used to

cluster eQTLs or pQTLs, which may explain the contrasted results reported in the literature. Indeed,

while several studies report hotspots associated to hundreds of transcripts (Munkvold et al. 2013; 

Christie et al. 2017; Orozco et al. 2012), others detected hotspots associated to only a few tens of 

transcripts or proteins (Foss et al. 2011; Ghazalpour et al. 2011; Albert et al. 2014) or even no 

hotspot at all (Mähler et al. 2017). In our study, false hotspot detection was limited by the high 

mapping resolution and by the use of a pQTL clustering method taking into account the variations 

of LD across the genome (Negro et al., in print). Despite this, we cross-validated only five hotspots 

in WW and four in WD based on protein co-expression and co-localization with coQTLs. The 

positions of these hotspots were not shared across conditions. These results indicate that 

polymorphic loci responsible for the variations in abundance of tens or hundreds of proteins are 

scarce and can interact with the environment. 

By analyzing a diversity panel of 254 genotypes, we showed that many small abundance 

changes, detected as significant because they occurred in a high number of genotypes, contributed 

to extensively remodel the proteome under water deficit. In total, approximately 75% of the 

quantified proteins responded significantly to the environmental change. Up- and down regulated 

16

344

346

348

350

352

354

356

358

360

362

364

366

368

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 22, 2019. ; https://doi.org/10.1101/636514doi: bioRxiv preprint 

https://doi.org/10.1101/636514
http://creativecommons.org/licenses/by-nc-nd/4.0/


proteins were well differentiated in terms of function and indicate that the photosynthetic, 

transcriptional and translational machineries were slowed down while stress response and 

signalization mechanisms were activated. All these changes show that plants clearly perceived a 

lack of water and presented a coordinated proteome response to the environmental change. 

Interestingly, the abundance changes occurring in response to water deficit were not 

associated with major changes in the structure of the co-expression network since most co-

expression modules were more or less preserved in both conditions. Nonetheless, we identified a 

WD-specific module that was significantly enriched for drought-responsive proteins. Similarly, 

Munkvold et al. (2013) observed condition-specific modules related to biological processes 

responsive to particular environmental conditions. Such modules suggest that, under environmental 

perturbation, sets of genes or proteins are collectively mobilized by condition-specific factors 

allowing the plant to adapt. In agreement with this hypothesis, the WD-specific module was 

associated to several QTL/coQTL colocalizations, with high correlations between its eigengene and 

the phenotypic traits values. In the case of transpiration rate, this correlation was even better than 

with any of the proteins in the module. This indicates that drought-responsive proteins are major 

contributors to the phenotypes, an observation reinforced by the fact that many QTL/pQTL co-

localizations involved such proteins. Remarkably, one coQTL for the WD-specific module was 

located in a region of chromosome 5 that also cumulated several QTLs, pQTLs and the hotspot 

Hs52d. This indicates that the co-expression observed for drought-responsive proteins may be 

driven by condition-specific factors, the pleiotropic effects of which resonate across all layers of 

biological complexity up to end-point phenotypes. 

Linking phenotypic to proteome variations revealed many QTL/pQTL co-localizations for 

which, thanks to the high mapping resolution, we identified a restrained number of candidate genes.

Among these, it is noteworthy to mention ZmWRKY48 underlying a QTL for transpiration rate and 

a pQTL for the ZmRab17 protein that is specifically expressed under water deficit. ZmWRKY48 is a
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transcription factor known to be induced by water deficit in maize (Song et al. 2017) and its role in 

the abundance variations of ZmRab17 is strongly supported by the literature data available on 

AtWRKY40 and AtRAB18 in Arabidopsis (Shang et al. 2010). 

Surprisingly, only two of the 69 QTLs detected in the WW condition were involved in pQTL

co-localizations, while in the WD condition, 40 of the 91 QTLs co-localized with at least one 

pQTL. To explain this discrepancy, we assume that under non-stress condition, phenotypic 

variations were driven by many low contribution proteins probably controlled by low effect pQTLs 

while under water stress, phenotypic variations were mainly driven by drought-responsive proteins 

under the genetic control of condition-specific regulators. In agreement with this hypothesis, we 

robustly identified two genomic regions that may correspond to such regulators. The first is located 

on chromosome 7, where we identified the auxin response factor (ARF) ZmGH3.8 as the unique 

candidate gene underlying QTLs for leaf area and water use, pQTLs for seven proteins of which 

five were involved in stress responses and coQTLs for three co-expression modules including the 

WD-specific module. ARFs play key roles in plant growth and development through the regulation 

of expression of auxin response genes which can include transcription factors (Li et al. 2016). They 

are also thought to contribute to drought tolerance (Feng et al. 2015; Zhang et al. 2017). In maize 

shoots, Feng et al. (2015) indeed showed that the expression of ZmGH3.8 was induced by auxin and

reduced under polyethylene glycol treatment. More recently, Zhang et al. (2017) identified 13 ARFs

as differentially expressed between a drought tolerant and a drought sensitive maize line under 

different drought scenarios. The second region is located on chromosome 5 where we identified two

transcription factors, a SBP gene (GRMZM2G111136) and a C2C2-CO-like gene 

(GRMZM2G148772), as candidate genes underlying QTLs for key plant growth and transpiration 

traits, pQTLs for seven proteins and coQTLs for three modules. This region also contained the 

pQTL hotspot Hs52d. Both GRMZM2G111136 and GRMZM2G148772 were previously shown to 

be induced by drought in maize (Mao et al. 2016; Forestan et al. 2016). In addition, SBP genes 
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constitute a functionally diverse family of transcription factors involved in plant growth and 

development (Preston and Hileman 2013). Due to their potential implication in the GxE interactions

as pleiotropic, condition-specific regulator and because of their roles in both plant growth and 

development and in drought response, ZmGH3.8, the SBP gene and the C2C2-CO-like transcription

factor represent particularly promising candidates for drought tolerance breeding.

To conclude, by using a systems genetics approach including MS-based proteomics data, we

highlighted several original results. We showed that water deficit, even mild, strongly remodeled 

the proteome and induced a reprogramming of the genetic control of the abundance of many 

proteins and notably those involved in drought responses. Furthermore, we point out that the genetic

architecture of protein abundances is related to protein function and also probably to the 

evolutionary constraints on protein expression. Finally, we found QTL/pQTL co-localizations 

mostly in the WD condition and we identified exciting candidate genes in the vicinity of WD-

specific polymorphisms responsible for both the co-expression of drought-responsive proteins and 

the variations of drought-related traits. This suggests that the reprogramming of the genetic control 

observed at the proteome level may also affect end-point phenotypes. Taken together, our results 

demonstrate that proteomics has now reached enough maturity to be fully exploited in systems 

studies necessitating large-scale experiments. Our findings also provide novel insights into the 

molecular mechanisms of drought tolerance and highlight some pathways for further research and 

breeding. 
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METHODS

Plant material and experiment

A diversity panel of maize hybrids obtained by crossing a common flint parent (UH007) 

with 254 dent lines was used (Millet et al. 2016). The flint line was used as the paternal parent. The 

experiment was carried out as in Prado et al. (2018). Plant growth conditions (type of soil used, 

temperature, light, irrigation) are described in full details in the aforementioned publication. Briefly,

plants were sown on May 14, 2012 and grown in pots in the phenotyping platform PhenoArch 

(Cabrera-Bosquet et al. 2016) (https://www6.montpellier.inra.fr/lepse_eng/M3P/PHENOARCH-

platform) hosted at the Montpellier Plant Phenotyping Platforms 

(https://www6.montpellier.inra.fr/lepse_eng/M3P). Two levels of soil water content were applied: 

well-watered (WW, soil water potential of -0.05 MPa) and water deficit (WD, soil water potential of

-0.45 MPa). Hybrids were replicated three times in each of the watering condition. 

Sampling was performed at the pre-flowering stage (between June 19 and June 22, 2012) in 

two replicates per hybrid and water condition. For each sampled plant, 35 to 45 mg of fresh material

was taken in a 2 mL tube containing two iron metal beads (5 mm diameter) by punching ten patches

(5 mm diameter) in the mature area of the last ligulated leaf. The tubes were frozen in liquid 

nitrogen immediately after sampling and stored at -80°C until protein extraction. 

Protein extraction and digestion

Leaf patches were turn into powder by shaking frozen sample tubes twice at 20 Hz for 20 

seconds using TissueLyzer II (Quiagen, Courtaboeuf, France). Beads were removed using a magnet.

Proteins were precipitated by incubating the leaf powder in 1.2 ml of an ice-cold solution of acetone

containing 10% of trichloroactetic acid and 0.07% β-mercaptoethanol for 1h20 at -20°C. After 

centrifugation (10 min, 0°C, 14 000 rpm), the supernatants were removed and the protein extracts 
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were washed by incubation in 1.2 ml of 0.07% β-mercaptoethanol in acetone (1h, -20°C). This step 

was repeated twice. After the last washing, proteins were dried in a vacuum centrifuge and stored at 

-80°C until solubilization.

Dried protein pellets were solubilized in 100 µl of a solution containing 6 M of urea, 2 M of 

thiurea, 10 mM of dithiothreitol (DTT), 30 mM of TrisHCl pH 8.8 and 0.1% of Zwitterionic Acid 

Labile Surfactant I (ZALS I, Protea Bioscience, Morgantown, USA). Protein powders were mixed 

in the buffer using a metal spatula before vortexing the tubes for 3 min. Remaining cellular debris 

were segregated from soluble proteins by centrifugation (12,500 rpm, 25 min, room temperature). 

Protein concentrations were determined using the PlusOne 2-D Quant kit (GE Healthcare, Little 

Chalfont, UK) and adjusted to 4 µg.µl–1 prior to digestion.

Digestion was performed in 0.2 ml strip tubes from 10 µl of diluted proteins. Proteins were 

incubated one hour at room temperature for reduction by the 10 mM DTT present in the buffer. 

Thereafter, proteins were alkylated one hour in 40 mM iodoacetamide (room temperature in the 

dark) and diluted with 50 mM ammonium bicarbonate to decrease total urea and thiourea 

concentration to 0.77 M. Overnight digestion was performed at 37°C with 1/50 (w/w) trypsin 

(Promega, Charbonnières-les-Bains, France) and stopped by acidification (1% total volume of 

trifluoroacetic acid, TFA). The resulting peptides were desalted on solid phase extraction using 

polymeric C18 columns (strata XL 100 µm, ref 8E-S043-TGB; Phenomenex, Le Pecq, France) as 

follows. Peptides were first diluted in 3% ACN and 0.06% acetic acid in water (washing buffer) up 

to a final volume of 500 µl. Then, they were loaded onto cartridges previously conditioned with 500

µl of ACN and rinsed three times with 500 µl of washing buffer. Peptides were rinsed three times 

with 500 µl of washing buffer and eluted twice by adding 300 µl of 40% ACN and 0.06% acetic 

acid. To finish, eluted peptides were speed-vac dried and suspended in a solution containing 2% 

ACN, 0.05% TFA and 0.05 % formic acid.
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LC-MS/MS analyses

Samples were analyzed by LC-MS/MS by batches of 96. Analyses were performed using a 

NanoLC-Ultra System (nano2DUltra, Eksigent, Les Ulis, France) connected to a Q-Exactive mass 

spectrometer (Thermo Electron, Waltham, MA, USA). A 400 ng of protein digest were loaded onto 

a Biosphere C18 pre-column (0.3 × 5 mm, 100 Å, 5 μm; Nanoseparation, Nieuwkoop, Netherlands) 

at 7.5 μl.min–1 and desalted with 0.1% formic acid and 2% ACN. After 3 min, the precolumn was 

connected to a Biosphere C18 nanocolumn (0.075 × 150 mm, 100 Å, 3 μm, Nanoseparation). 

Buffers were 0.1% formic acid in water (A) and 0.1% formic acid and 100% ACN (B). Peptides 

were separated using a linear gradient from 5 to 35% buffer B for 40 min at 300 nl.min–1. One run 

took 60 min, including the regeneration step at 95% buffer B and the equilibration step at 95% 

buffer A. 

Ionization was performed with a 1.4-kV spray voltage applied to an uncoated capillary 

probe (10 μm tip inner diameter; New Objective, Woburn, MA, USA). Peptide ions were analyzed 

using Xcalibur 2.2 (Thermo Electron) with the following data-dependent acquisition steps: (1) MS 

scan (mass-to-charge ratio (m/z) 400 to 1400, 70,000 resolution, profile mode), (2) MS/MS (17,500 

resolution, collision energy = 27%, profile mode). Step 2 was repeated for the eight major ions 

detected in step 1 with a charge of 2 or 3. Dynamic exclusion was set to 40 s. Xcalibur raw datafiles

were transformed to mzXML open source format using msconvert software in the ProteoWizard 

3.0.3706 package (Kessner et al. 2008). During conversion, MS and MS/MS data were centroided.

Peptide and protein identification

Peptide identifications were performed using the MaizeSequence genome database (Release 

5a, 136,770 entries, https://ftp.maizegdb.org/MaizeGDB/FTP/) supplemented with 1821 FV2 
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sequences showing presence/absence variations (Darracq et al. 2018) and with a custom database 

containing standard contaminants. Database searches were performed using X!Tandem (Craig and 

Beavis 2004) (version 2015.04.01.1) with the following main parameters. Enzymatic cleavage was 

declared as a trypsin digestion with one possible misscleavage. Cystein carboxyamidomethylation 

and methionine oxidation were set to static and possible modifications, respectively. Precursor mass

error was set to 10 ppm and fragment mass tolerance was set to 0.02 Da. In refine mode, a second 

search was performed with the same settings, except that protein N-ter acetylation was added as a 

potential modification and that the point mutations option was activated to detect possible single 

amino acid changes in the peptide sequences. Only peptides with an E-value smaller than 0.01 were 

reported. 

Identified proteins were filtered and grouped using a homemade C++ version of X!

TandemPipeline (Langella et al. 2017) especially designed to handle hundreds of MS run files. Only

the proteins identified with a minimum of two peptides were considered as valid. Protein inference 

was performed using all samples together. The false discovery rate (FDR) was assessed from 

searches against a decoy database (using the reversed amino acid sequence for each protein) and 

was estimated at 0.03% for peptides.

Functional annotation of proteins was based on MapMan mapping (Thimm et al. 2004; 

Usadel et al. 2009) (Zm_B73_5b_FGS_cds_2012 available at https://mapman.gabipd.org/) and on a

custom KEGG classification build by manually attributing the MapMan bins to KEGG pathways 

(Dillmann, pers. com.).

Protein quantification

Protein quantification was performed from the peptide data obtained after ion 

chromatograms extraction and retention time (RT) alignment using MassChroQ software version 

2.1.0 (Valot et al. 2011) with the following parameters: "ms2_1" alignment method, 
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tendency_halfwindow of 10, MS1 smoothing halfwindow of 0, MS2 smoothing halfwindow of 15, 

"quant1" quantification method, XIC extraction based on max, min and max ppm range of 10, anti-

spike half of 5, background half median of 5, background half min max of 20, detection thresholds 

on min and max at 30 000 and 50 000, respectively, peak post-matching mode, "ni min abundance" 

of 0.1. Peptide data were filtered to remove the genotypes represented by only one or two samples 

instead of the expected four as well as outliers samples for which we suspected technical problems 

during sample preparation or MS analysis. At the end, the MS dataset included 977 samples. 

Proteins were then quantified using two methods. 

XIC-based quantification. Proteins were quantified based on peptide intensity data 

processed as follows. We first removed the peptides ions showing standard deviations of retention 

time >15 s, which may arise from mis-identifications. Intensity normalization was subsequently 

performed to take into account possible global quantitative variations between LC-MS/MS runs. 

For this, we used a local normalization method described in Millan-Oropeza et al. (2017). We then 

removed the peptides shared between several proteins as well as the peptides for which both the 

unmodified form and a mass modification corresponding to an amino acid change was detected by 

the point mutation option of X!Tandem. These mutated peptide forms represent allelic versions of 

the sequences present in the searched protein database. In heterozygous genotypes, each allelic 

version produces its own MS signal, so that their measured intensities are not representative of the 

total protein abundance. We also removed the peptide ions presenting more than 10% missing 

values and those showing inconsistent intensity profiles. To this end, we computed Pearson 

correlations between log-intensities averaged across replicates for each pair of peptide ions 

belonging to the same protein. The peptide ion with the highest number of significant correlations 

(P-value < 0.01 after adjustment for multiple testing (Benjamini and Hochberg 1995)) was chosen 

as a reference for the protein. The peptide ions showing non-significant correlation to the reference 

(adjusted P-value >= 0.01) or whose coefficients of correlation to the reference were inferior to 0.3 
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were removed. To finish, we excluded the proteins quantified by only one peptide. As samples were

grouped by batches of 96 analyzed by LC-MS/MS over a period of several months, we observed a 

strong batch effect on peptide normalized intensities. To correct this batch effect, we fitted a linear 

model to log-transformed intensity data, including only batches, and we subtracted the component 

due to the batch effects. Then, for each protein, we modeled the peptide data using the following 

mixed-effects model derived from Blein-Nicolas et al. (2012):

I 'ijkl=µ+G j+ Ek+(GxE ) jk+Rl (k )+P i+θ jkl+εijkl (1)

where I'ijkl is the corrected, normalized log-intensity measured for peptide i in genotype j, watering

condition k and replicate l;

µ is the mean intensity for a given protein;

Gj is the effect of the genotype j;

Ek is the effect of the watering condition k;

(GxE)jk  is the effect of the genotype j x watering condition k interaction;

Rl(k) is the effect of the replicate l nested in the watering condition k;

Pi is the effect of the peptide i;

Ɵjkl  ~ N (0, Ɵ) is the random technical variation due to handling and injection in the mass

spectrometer of the sample jkl;

�ijkl ~ N (0, 
) is the residual error. 

Model parameters were estimated by maximizing the restricted log-likelihood (REML method) and

the differential protein abundance analysis was performed by analysis of variance (ANOVA). The

resulting  P-values  were  adjusted  for  multiple  testing  by  the  Benjamini-Hochberg  procedure

(Benjamini and Hochberg 1995). 

To subsequently perform GWAS at  the protein level,  we estimated protein abundances in  each

watering condition using the following model: 

I 'ijkl=µk+G jk+Rlk+Pik+θ jkl+εijkl (2)

25

564

566

568

570

572

574

576

578

580

582

584

586

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 22, 2019. ; https://doi.org/10.1101/636514doi: bioRxiv preprint 

https://doi.org/10.1101/636514
http://creativecommons.org/licenses/by-nc-nd/4.0/


where µk is the mean intensity obtained for a given protein in the watering condition k;

Gjk is the effect of the genotype j in the watering condition k;

Rlk is the effect of the replicate l in the watering condition k;

Pik is the effect of the peptide i in the watering condition k.

Protein abundances were computed as adjusted means as follows: 

A jk=µk+G jk (3)

Peak counting (PC)-based quantification. Proteins that could not be quantified based on 

XIC because their peptides showed to many missing intensity values were quantified based on their 

number of associated chromatographic peaks (i.e. quantified peptide ions). The shared peptides, the 

peptide ions showing variable RT and the peptides for which a mass modification corresponding to 

an amino acid change was detected were removed before computing protein abundances as peak 

numbers. The proteins for which the peak counts < 2 in any of the samples were deleted. 

Normalization was then performed as follows:

Anorm ps=
Aps

∑
n=1

P

Ans

x
∑
m=1

S

∑
n=1

P

Anm

S
(4)

where Aps is the abundance of protein p in sample s;

P is the number of quantified proteins;

S is the number of samples.

As mentioned above, we corrected the batch effect by fitting a linear model to square-root 

transformed, normalized protein abundances, including only batches, and subtracting the 

component due to the batch effects. We then used the following model to detect protein abundance 

changes: 

A ' jkl=µ+G j+Ek+ (GxE ) jk+αl+ϵ jkl (5)
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where A'jkl is the corrected, normalized, square-root transformed abundance obtained for a given

protein in genotype j, watering condition k and replicate l;

µ is the mean abundance for the protein;

Gj is the effect of the genotype j;

Ek is the effect of the watering condition k;

(GxE)jk  is the effect of the genotype j x watering condition k interaction;

l ~ N (0, 
) is the random effect of the replicate l;

�ijkl ~ N (0, 
) is the residual error. 

Estimation of the model parameters, differential analysis and P-value adjustment were performed as

described  above.  Finally,  for  GWAS,  we  estimated  the  protein  abundances  separately  in  each

watering condition with a mixed model derived from (5) and including only a fixed effect of the

genotype and a  random effect  of  the  replicate.  Protein  abundances  were computed as  adjusted

means as in (3). 

Genome wide association study

GWAS was performed on protein abundances estimated in each watering condition using the

single locus mixed model described in Yu et al. (2006). The variance-covariance matrix was 

determined as described in Rincent et al. (2014) by a kinship matrix derived from all SNPs except 

those on the chromosome containing the SNP being tested. The SNP effects were estimated by 

generalized least squares and their significance was tested with an F-statistic. A SNP was considered

as significantly associated when -log10(P-value) > 5. A set of 961,971 SNPs obtained from lines 

genotyping using a 50 K Infinium HD Illumina array (Ganal et al. 2011), a 600 K Axiom 

Affymetrix array (Unterseer et al. 2014) and a set of 500 K SNPs obtained by genotyping by 

sequencing (Negro et al., in print) was tested. Analyses were performed with FaST-LMM (Lippert 

et al. 2011) v2.07. Only SNPs with minor allele frequencies > 5% were considered.
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Inflation factors were computed as the slopes of the linear regressions on the QQplots 

between observed -log(P-value) and expected -log(P-value). Inflation factors were close to 1 

(median of 1.08 and 1.05 in the XIC-based and PC-based sets, respectively), indicating low 

inflation of P-values. 

Detection of QTLs from significantly associated SNPs

Three different methods implemented in R (R core team 2013) version 3.3.3 were used to 

summarize the significantly associated SNPs into pQTLs. The genetic method: two contiguous 

SNPs were considered as belonging to a same QTL when the genetic distance separating them was 

inferior to 0.1 cM. The LD-based method: two contiguous SNPs were considered as belonging to a 

same QTL when their LD-based windows (Negro et al., in print) overlapped. The geometric 

method: for each chromosome, we ordered the SNPs according to their physical position. Then, we 

smoothed the -log10(P-value) signal by computing the maximum of the -log10(P-values) in a 

sliding window containing N consecutive SNPs. An association peak was detected when the 

smoothed -log10(P-value) signal exceeded a max threshold M. Two consecutive peaks were 

considered as two different QTLs when the P-value signal separating them went below a min 

threshold m. The parameters for QTL detection were fixed empirically at N=500, M=5 and m=4. 

For the three methods described above, the position of a QTL was determined by the SNP 

exhibiting the highest -log10(P-value). A pQTL was considered as local when located within 1 Mb 

upstream or downstream the coding sequence of the gene encoding the corresponding protein. 

Complementary data analyses

The following complementary data analyses were performed with R (R core team 2013) 

version 3.3.3.

Broad sense heritability of protein abundance. 
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For each protein, the broad sense heritability of abundance was computed in each of the two 

watering conditions as follows. For the proteins quantified by the XIC-based approach, abundances 

were estimated in each sample as adjusted means from (1), by excluding the peptide effect Pik and 

the random sample effect Ɵjkl. For the proteins quantified by the PC-based approach, the corrected, 

normalized, square-root transformed abundances were used. Protein abundances were then modeled

as follows: 

A jkl=µk+β jk+γkl+ϵ jkl (6)

where Aijk is the abundance estimated for a given protein in the genotype j, the replicate i and the 

watering condition k

jk ~ N (0, 
) is the random effect of the genotype j in the watering condition k

kl  ~ N (0, 
) is the random effect of the replicate l in the watering condition k.

Heritability was subsequently computed as 

H2=
σβ

2

(σβ
2+σγ

2 / N)
(7)

where N is the number of replicates.

Protein co-expression analysis

Protein co-expression analysis was performed using the WGCNA R package (Langfelder and 

Horvath 2008). Using a procedure developed to correct the LD by the structure and/or the 

relatedness and implemented in the LDcorSV R package (Mangin et al. 2012), we computed pair-

wise Pearson's correlations corrected by structure and kinship (|rcorrected|) and used them as input 

similarity matrix. The sotfpower parameter was set at 2. Adjacency and topological ovelap matrices 

were both unsigned. Protein modules were constituted with a minimum module size set at 20 and a 

control over sensitivity splitting set at 4. The minimum height for merging modules was set at 0.25. 

The other parameters were left at default values. Graphical representations of the resulting networks
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were performed with Cytoscape (Shannon et al. 2003) v3.5.1 using an unweighted spring embedded

layout. Module eigengenes were computed as described in the WGCNA R package.

QTL co-localization

Co-localizations between QTLs were detected when they fulfilled two criteria. First, the LD-based 

windows around the QTLs (Negro et al., in print) should overlap. Second, the absolute value of the 

Pearson's correlation of coefficient corrected by structure and kinship (the |rcorrected| mentioned above)

between the values of the phenotypes controlled by the QTLs should be superior to 0.3. We 

determined this value empirically, in absence of a statistical test to test the significance of the 

corrected correlation.

Candidate genes identification

For each QTL/pQTL co-localization, gene accession present in the interval defined by the 

intersection between the LD-based windows around the QTL and the pQTL were retrieved from the

MaizeSequence genome database (Release 5a). Low confidence gene models and transposable 

elements were not considered.  
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DATA ACCESS

The raw MS output files were deposited online using PROTICdb (Langella et al. 2007; 

Ferry‐Dumazet et al. 2005; Langella et al. 2013) at the following URL: 

http://moulon.inra.fr/protic/amaizing. They are currently available with the following username: 

reviewer and password: reviewer. They will be made freely available after publication. Detailed 

information on the peptides and proteins identified in all LC-MS/MS runs as well as peptide 

intensities and protein abundances obtained for each sample are also freely available on PROTICdb 

at the same URL. 

Phenotypic data are available online using the PHIS information system (Neveu et al. 2019) 

at the following URL: http://www.phis.inra.fr/openphis/web/index.php?r=project

%2Fview&id=Systems+genetics+for+maize+drought+tolerance+%28Amaizing+project%29. Leaf 

area early was defined at the seven leaves stage, representing 24 d20°C (thermal time in equivalent 

days at 20°C). Leaf area late was defined at the 12 leaves stage, representing 45 d20°C.

Genotyping data are available at the following URL: https://data.inra.fr/privateurl.xhtml?

token=a0dbedde-249e-4808-9f51-51e2004678f7.
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FIGURE LEGENDS

Figure 1. Effect of a mild water deficit on the proteome. (A) Heatmap representations of the 

abundances estimated for the XIC-based protein set (left) and the PC-based protein set (right). Each 

line corresponds to a protein and each column to a genotype x watering condition combination. For 

each protein, abundance values were scaled and represented by a color code as indicated by the 

color-key bar. Hierarchical clusterings of the genotype x watering condition combinations (top) and 

of the proteins (left) were built by using 1-the Pearson correlation coefficient as distance and the 

unweighted pair group method with arithmetic mean (UPGMA) as aggregation method. (B) 

Functions of the 200 most induced and 200 most repressed proteins under water deficit. (C) 

Abundance profiles of the RAB17 dehydrin (GRMZM2G079440 quantified based on the number of

chromatographic peaks) and of a LEA protein (GRMZM2G352415 quantified based on peptide 

intensities) in the two watering conditions. Genotypes on the x axis were ordered according to the 

WD/WW abundance ratio.

Figure 2. Relationship between the mean number of pQTLs per KEGG category and the 

mean heritability per KEGG category.

Figure 3. Distribution of pQTLs along the genome. (A) In the well-watered condition. (B) In the 

water-deficit condition. Each point indicates the number of proteins controlled by a pQTL located in

a given genomic region defined by the linkage desequilibrium interval around a SNP. Dashed 

horizontal lines indicate the arbitrary threshold used to detect pQTL hotspots. Names and positions 

of the pQTL hotspots are indicated above each graph. Names in bold indicate the pQTL hotspots 

confidently detected as potential pleiotropic loci (see Sup. Table 3 for details). 
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Figure 4. Graphical representation of the co-expression networks resulting from the WGCNA 

analyses. Only proteins showing adjacencies > 0.02 are shown. The consensus network contains the

proteins that were co-expressed in the two watering conditions. The three views were created by 

Cytoscape v3.5.1 using an unweighted, spring-embedded layout. The colors displayed on each 

network represent the different modules identified by WGCNA. Functional enrichments of modules

are indicated in grey boxes. Condition-specific modules are surrounded by dashed circles.

Figure 5. Genomic positions of the co-localizing pQTLs, coQTLs and QTLs. The positions of 

the nine pQTL hotspots robustly identified as potential loci with pleiotropic effects are indicated as 

well as the position of the most promising candidate genes. Chromosomes are segmented in 1 Mb 

bins. Grey dots represent the centromeres and blue dots indicate the position of genomic regions 

showing evidences for pleiotropy both at the proteome and phenotype level. Blue lines indicate 

pQTLs, coQTLs and QTLs that are determined by a same SNP. 

* consensus module, ° WD-specific module 

Figure 6. Identification of genomic regions involved in multi-scale genetic control. 

(A) Distribution of the distances between co-localizing QTLs and pQTLs. (B) Detailed view of the 

QTL, pQTL, coQTL detected in the region covered by the hotspot Hs52d on chromosome 5. Dots 

represent the SNPs determining the position of the QTLs and horizontal bars represent the linkage 

disequilibrium-based window around each SNP. Black circled dots indicate the pQTLs that co-

localize with QTLs or coQTLs with high correlations between the protein abundance and the 

phenotypic trait value or the module eigengene. Vertical dashed lines indicate the position of SNPs 

S5_88793314 (on the left) and AX-91658235 (on the right). The position of two transcription 

factors (a SBP gene, GRMZM2G111136, and a C2C2-CO-like transcription factor, 

GRMZM2G148772) representing promising candidate genes are indicated.

39

764

766

768

770

772

774

776

778

780

782

784

786

788

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 22, 2019. ; https://doi.org/10.1101/636514doi: bioRxiv preprint 

https://doi.org/10.1101/636514
http://creativecommons.org/licenses/by-nc-nd/4.0/


TABLES

Table 1. Proteins associated to pQTLs co-localizing with QTLs.

a Functions in bold are related to drought- or stress-response.
b Protein ID corresponding to different isofoms or accessions
c QTL/pQTL co-localization observed in the WW condition. 

40

Protein ID Gene accession Phenotypic trait

a3.a1 GRMZM2G306345 pyruvate orthophosphate dikinase1 Bl
c111.a2 GRMZM2G085054 Glycosyltransferase benzoxazinone synthesis 8 1 WU
c135.a1 GRMZM2G085577 Alpha-1,4 glucan phosphorylase 1 LAl
c177.a1 GRMZM2G027875 Aminopeptidase M1 1 LAl

GRMZM2G130230 Glucose-6-phosphate dehydrogenase 1 LAl
c263.a1 GRMZM2G162486 Glutathione S-transferase 1 LAl
c264.a1 GRMZM2G061969 Phospholipase D 1 LAl
c291.a1 GRMZM2G064799 Succinate dehydrogenase 1 1 LAl
c317.a1 GRMZM2G134256 Transaldolase 2 1 LAl

GRMZM2G075624
Translationally controlled tumor protein 1 gs

GRMZM2G108474
c513.a2 GRMZM2G134668 Calnexin 1 WU
c517.a1 AC198418.3 RNA helicase4 1 LAl
c547.a1 GRMZM2G033641 Patellin-1 (SEC14-like protein) 1 LAl

GRMZM2G048085 Senescence-associated protein DIN1 1 Trate
GRMZM2G051677 Fructokinase-2 1 LAl
GRMZM2G352415 Late embryogenesis abundant (LEA) protein 1 LAl
GRMZM2G085967 Peroxidase 1 LAl

c790.a1 GRMZM2G332976 short chain alcohol dehydrogenase1 Bl
c914.a2 GRMZM2G373522 Dehydrin 1 WU

GRMZM2G479423 Aldose reductase 1 LAl
c976.a1 GRMZM2G064360 Basic endochitinase 1 1 LAl

GRMZM2G169207 IMP dehydrogenase 1 LAl
d1261.a1 GRMZM2G026800 Probable plastid lipid-associated protein 10 1 Bl
d1513.a1 GRMZM2G094712 Aspartate aminotransferase 1 Bl
d1624.a1 GRMZM2G022563 oxoacyl-[acyl-carrier-protein] synthase 3 1 LAl
b33.a2 GRMZM2G112165 Heat shock protein 90-2 2 Lal, WU
c178.a1 GRMZM2G055489 Sucrose-phosphatase 1 (ZmSPP1) 2 gs, Trate
c395.a1 GRMZM2G165901 Glycine-rich RNA-binding, ABA-inducible protein 2 Bl, WU
c490.a1 GRMZM2G038494 Obg-like ATPase 1, GTP-binding protein-related 2 LAl
c997.a1 GRMZM2G051943 Endochitinase A 2 Lal, WU
d1066.a1 GRMZM2G704005 Lactoylglutathione lyase / glyoxalase I family protein 2 LAl

GRMZM2G169516 Indole-3-glycerol phosphate synthase 2 LAl
GRMZM2G120304 hydroxyproline-rich glycoprotein family protein 3 Lal, WU

c654.a1 GRMZM2G110567 Protein binding, zinc finger family protein 3 LAl
c778.a1 GRMZM2G017110 Glutamate decarboxylase 3 WU, WUE
d1404.a1 GRMZM2G080724 25.3 kDa heat shock protein 3 Bl, Lal, WU

GRMZM2G073079
alpha/beta-Hydrolases superfamily protein 4 Lal, WU

GRMZM2G076348
GRMZM5G815098 Unknow 4 LAl

b94.a2 GRMZM5G851266 Putative polyphenol oxidase family protein 5 Bl, Lal, WU
c115.a2 GRMZM5G813217 Heat shock protein 90-5 6 Bl, Lal, WU
d1161.a1 GRMZM2G079440 Dehydrin DHN1 (RAB-17 protein) 7 Bl, gs, Trate, WU
c880.a1 GRMZM2G176998 Putative WD40-like beta propeller repeat family protein 8 Bl, Lal, WU

Plaza 4.0 annotationa # of QTL/pQTL 
co-localizations

1c

c236.a1b

c364.a1b

c561.a1b

c587.a1b

c607.a1b

c739.a1b

1c

c959.a2b

d1139.a1b

d1218.a1b

c144.a1b

d1140.a1b

d1512.a1b
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A

Figure 1. Effect of a mild water deficit on the proteome. (A) Heatmap representations of the 
abundances estimated for the XIC-based protein set (left) and the PC-based protein set (right). 
Each line corresponds to a protein and each column to a genotype x watering condition 
combination. For each protein, abundance values were scaled and represented by a color code 
as indicated by the color-key bar. Hierarchical clusterings of the genotype x watering condition 
combinations (top) and of the proteins (left) were built by using the 1-Pearson correlation 
coefficient as distance and the unweighted pair group method with arithmetic mean (UPGMA) 
as aggregation method. (B) Functions of the 200 most induced and 200 most repressed proteins 
under water deficit. (C) Abundance profiles of the RAB17 dehydrin (GRMZM2G079440 
quantified based on the number of chromatographic peaks) and of a LEA protein 
(GRMZM2G352415 quantified based on peptide intensities) in the two watering conditions. 
Genotypes on the x axis were ordered according to the WD/WW abundance ratio. 
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Figure 2. Relationship between the mean number of pQTLs per KEGG category and the 
mean heritability per KEGG category.
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A

B

Figure 3. Distribution of pQTLs along the genome. (A) In the well-watered condition. (B) In 
the water deficit condition. Each point indicates the number of proteins controlled by a pQTL 
located in a given genomic region defined by the linkage disequilibrium interval around a SNP. 
Dashed horizontal lines indicate the arbitrary threshold used to detect pQTL hotspots. Names 
and positions of the pQTL hotspots are indicated above each graph. Names in bold indicate 
pQTL hotspots confidently detected as potential pleiotropic loci (see Sup. Table 3 for details). 
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Figure 4. Graphical representation of the co-expression networks resulting from the WGCNA 
analyses. Only proteins showing adjacencies > 0.02 are shown. The consensus network contains 
the proteins that were co-expressed in the two watering conditions. The three views were created 
by Cytoscape v3.5.1 using an unweighted, spring-embedded layout. The colors displayed on each 
network represent the different modules identified by WGCNA. Functional enrichments of modules 
are indicated in grey boxes. Condition-specific modules are surrounded by dashed circles. 
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Figure 6. Identification of genomic regions involved in multi-scale genetic control. 
(A) Distribution of the distances between co-localizing QTLs and pQTLs. (B) Detailed view of 
the QTL, pQTL, coQTL detected in the region covered by the hotspot Hs52d on 
chromosome 5. Dots represent the SNPs determining the position of the QTLs and 
horizontal bars represent the linkage disequilibrium-based window around each SNP. Black 
circled dots indicate the pQTLs that co-localize with QTLs or coQTLs with high correlations 
between the protein abundance and the phenotypic trait value or the module eigengene. 
Vertical dashed lines indicate the position of SNPs S5_88793314 (on the left) and 
AX-91658235 (on the right). The position of two transcription factors (a SBP gene, 
GRMZM2G111136, and a C2C2-CO-like transcription factor, GRMZM2G148772) 
representing promising candidate genes are indicated.  
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