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Abstract 

Clustering of single or multi-omic data is key to developing personalised medicine and identifying 

new cell types. We present Spectrum, a fast spectral clustering method for single and multi-omic 

expression data. Spectrum is flexible and performs well on single-cell RNA-seq data. The method 

uses a new density-aware kernel that adapts to data scale and density. It uses a tensor product 

graph data integration and diffusion technique to reveal underlying structures and reduce noise. We 

developed a powerful method of eigenvector analysis to determine the number of clusters. 

Benchmarking Spectrum on 21 datasets demonstrated improvements in runtime and performance 

relative to other state-of-the-art methods. 

Contact: christopher.john@qmul.ac.uk 
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Introduction 

Precision medicine is the concept that patients may be stratified into different classes to personalise 

therapy. A growing number of studies stratify patients using their genome wide expression data (e.g. 

mRNA, miRNA, protein, methylation), such as those by The Cancer Genome Atlas (TCGA)1-7 and other 

large consortia8. Clustering algorithms are used to find patient classes and may be run on data from 

single or multiple platforms. Single-omic (not including single cell RNA-seq) cluster analysis is 

performed by algorithms such as: Monte Carlo consensus clustering (M3C)9, CLEST10, PINSPlus11, and 

Similarity Network Fusion (SNF)12. However, clustering multi-omic data into an integrated solution is 

a major current challenge, state-of-the-art methods include: iClusterPlus13, SNF, CIMLR14, and 

PINSplus. The aims of multi-omic clustering are identifying a shared structure between platforms 

and reducing noise from individual platforms. These are two areas where there is scope for 

improvement on existing methods. Also important is improving runtimes and developing methods 

that are effective at both single and multi-omic cluster analysis. 

 

Single-cell RNA-seq is a technique that can be used to detect new cell types by clustering of 

individual cell transcriptomes15. Analysing transcriptomes of individual cells has potential for 

furthering our understanding of biology and clinical applications. To date, single-cell RNA-seq 

clustering tools have been developed for clustering this data type only, however, this clustering 

problem is simply another type of single-omic data clustering. Differences with single-cell RNA-seq 

data include there are more samples and there are often many dense globular clusters. Tools applied 

in this domain include: single cell consensus clustering (SC3)15, Seurat16, MUDAN, and single-cell 

interpretation via multikernel learning (SIMLR)
17

. Maintaining fast runtimes is particularly important 

given the high samples sizes. SIMLR uses a sophisticated procedure to learn the optimal similarity 

matrix. However, it is quite time consuming and it is not clear if SIMLR provides clustering 
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performance advantages relative to other methods. Given the importance of the above-mentioned 

clustering tasks, it is timely to develop an effective solution that can address any of these challenges. 

 

Spectral clustering refers to a large class of algorithms that have grown rapidly in the machine 

learning field due to their ability to handle complex data18-22. They are characterised by clustering 

eigenvectors derived from a matrix representing the data’s graph18. A few of these methods are 

currently applied in genomic data analysis12,17. However, there have been several advancements in 

spectral clustering that provide opportunities for new method development. A key development has 

been the density-aware kernel
22

, which calculates sample density to strengthen connections in high 

density regions of the graph. A recent integrative method uses tensor product graph (TPG) 

integration and diffusion to leverage higher order information beyond that provided by each 

individual data source and reduce noise
19

. Another method retrieves eigenvectors of the data’s 

graph selected according to their multimodality for Gaussian Mixture Modelling (GMM) with the 

Bayesian Information Criterion (BIC) to decide on the number of clusters (K)
20

. The Fast Approximate 

Spectral Clustering (FASP) method
23

 enables rapid analysis of hundreds of thousands of samples on a 

desktop computer. Inspired by this work our aim was to assemble and advance it by developing 

Spectrum. 

 

Spectrum includes both methodological advancements and implements pre-existing techniques. 

Highlights of Spectrum, that make it distinct from previous solutions
12,17

, include: 1) A new self-

tuning kernel that is density- and scale-aware; 2) A TPG data integration and diffusion procedure to 

combine data sources; 3) Implementation of the FASP method for massive datasets; 4) A new 

technique based on eigenvector distributional analysis to find the optimal K; 5) A nonlinear 

dimensionality reduction and visualisation procedure for multi-omic data. Spectrum is provided as a 

R software package (https://cran.r-project.org/web/packages/Spectrum/index.html). 
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Results 

 

Spectrum provides fast effective clustering of single and multi-omic data  

First, we tested Spectrum’s ability to identify the ground truth K on individual simulated Gaussian 

datasets (Fig. S1). In each case, Spectrum correctly identified the optimal K. The method can also 

detect more complex non-Gaussian structures (Fig. S2). To demonstrate performance of Spectrum 

on real data from a single platform, we ran the algorithm on seven TCGA RNA-seq datasets
1-7

. We 

used log-rank tests to evaluate the significance of survival time differences between identified 

clusters. Comparison of Spectrum p values with those from CLEST, M3C, PINSplus, and SNF found 

that Spectrum performed substantially better overall in finding clusters significantly related to 

patient survival (Fig. 1a). For comparing different methods, we took both a rank and p value based 

approach to assess performance, individual p values and rankings for each method on each dataset 

are included in Supplementary Table 1. To give an initial indication of the relative computational 

resources required for a single platform analysis, algorithm runtime was investigated on a kidney 

cancer RNA-seq dataset6 with 240 samples and 5000 features. This analysis was performed on a 

single core of an Intel Core i7-6560U CPU @ 2.20GHz laptop computer with 16GB of DDR3 RAM. 

Spectrum was the fastest method (1.13 seconds), closely followed by SNF (2.67 seconds), PINSplus 

was still fast (8.53 seconds), M3C (123.91 seconds) and CLEST (283.34 seconds) were both 

considerably slower.  

 

Next, we conducted a multi-omic data simulation that generated Gaussian clusters with added noise 

(Fig. S3a) to test the behaviour of Spectrum’s data integration system. Individual platform clustering 

using Spectrum did not detect the optimal K (Fig. S3b,c). However, using the TPG data integration 

and diffusion method, Spectrum identified the optimal K for the combined dataset (Fig. S3d). We 
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proceeded to test Spectrum’s ability to detect clusters with significant differences in survival time on 

seven multi-omic TCGA datasets relative to other methods (Table 1). The analysis included mRNA, 

miRNA, and protein data. Similar to our observations on a single platform, Spectrum performed very 

well (Fig. 1b). Spectrum performed particularly well on the larger datasets with greater potential for 

clinical significance, namely, the breast (p = 1.47E-07) and brain cancer (p = 3.76E-16) datasets. Next, 

to gain an initial insight into relative multi-omic runtimes we tested the algorithms on the kidney 

TCGA dataset
6
. Spectrum performed the fastest (2.5 seconds), followed by SNF (4.06 seconds), 

PINSplus (27.22 seconds), CIMLR (59.56 seconds), and iClusterPlus (305.35 seconds). A more detailed 

analysis of runtime was performed for all single and multi-omic algorithms using simulated data. This 

worked by increasing the number of samples from 100 to 1000 in steps of 100, with each dataset 

containing 5000 features (Fig. 1c-f). These analyses demonstrated the greater speed of Spectrum 

relative to other methods. Spectrum’s strong performance in finding clinically related clusters comes 

with a bonus of faster runtimes. 

 

We next demonstrated the advantage of Spectrum’s adaptive density-aware kernel by comparison 

with the classic Zelnik-Manor kernel21, a non-density-aware kernel that adapts to local data scale 

only. First, Spectrum using either of the two kernels was run on a non-Gaussian synthetic dataset 

consisting of two worm structures. The clustering demonstrated that the density-aware kernel 

improved the classification (Fig. S4a,b). Next differences on TCGA multi-omic data were examined. 

Analysis of the brain cancer multi-omic dataset3 found the density-aware kernel detected two 

additional clusters in comparison with the Zelnik-Manor kernel (Fig. 2a). Spectrum’s method for 

visualising multi-omic clusters was demonstrated. It runs Uniform Manifold Approximation and 

Projection (UMAP)28 on the integrated similarity matrix (Fig. 2a), this is a new method inspired by the 

recent approach applied in single-cell RNA-seq analysis by SIMLR17. Plots of the reduced data from 

UMAP demonstrated the density-aware kernel results in more compact clusters than the Zelnik-
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Manor kernel. This was expected, as the adaptive kernel strengthens local connections in the graph 

where the samples are in regions of high density. 

 

The eigengap method Spectrum uses to decide on K by default was demonstrated (Fig. 2b). For the 

density-aware kernel, the greatest gap is between eigenvectors five and six, implying an optimal K of 

five, while for the Zelnik-Manor kernel, the greatest gap is found between eigenvectors three and 

four, implying an optimal K of three. The survival p values produced by the different methods were 

shown on survival curves (Fig. 2c). Spectrum obtained a greater level of significance using the 

density-aware kernel (p = 3.76E-16) than using the Zelnik-Manor kernel (p = 1.68E-11). We expanded 

this comparison to include all seven TCGA multi-omic datasets to find that the density-aware kernel 

has a noticeable advantage over the Zelnik-Manor non density-aware kernel (Table S2). These 

findings demonstrate the improvement gains by using a kernel that considers local density. 

 

Spectrum performs well at identifying cell types in single-cell RNA-seq data 

We examined Spectrum’s performance on simulated datasets that resemble single-cell RNA-seq, as 

they were made to consist of many Gaussian blobs that can overlap (Fig. S5). Spectrum identified the 

correct K for both the K=10 simulated dataset and the K=20 dataset (Fig. S5a-d). We examined 

Spectrum’s performance relative to other methods on seven real single-cell RNA-seq datasets24-30 by 

comparing the assigned clusters with the provided cell type labels using Normalised Mutual 

Information (NMI) (Table 2). Spectrum achieved the highest summed NMI (NMI=5.89), this was 

closely followed by Seurat (NMI=5.74), MUDAN (NMI=5.71), SC3 (NMI=5.49), and SIMLR (NMI=5.01). 

Spectrum’s summed NMI was favourably weighted by its performance on the Pollen dataset27 (NMI 

= 0.95). Using a rank-based score to eliminate this advantage, Spectrum still came joint first with SC3 

(Table 2). T-distributed stochastic neighbour embedding (t-SNE) plots showing the Spectrum 
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clustering assignments were produced (Fig. 3a-f, Fig. S6a,b). Overall, Spectrum, Seurat, SC3, and 

MUDAN performed similarly in these comparisons, however, SIMLR did not perform as well (Table 

2).  

 

In the described comparative analysis (Table 2), since the Baron24 and Muraro28 datasets had higher 

numbers of samples, to reduce runtime Spectrum was run using the FASP method (with 900 

centroids). Even with the FASP data compression for these two datasets, Spectrum yielded the 

highest NMI relative to the other methods. Comparing Spectrum runtime on the Baron dataset 

(N=8569) yielded 1.95 hours without FASP versus 14.23 seconds with FASP, analyses were 

performed on a single core of an Intel Core i7-6560U CPU @ 2.20GHz laptop computer with 16GB of 

DDR3 RAM. On the Muraro dataset (N=2126), without FASP took 1.97 minutes and with took 11.83 

seconds. Since the complexity of spectral clustering is cubic, ����� and the complexity of k means is 

linear, ������, where � is the number of k means iterations, using k means as a precursor to 

compress the data (FASP) is computationally advantageous on larger datasets. 

 

To gain an initial insight into relative runtimes of all methods (without using Spectrum’s FASP 

implementation) methods were run on the Camp dataset
23

 (777 samples). This analysis found 

MUDAN performed the fastest (0.23 seconds), followed by Seurat (2.45 seconds), Spectrum (12.64 

seconds), SC3 (183.66 seconds), and SIMLR (264.31 seconds). A runtime analysis was performed for 

all algorithms on simulated datasets with 500 to 4000 samples in steps of 500 with 1000 features 

(Fig. S7). Spectrum was in the middle in terms of speed, usually performing faster than the SC3 

algorithm. However, SC3 adjusted its own parameters to work faster at higher numbers of samples 

making it of comparable speed to Spectrum. Spectrum was slower than MUDAN and Seurat, but 

much faster than SIMLR. Overall, these data demonstrate Spectrum is well suited to clustering small 

to large single cell RNA-seq datasets, with FASP required for the later. 
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A fast new heuristic for finding K when performing spectral clustering 

Since the eigengap method does not automatically recognise both Gaussian and non-Gaussian 

structures (Fig. S1,2), we developed a complementary method which can. The method involves 

examining the multimodality of the eigenvectors of the data’s graph Laplacian, so we call it ‘the 

multimodality gap’. To demonstrate this method, five Gaussian blobs were generated (Fig. 4a) and 

the multimodality of the data’s graph’s eigenvectors were also displayed (Fig. 4b). The dip-test 

statistic
31

 (Z) which measures multimodality demonstrated a large gap between eigenvectors five 

and six. Therefore, using this method it was correctly concluded that K=5. Each individual 

eigenvector was plotted out (Fig. 4c) to visualise the changing distribution of the eigenvectors. As 

observed in the analysis of the set of Z values, there was a transition from a multimodal distribution 

at eigenvector five to a unimodal distribution at eigenvector six, confirming K=5. To further validate 

the method, several simulations were run and the method successfully clustered both complex non-

Gaussian (Fig. S8a,b,c,d) and Gaussian clusters (Fig. S9a,b,c,d). However, since the simple method of 

looking for the greatest gap in the set of Z values can get stuck in local minima (Fig. S9d), the method 

was further enhanced by adding an algorithm to search for the last substantial gap.  

 

We found the multimodality gap requires kernel tuning to perform well on certain datasets. This was 

evident in non-Gaussian data simulations, as with kernel tuning there is a perfect clustering result 

for the spirals test data (Fig. S10a), while without kernel tuning the method fails to cluster correctly 

(Fig. S10b). Kernel tuning is performed by simply changing the � parameter of the self-tuning kernel 

and for each kernel finding the maximum multimodality gap between any pair of eigenvectors. The 

kernel that yields the greatest gap is the optimal kernel, where the most negative D value 

corresponds to that kernel with the maximum gap (Fig. S10c).  
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We examined the performance of the multimodality gap across the seven TCGA multi-omic datasets 

to demonstrate its applicability as a complementary method to the eigengap. This analysis found the 

multimodality gap can provide different p values compared with the eigengap (Table S3). Optimal 

methods will vary according to the data. For example, the multimodality gap (p = 0.0019) has a lower 

p value than the eigengap (p = 0.91) on the kidney cancer data6. Including a second method to 

automatically decide K gives the user power to find the best approach for their data. This method 

also presents a novel solution to an open problem in spectral clustering. 

 

Discussion 

Spectrum provides fast, flexible spectral clustering for complex genome wide expression data. 

Previous tools have been developed for a single purpose, for example multi-omic clustering12-14, 

single-omic clustering9,10, or single cell RNA-seq clustering15,17. However, Spectrum has been 

demonstrated to work well on all these tasks and therefore is distinct to other methods. Our 

experiments demonstrated that Spectrum offers state-of-the-art performance in patient 

stratification, often identifying clusters with greater significant differences in survival time than 

other methods. Examining our density-aware kernel in comparison with the Zelnik-Manor kernel
21

 

demonstrated Spectrum’s emphasis on strengthening local connections in the graph in regions of 

high density, partially accounts for its performance advantage. Spectrum is flexible and adapts to the 

data by using the k nearest neighbour distances instead of global parameters
18,22

 when performing 

kernel calculations. 

 

Spectrum was the fastest method in single-platform and multi-omic TCGA analysis, this is partially 

due to code optimisation of the density-aware kernel calculation. Even though the kernel is relatively 
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sophisticated, it runs quickly. However, single cell RNA-seq clustering tools are typically faster than 

single-omic clustering tools used on TCGA data. As we demonstrated, Spectrum performs well at 

single cell RNA-seq clustering, but has a drawback of increased runtime relative to the community 

detection methods Seurat and MUDAN. This is compensated for by implementation of a fast data 

compression method
23

 for massive datasets. Even without data compression, Spectrum performed 

similarly in speed to SC3 and much faster than SIMLR. 

 

The new multimodality gap heuristic for finding K increases the flexibility of the method and 

increases the appeal of Spectrum to researchers in other disciplines. This is because it can recognise 

both complex shapes and Gaussian clusters. There are few good solutions to this problem, none of 

which are implemented in a publicly available R program. The Zelnik-Manor self-tuning algorithm
21

 

involves a gradient descent technique that is complex to code and time consuming. In contrast, the 

multimodality gap is more straightforward, effective, and can be used to tune the kernel. 

Incorporating this method into Spectrum gives the user power to find the best approach for their 

data. Overall, Spectrum is well suited to clustering complex omic’ data and other data types. With its 

strong performance both in runtime and clustering results it should appeal to a broad range of data 

analysts. 

 

Methods 

Spectrum. Spectrum can be used to cluster continuous single or multi-omic data, the approach can 

also be used generally for single and multi-view clustering. Let us now describe the method. Let 	 

denote an expression matrix 	 
 ����, where � is the number of samples and � is the number of 

features. If we are dealing with multiple datasets, then we have a set of � matrices 
 �
�	�, 	� , 	� … , 	��, where 	� 
 �����  where ��  is the number of features per sample from the �	
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data type. The first step of the algorithm is to calculate the similarity matrix or matrices using the 

adaptive density-aware kernel. 

Adaptive density-aware kernel. We first calculate the similarity matrix �� 
 ������ for the 

�	
  expression matrix in 
, where �� equals the number of samples from the �	
  data type. For the 

�	
  data type, given a set of � points, � � ���, �� , �� … , ����, the adaptive density-aware kernel is: 

��� � ��� � �
�������

�����������������
� (1) 

Where ������  denotes the Euclidean distance between points ��  and �� , !�������� denotes the 

common nearest neighbours shared between the �	
  and "	
  samples in the !	
  nearest neighbours 

neighbourhood of each sample. #� is the distance between the �	
  sample and its �	
  nearest 

neighbour. In the case of multiple datasets, this yields a new set of � similarity matrices, $ �
��� , ��, �� … , ���, while if we have just one platform, � � 1, we have a single similarity matrix �. 

The adaptive density-aware kernel is inspired by the widely used self-tuning kernel by Zelnik-

Manor21 and the more recent density-aware kernel by Zhang22. A drawback of the Zelnik-Manor 

kernel21, is that it does not adapt to the local density of the samples; however, it does adapt to scale 

using local #�  and #�  parameters. The problem with the Zhang kernel
22

 is that it falls back on the 

usage of a global # parameter for the entire dataset, which is difficult and time consuming to tune. It 

also relies on a global radius parameter, &, that defines the density around the �	
  and "	
  samples 

when calculating the common nearest neighbours, !��������. &, like a global #, is sensitive to the 

scale of the specific dataset. Therefore, our aim was to create a kernel that self-tunes to the scale 

and density of each new dataset by relying on the sample’s local statistics.  

The adaptive density-aware kernel automatically tunes to the scale and density of each pair by 

examining the distance from each sample to their �	
  nearest neighbour and their overlap within 

the !	
  nearest neighbour neighbourhood of each sample. The !�������� calculation tells us how 

many samples are shared between the !	
  nearest neighbour neighbourhood of both samples. If 
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these samples are close together in a region of high density, their connectivity will become stronger. 

Therefore, this kernel adds weight to locally dense connections. ! and  � are free parameters in this 

kernel. We set them to default values of 7 and 3, respectively. These parameters were used for all 

experiments in this manuscript, including those on simulated data, and perform well on a range of 

genome wide expression data. 

Combining multi-view data and tensor product graph diffusion. For combining the similarity 

matrices (graphs) in the set $, Spectrum uses a recent technique from the machine learning 

literature19 that involves calculating a cross view tensor product graph (TPG) from each pair of 

individual graphs. The technique has so far not been applied in genome wide data analysis. Cross 

view TPGs capture higher order information of the data. The cross view TPGs are integrated using 

linear combinations to form a single graph. Graph diffusion is then performed to reveal the 

underlying data structure. Shu et al.,19 give a computationally efficient algorithm for this. The 

process is mathematically analogous to the TPG approach but can be calculated using a non TPG 

which makes the process much faster. Spectrum can also use a slight modification of this method for 

a single data type, more specifically: 

1. Combine similarity matrices from the set $. If we are dealing with a single similarity matrix, 

� � 1, then this step is skipped, but steps 2-5 are the same: 

� � ∑ ���
���  (2) 

2. Sparsify � by keeping only the (	
  nearest neighbours of each sample �� and setting the rest 

to 0. Let ��  be the set of ( nearest neighbour samples for �� . In this method we set ( � 10: 

���, "� �  *��� j 
 ��
0 otherwise

4 (3) 

3. Row normalise �, so that each row sums to 1: 

���, "� �  ���, "�/ ∑ ���, "��  (4) 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/636639doi: bioRxiv preprint 

https://doi.org/10.1101/636639
http://creativecommons.org/licenses/by-nd/4.0/


13 

 

4. Perform graph diffusion iterations. Let 6� � �, and 7 be the identity matrix for �. Then for 

the 8	
  iteration from 2 … �8�:�, where �8�:� � 5: 

6	 � �6	���� < 7 (5) 

5. We then take the final similarity matrix as �� � 6�. This ends the procedure. �� can now be 

used as the input for spectral clustering. 

The parameters ( � 10 and �8�:� � 5 are set in alignment with previous work
19

. 

Spectral clustering of similarity matrix. Starting with ��, Spectrum uses the Ng spectral clustering 

method18, but with the eigengap heuristic to estimate the number of clusters and Gaussian Mixture 

Modelling (GMM) to cluster the final eigenvector matrix. More specifically: 

1. Using =, the diagonal matrix whose ��, �� element is the sum of ��’s �	
  row, construct the 

normalised graph Laplacian 
: 


 � =��/���=��/�     (6) 

2. Perform the eigendecomposition of 
 and thus extract its eigenvectors ��, ��, … ��  and 

eigenvalues >�, >� … >���. 

3. Evaluate the eigengap for eigenvalues, starting with the second eigenvalue, ? � 2, and 

choose the optimal k, denoted by @�, for which the eigengap is maximised: 

@� � argmax
�

�>� E >���� 

4. Get the ��, �� , … ���, @� largest eigenvectors of 
, then form the matrix, 

F � G��, �� , … ���H 
 I���� by stacking the eigenvectors in columns.  

5. Form the matrix $ from F by renormalizing each of F’s rows to have unit length: 

$�� � ���

�∑ ���
� ��

�/�     (7) 

6. Now each row of $ is treated as a sample, �� , then all samples are clustered into @� clusters 

using GMM. Spectrum uses the implementation of GMM from the ClusterR CRAN package. 
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A heuristic for finding K that analyses eigenvector distributions. How to select the optimal K is an 

open question in the field of spectral clustering. A natural way to solve this problem when spectral 

clustering is analysis of the eigendecomposition of the graph Laplacian. The classical eigengap 

method is effective for Gaussian clusters, however, its rule must be modified to detect non-Gaussian 

structures thus limiting its applicability (Figure S2). We found a new heuristic for finding K that could 

be used for Gaussian or non-Gaussian structures and as a complementary method to analyse 

genome wide expression datasets. The method examines the multimodality of the eigenvectors of 

the graph Laplacian and looks for a point beyond which there is no more substantial decrease in 

multimodality. 

Intuitively, the degree of multimodality defines how informative a given eigenvector is, and when we 

pass the optimal K moving along the sorted eigenvectors,  J � ���, ��, … ���, we expect a large 

drop in useful information. Multimodality is quantified using the well-known dip test statistic31. The 

method works better if the nearest neighbour parameter of the kernel is tuned from � � 1, … ,10. 

This is done by selecting the kernel that gives the maximum multimodality gap. Analysing the 

multimodality drop was inspired by work by Xiang et al.,
20

 where the authors select out the most 

informative eigenvectors using an Expectation Maximisation technique, then use GMM and the BIC 

to choose K. However, in our experiments, we found this method to be unreliable. We now detail an 

alternative procedure for finding K and tuning the kernel based on the analysis of drops in 

eigenvector multimodality.  

Let the set of dip test statistics be ( � �K�, K� , K�… , K��, calculated from the eigenvectors, 

J � ���, ��, … ���. Note that larger values of K� correspond to greater eigenvector multimodality. 

To calculate the multimodality difference between consecutive values, we use, �� � K� E K���. Since 

we require two values to get �� , the calculation must begin at � � 2, which corresponds to the first 

pair of eigenvectors. Let the set of ��  values calculated from ( be, = � ��� , ��, �� … , ���� ���, the 

steps for this are as follows: 
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1. Find the optimal kernel, ��. Each kernel is calculated using equation 1 and the nearest 

neighbour parameter � is tuned via a search from � � 1, … , 10. To do this, calculate the �	
  

graph Laplacian (equation 6) from the �	
  kernel. Obtain the eigenvectors of these, J!. 

Calculate (! from these eigenvectors, then =! . Get min �=!� for each �, yielding a set, 

=��� � ���, ��, … ��"�. �� is the kernel that corresponds to M�?�=����.  

2. Get the KNN graph of ��, row normalise, then perform diffusion iterations (equations 3-5). 

3. Calculate the graph Laplacian, 
 (equation 6). 

4. Perform eigendecomposition of 
 yielding the eigenvectors, J � ���, ��, … ���. 

5. Calculate the dip test statistics ( for the eigenvectors in J, then calculate the differences of 

these, =. 

6. Pass = into the algorithm described below for finding the last substantial drop in 

multimodality. Let @� be the optimal K found by this method. 

7. Continue with equations 4-6 corresponding to the Ng spectral clustering method, with GMM 

to cluster the final eigenvector matrix, with K set to @�. 

One could select K using the maximum multimodality eigengap. However, we found that this simpler 

method is susceptible to getting stuck in local minima (Fig. S6). This naturally led to making an 

algorithm to find the last substantial drop. For finding @� from set (, we now describe this 

straightforward algorithm that reads along the elements of (, to find a point where there is no more 

substantial decrease in multimodality. 

Finding last substantial multimodality gap. This algorithm will search =, storing in memory the 

biggest difference in multimodality. Let that be ����. A more negative �� corresponds a bigger drop 

in the elements of (. The method then examines if there are any more points ahead of this drop (up 

until N O���  points) that are P 
���

#
, where Q is the minimum magnitude that the drop must be to 

replace ����. If a new ���� is found, this new difference is stored in memory. This process continues 
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until no more substantial drops are found with the threshold O��� to stop the search. More 

specifically: 

1. Skip the first element of =, ��, as this corresponds to the drop from the 1st to 2nd 

eigenvector which is non-informative. Then, store in memory ��, as the greatest drop by 

default. Call this ����. Initialise a counter to O � 1, for keeping count of how many indices 

ahead we are of the stored ����. 

2. Iterate from �� … ���� �� and with each iteration check if 

���

#
R �� . If so let �� be the new 

���� , otherwise continue. If O R O��� , break the loop and accept the current stored ����  as 

the solution. 

3. The optimal number of classes is @� � � E 1, where � is the index of = corresponding to the 

��  taken as ����  in step 2. 

The parameters used in this study for the multimodality drop procedure were O��� � 7 and Q � 2, 

values we empirically selected based on our experience. 

Generating simulated datasets for analysis 

Gaussian cluster simulations were all performed using the CRAN clusterlab package9, following the 

standard operating procedure. In the case of non-Gaussian structures, found throughout the 

Supplementary Figures, either the CRAN mlbench or clusterSim packages were used to simulate the 

data, using the default settings. 

Downloading and processing of real data for analysis 

TCGA datasets. The seven multi-omic TCGA datasets1-7 were downloaded from the Broad Institute 

(http://gdac.broadinstitute.org/). Pre-normalised data was used for each platform (mRNA, miRNA, 

and protein) and for every dataset each one was filtered in the same manner, using the coefficient 

of variation (CV) to select the top 50% most variable features. The data was then log2 transformed to 

reduce the influence of extreme values. Code for data pre-processing is found in the following 
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GitHub repository (https://github.com/crj32/spectrum_manuscript). The processed multi-omic data 

is in Supplementary File 1. RNA-seq datasets were taken from the same studies as the multi-omic 

data and filtering of features was done in the same manner. However, more patients were included 

in the RNA-seq analyses because we did not have to unify the patient IDs between platforms. The 

RNA-seq data is included in Supplementary File 2. Code for performing log-rank tests in also in the 

github as well as commands for running methods. 

Single-cell RNA-seq datasets. The seven single-cell RNA-seq datasets24-30 were obtained from the 

Hemberg lab website (https://hemberg-lab.github.io/scRNA.seq.datasets/). For each dataset we 

used log2 normalised counts and selected the top 100 most variable genes for analysis. Code for data 

pre-processing is found in the manuscript’s GitHub repository 

(https://github.com/crj32/spectrum_manuscript). Additionally, we include the data ready for 

analysis in Supplementary File 3. Code for calculating NMI is in the github as well as commands for 

running methods. 
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Figure legends 

Figure 1. Spectrum provides fast and effective clustering for single and multi-omic TCGA data. The 

clustering performance score is the sum of the -log10(p values) from a Cox proportional hazards 

regression model using a log-rank test to assess significance across seven TCGA datasets (ranks are 

also included in Table I). (A) Spectrum relative performance just on RNA-seq datasets. (B) Spectrum 

relative performance on multi-omic datasets (mRNA, miRNA, protein). (C) Runtime analysis for faster 

single-omic clustering algorithms. (D) Runtime analysis for slower single-omic clustering algorithms. 

(E) Runtime analysis for faster multi-omic clustering algorithms. (F) Runtime analysis for slower 

multi-omic clustering algorithms. 
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Figure 2. The adaptive density-aware kernel demonstrates an advantage in multi-omic analysis. On 

the right-hand side of the panel are the results for the Zelnik-Manor kernel
21

, while the density-

aware kernel results are shown on the left-hand side. (A) Spectrum clustering assignments from the 

brain cancer dataset
3
, UMAP was run on the integrated similarity matrices for mRNA, miRNA, and 

protein data to generate the plots. (B) Eigenvalues for the eigenvectors of the graph Laplacians. The 

maximum eigengap was taken in each case as the optimal K. (C) Survival curves with p values from a 

Cox proportional hazards regression model using a log-rank test to assess significance between 

clusters. 

Figure 3. Spectrum performs well at identifying cell types in single cell RNA-seq data. For each 

dataset normalised mutual information (NMI) between the cell labels and the detected clusters is 

shown. (A) Heatmap of similarity matrix from Spectrum for the Pollen dataset27. (B) t-SNE of the 

Pollen data27 overlaid with clustering assignments. (C) Same as B, but from the Li data25. (D) Same as 

B, but from the Camp data23. (E) Same as B, but from the Baron data24. (F) Same as B, but from the 

Muraro data28. 

Figure 4. Demonstration of a new heuristic for finding K when spectral clustering. (A) PCA showing 

a synthetic dataset with five Gaussian clusters. (B) Using the multimodality drop method to find the 

ground truth K, the last substantial drop is in-between eigenvectors five and six, this refers to an 

optimal K of five (see methods). (C) Plots showing the individual eigenvectors of the graph Laplacian 

generated from the synthetic data. The distribution of eigenvector elements for the sixth 

eigenvector is far more unimodal than the fifth, demonstrating a solution of five is preferable.  

 

Supplemental figure legends 

Figure S1. Spectrum performs well at identifying synthetic Gaussian clusters using eigenvalues. In 

each case a Principal Component Analysis (PCA) of the synthetic data is shown alongside the 
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eigenvalues of the eigenvectors of the data’s graph Laplacian. (A) Results from synthetic data 

analysis with K=2. (B) Analysis for K=3. (C) Analysis for K=4. (D) Analysis for K=5. In all cases the 

maximum eigengap method identified the correct number of clusters.  

Figure S2. Spectrum performs well at identifying non-Gaussian clusters using eigenvalues with a 

modified decision rule. In each case a PCA of the synthetic data is shown alongside the eigenvalues 

of the eigenvectors of the data’s graph Laplacian. (A) Results from synthetic data analysis for K=2. (B) 

Analysis for K=3. In both cases the first non-zero eigengap method identified the correct number of 

clusters. 

Figure S3. Spectrum performs well at reducing noise when clustering data generated in a multi-

omic data simulation. (A) Three Gaussian clusters are simulated, each sample belongs to the same 

cluster in each simulation, but a degree of variability has been added. (B) Individual platform 

clustering could not detect the optimal K in every case due to noise. (C) Cluster assignments shown 

in PCAs using individual platforms with no data integration. (D) Spectrum data integration method 

results in finding K=3 on the combined data. 

Figure S4. The locally adaptive density-aware kernel outperforms the Zelnik Manor kernel on a 

non-Gaussian dataset. (A) Spectrum results with the adaptive density-aware kernel. (B) Spectrum 

results with the Zelnik Manor non density-aware kernel. 

Figure S5. Spectrum performs well on simulated Gaussian data resembling single-cell RNA-seq. (A) 

PCA of the K=10 synthetic dataset. (B) Eigenvalues of the eigenvectors of the data’s graph Laplacian, 

a maximum drop is located between 10 and 11 correctly designating this as the optimal K decision 

by the algorithm. (C) PCA of the K=20 synthetic dataset. (D) Eigengap method confirms K=20. 

Figure S6. Spectrum results from clustering the Patel single cell RNA-seq dataset. (A) Results from 

t-SNE analysis of the Patel data29 overlaid with Spectrum clustering assignments. Normalised mutual 
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information (NMI) between the cell labels and the detected clusters is shown. (B) Same as A, but for 

the Darmanis dataset
26

. 

Figure S7. Runtime analysis for single-cell RNA-seq clustering methods. These analyses were run on 

a single core of an Intel Core i7-6560U CPU @ 2.20GHz laptop computer with 16GB of DDR3 RAM. 

Simulated datasets had 1000 features and varying number of samples (N). Spectrum was run 

without data compression (FASP). 

Figure S8. Demonstration of the multimodality gap method for recognising non-Gaussian 

structures. Z refers to the dip test statistic K�  for the �th eigenvector, where a larger value indicates 

stronger multimodality. (A) Results using multimodality gap method on a two concentric circle 

dataset. The optimal K was identified because the gap between two and three is the last substantial 

one (see methods). (B) Results from analysing a three concentric circle dataset, again the correct K 

was identified. (C) Results from analysing a two half moon dataset, the correct K was detected. (D) 

Results from analysing a four cluster smiley face, the correct K was also found. 

Figure S9. Demonstration of the multimodality gap method for recognising Gaussian clusters. Z 

refers to the dip test statistic K� for the �th eigenvector, where a larger value indicates stronger 

multimodality. (A) Results from using the multimodality gap method on a K=2 Gaussian synthetic 

dataset. The optimal K of two is identified by the method because the eigenvalue gap between 

eigenvectors two and three is the last substantial one. (B) Results from using the multimodality gap 

method on a K=3 Gaussian synthetic dataset, the correct K is identified. (C) Results from using the 

multimodality gap method on a K=4 Gaussian synthetic dataset, the correct K is identified. (D) 

Results from using the multimodality gap on a K=5 Gaussian synthetic dataset, if we took the 

maximum multimodality gap the method fails, therefore we improved the method to find ‘the last 

substantial gap’. This is found by a greedy algorithm described in the methods. 

Figure S10. Kernel tuning can improve the multimodality gap method. Z refers to K�  the dip test 

statistic for the �th eigenvector, where a larger value indicates stronger multimodality. (A) Results 
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from the multimodality Spectral clustering method on spirals with kernel tuning of the � parameter 

that defines the number of nearest neighbours to use when calculating the local sigma (see 

methods). The correct K is found, as the last substantial gap is in-between eigenvectors two and 

three. (B) Same dataset, but the kernel tuning was not performed, and the correct K was not found. 

(C) Tuning results from changing the � parameter (NN). D refers to =��� the biggest difference 

between any consecutive elements of K in the set of dip statistics ( for a given value of �. A lower D 

indicates a bigger difference found for a given � and kernel, therefore indicating a preferred kernel. 

Tabl

es 

 

 

 

 

Table I. Spectrum multi-omic clustering performance relative to other algorithms. P values are from a Cox 
proportional hazards regression model using a log-rank test to test the significance of the survival time differences 
between clusters.  In brackets next to the p values are the ranks for each dataset.  The first final row is the summed 
-log10(p values) for that column (higher is better), the second is the sum of the ranks (lower is better). PCPG 
stands for Pheochromocytoma and Paraganglioma. For all datasets, the three data types used were mRNA, 
miRNA, and protein. 

Dataset N Spectrum PINSplus iClusterPlus SNF CIMLR 

Bladder7 338 0.0042 (3) 0.31 (5) 0.0022 (2) 0.00022 (1) 0.0047 (4) 

Brain3 425 3.76E-16 (1) 0.0053 (4) 1.72E-07 (3) 4.17E-11 (2) 0.013 (5) 

Breast4 634 1.47E-07 (1) 2.85E-05 (4) 1.78E-05 (3) 0.94 (5) 2.04E-07 (2) 

Kidney6 240 0.91 (5) 0.038 (2) 0.24 (4) 0.045 (3) 0.0026 (1) 

PCPG5 80 0.043 (1) 0.18 (4) 0.093 (3) 0.09 (2) 0.54 (5) 

Skin2 338 0.0014 (1) 0.96 (5) 0.4 (3) 0.51 (4) 0.0029 (2) 

Thyroid1 219 0.049 (1) 0.09 (2) 0.67 (5) 0.18 (4) 0.17 (3) 

P value score  30.21 10.56 16.40 17.49 17.06 

Rank score  13 26 23 21 22 

Table II. Spectrum single cell RNA-seq clustering performance relative to other algorithms. 
Values used for scoring each algorithm refer to Normalised Mutual Information (NMI) of given cell 
type labels versus those defined by the clustering algorithm. The bracketed values are the rank for 
that algorithm relative to the others for each dataset. The first final row corresponds to the 
summation of the columns NMI values, the second corresponds to the summation of the ranks. 

Dataset Cells Spectrum Seurat SIMLR SC3 MUDAN 

Camp25 777 0.85 (3)  0.87 (1) 0.67 (4) 0.51 (5) 0.86 (2) 

Li27 561 0.88 (2) 0.86 (3) 0.5 (4) 0.89 (1) 0.86 (3) 

Patel29 430 0.76 (5) 0.78 (4) 0.79 (3) 0.84 (1) 0.81 (2) 

Pollen30 301 0.96 (1) 0.86 (4) 0.79 (5) 0.89 (2) 0.87 (3) 

Darmanis26 466 0.72 (3) 0.78 (1) 0.74 (2) 0.74 (2) 0.7 (4) 

Baron24 8569 0.84 (1) 0.76 (3) 0.79 (2) 0.76 (3) 0.79 (2) 

Muraro28 2126 0.88 (1) 0.83 (3) 0.73 (5) 0.86 (2) 0.82 (4) 

NMI score  5.89 5.74 5.01 5.49 5.71 

Rank NMI score  16 19 25 16 20 
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Figure 4

Sample index
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