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Abstract  

Studying various marine biomineralized ultrastructures reveals the appearance of common architectural 

designs and building blocks in materials with fascinating mechanical properties that match perfectly to 

their biological tasks. Advanced mechanical properties of biological materials are attributed to 

evolutionary optimized molecular architectures and structural hierarchy. One example which has not yet 

been structurally investigated in great detail is the shell of Mytilus edulis L. (Finnish blue mussel) found 

in the archipelago of SW-Finland. Through a combination of various state-of-the-art techniques such as 

high-resolution electron microscopy imaging, Fourier-transformed infrared spectroscopy, powder X-ray 

diffraction, synchrotron wide-angle X-ray diffraction, nanoindentation and protein analysis, both the 

inorganic mineralized components as well as the organic-rich matrix were extensively characterized. We 

found very similar ultra-architecture across the shell of M. edulis L. as compared to the widely studied 

and closely related M. edulis. However, we also found interesting differences, for instance in the 

thickness and degree of orientation of the mineralized layers indicating dissimilar properties and related 

alterations in the biomineralization processes. Our results show that the shell of M. edulis L. has a 

gradient of mechanical properties, with the increase in the stiffness and the hardness from anterior to the 

posterior region of the shell. The shell is made from distinct and recognizable mineralized layers each 

varying in thickness and microstructural features. At posterior regions of the shell, moving from dorsal 

to ventral side, these layers are an oblique prismatic layer, a prismatic layer and a nacreous layer, in 
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which the oblique prismatic layer is found to be the main and thickest mineralized layer of the shell. 

Probing the calcified rods in the oblique prismatic layer using high resolution SEM imaging revealed 

opening of channels with a diameters of 40-50 nm and lengths up to a micrometer extending through the 

rods. The chitin and protein have been found to be the main component of the organic-rich interfacial 

matrix as expected. Protein analysis showed two abundant proteins with sizes around 100 kD and 45 kD 

which likely not only regulates biomineralization and adhesion of the crystals but also governing the 

intrinsic-extrinsic toughening in the shell. Overall, this detailed analysis provides new structural insights 

into biomineralization of marine shells in general.  

1. Introduction  

Biological materials show fascinating properties and in many ways can outperform man-made 

engineered materials, although they are built from very limited elements appearing in nature and 

comparable simple building blocks 1.  Exceptional examples of such materials can be found in marine 

biomineral structures that combine high stiffness, strength, and toughness. Such materials achieve their 

function by assembling large fractions of anisotropic inorganic stiff and strong elements, embedded in 

an isotropic soft and energy-dissipating adhesive organic matrix 2. These two basic components with 

mismatching properties are merged in a complex hierarchical architecture, which ultimately enables 

absorption of energy at different length scales. This is driven by evolutionary optimized molecular 

interactions among various building blocks throughout the course of the evolution.  

For instance, nacre in the interior of mollusk shells -also known as mother of pearl- features a brick and 

mortar microstructure, assembled from 0.4-0.5 μm thick and 5-15 μm wide tablets of calcium carbonate 

(aragonite) that are glued to one another with few nanometer thin continuous layers of adhesive and 

energy dissipating organic matrix 3,4. Orders of magnitude tougher than nacre, conch shell is another 

example of a marine biomineral structure with a three-tier multiscale lamellar structure 5–7. Shells consist 

of outer, middle and inner layers, each further constitute of first (5 μm thick and several μm wide), second 

(5-30 μm thick and 5-60 μm wide) and third (60-100 nm thick and 100-400 nm wide) order lamellae 

varying in thickness and length of the aragonite platelets that are glued to one another by the organic 

matrix. This hierarchical, lamellar ultra-architecture provides various crack deflecting pathways, 

bridging and fiber pullout, hence increasing the toughness.  

Details of assembly mechanisms and the formation of such complex hierarchical structures are still under 

investigation. However there is growing evidence illustrating that the organic-rich interface consisting 
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of silk-like and acidic proteins along with a chitin network 8,9, largely governs both nucleation and 

inhibition of the crystal growth and providing a matrix structure that has substantial importance toward 

structural integrity of the shell 10,11. 

In recent years, biological materials  have been studied to understand basic principles of 

biomineralization making those available for material synthesis as well as one main source of inspiration 

for fabrication of next generation high performance and advanced materials (Studart, 2016, 2012; Wegst 

et al., 2015; Xu et al., 2007). These potential applications range from advanced medical devices, robust 

electronics apparatus, and sensors, 15–17 to lightweight aerospace application and military armors 18,19. 

Despite its scientific, ecological and economic importance, the current understanding of such complex 

mineral producing machinery is far from complete. This motivates to analyze the ultrastructure and 

mechanical properties of biomineralized materials which have never been studied before to identify 

common or dissimilar architectural features and shade light onto outstanding mechanical characteristics 

of such materials. Furthermore, a fundamental understanding of structure-property relations has 

substantial implications for design strategies and manufacturing processes of next-generation advanced 

functional materials 20. 

In this study, we provide extensive characterization of the shell of M. edulis L. (Finnish blue mussel) 

found in the archipelago of SW-Finland (Northern Baltic Sea) for the first time. This was carried out by 

combing various state of the art techniques to study both inorganic mineralized components as well as 

the organic matrix, including high-resolution electron microscopy imaging, Fourier-transform infrared 

spectroscopy (FTIR), RAMAN-spectroscopy, powder X-ray diffraction, synchrotron wide-angle X-ray 

diffraction (WAXS), Nanoindentation and proteomic analysis. 

2. Method and materials  

2.1. Research specimens 

Live specimens of M. edulis L. were collected from the archipelago of SW-Finland in the northern Baltic 

Sea. Shells were dissected and removed. The outer sides of the shells were cleaned mechanically for 

removing contaminants and epibionts. The inner sides of the shells were also cleaned from connective 

tissue and rinsed with cold (4 °C) water to remove any loose organic debris. Samples were immediately 

flash-frozen in liquid nitrogen and kept at -80°C in a freezer until use.  
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2.2. Scanning electron microscopy (SEM) 

SEM imaging carried out with a Zeiss FE-SEM field emission microscope (Microscopy center, Aalto 

University, Espoo, Finland) with variable pressure, operating at 1–1.5kV operating in low vacuum mode 

for imaging hydrated specimens. 

 

2.3. Powder X-ray diffraction (XRD) 

XRD carried out using Rigaku SmartLab, equipped with HyPix-3000 Hybrid Pixel Array Detector. 

Collection performed using CuKα-radiation of λ=1.5418 Å (energy of 45 kV and 40 mA). The 

diffractometer collected at a 2θ range of 10-80° with the step size of 0.01°/s and 4 sec exposure time. 

The crystalline phases were identified by matching the XRD patterns with the Joint Committee on 

Powder Diffraction Standards (JCPDS) database.    

 

2.4. Synchrotron wide-angle x-ray scattering (WAXS) measurement  

Wide-angle X-ray diffraction experiments were performed at the µSpot beamline at BESSY II 

synchrotron source (Helmholtz-Zentrum Berlin für Materialien und Energie, Germany). The 

measurements were carried out using a silicon (111) monochromator with an X-ray wavelength of 

0.82656Å (energy of 15 keV) and a beam size of 50 µm. The beamline calibration was done with a quartz 

(SiO4) standard giving a sample to detector distance of approximately 280mm. Diffraction patterns were 

collected using a two-dimensional CCD detector (MarMosaic 225, Mar USA, Evanston USA) with a 

pixel size of 73.242 µm and 3072 × 3072 pixels. Intensities have been characterized using the software 

DPDAK after subtraction of air scattering from the diffractogram 21. 

 

2.5. Nanoindentation 

Nanoindentation was performed under ambient conditions using an Ubi nanoindentation instrument 

(Hysitron) with a Berkovich diamond tip. To obtain reduced modulus and hardness, the load-

displacement curves were analyzed using the methods described by Oliver and Pharr. 22 More than 1000 

indentations were performed per sample using a maximum load of 1500 μN on the polished surface. At 

peak load, a dwell time of 10 s was applied to account for creep behavior. At five different regions across 

each sample, two adjoined lines were measured with steps of 15 µm (between lines) and 6.2 μm between 

each indent along the line. Therefore, plastically deformed zones from previous indents did not affect the 

measurements. The effect of the topography was minimized by finely polishing the sample surface. 
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2.6. Fourier transform infrared spectroscopy (FTIR) 

Infrared measurement carried out using Unicam Mattson 3000 FTIR spectrometer directly on the finely 

powdered shell.  To do that, the specimen was mixed with potassium bromide (1:9 mixing ratio of the 

specimen in KBr) which was then turned into 1mm transparent discs under high pressure and measured 

in transmission mode. All spectra were scanned within the range of 400–4000 cm-1, with a total of 32 

scans and a resolution of 32 cm-1. 

 

2.7. Protein extraction  

Shells were incubated with 1%, v/v NaOCl for 24 hours at 4 °C in order to remove superficial organic 

contaminants as well as the periostracum. Shells were then rinsed with deionized water and dried at 

ambient temperature before mechanically crushing them into powder in a cold room (4 °C). 

Decalcification carried out by addition of 50 ml 1 M EDTA pH 8 to every 5 g of shell powder for 24 

hours at 4 °C and centrifuged at 40000g for 60 min. Supernatants collected and dialyzed against MQ 

water and then freeze-dried. Pellets from each method also rinsed three times with MQ water and freeze-

dried. Extracted proteins separated and analyzed with standard sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) 23. 

 

2.8. MALDI-TOF-TOF 

Proteins identity was confirmed by matrix-assisted laser desorption/ionization-time of flight/time of 

flight (MALDI-TOF-TOF) mass spectrometer (UltrafleXtreamTM Bruker, Aalto department of 

biotechnology and chemical technology facilities, Espoo, Finland) equipped with a 200-Hz smart-beam 

laser (337 nm, 4 ns pulse). For partial peptide sequencing (MS/MS), in-gel tryptic digestion performed 

using proteoprofile trypsin in-gel digest kit (PP0100, Sigma-Aldrich). The samples were desalted using 

either ZipTipTM C18 (Millipore) eluted directly onto MALDI target plate using MALDI matrix (a-cyano-

4-hydroxycinnamic acid, 10 mg/ml in 70% ACN, 0.03% TFA). Spectra acquired in the reflection positive 

ion mode and resulting monoisotopic masses cross-referenced against the database (NCBI) with a 

tolerance of 150 ppm. Protein identification performed using the MASCOT search engine (Matrix 

Science, London, UK; version 2.1) against NCBI server (http:// www.ncbi.nlm.nih.gov). The peptide 

mass and fragment ion tolerances were set to 0.5 Da for MS/MS data searched. The peptide peaks further 
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manually investigated by the interpretation of the raw MS/MS spectra to perform de novo sequences. 

Furthermore resulted peptides cross-referenced against BLASTp, Swiss-Prot, and UniProt databases. 
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Fig. 1. (A) Morphological features of an adult M. edulis L. shell, commonly known as Finish blue mussel 

obtained from the archipelago of SW-Finland in the northern Baltic Sea. (B) Longitudinal cross-section 

of the shell. (C and D) SEM micrographs from the cross-section of the shell taken from posterior and 

anterior regions at different magnifications. SEM images illustrating periostracum layer, oblique 

prismatic layer, prismatic layer and a nacreous layer which can be found at the posterior region. At the 

anterior region, only periostracum and oblique prismatic layers can be found.  
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3. Results and discussion  

3.1. Research specimen  

Selected M. edulis L. obtained from the archipelago of SW-Finland in the northern Baltic Sea for this 

study had a size of about 2.5-3 cm (anterior-posterior length) (Fig. 1A, B, and S1). In general, the size of 

the adult M. edulis L. is relatively smaller than other extensively studied and closely related taxa of 

mussels such M. edulis (commonly found in North Atlantic and Pacific), M. galloprovincialis 

(Mediterranean, black sea, and North Pacific) and M. trossulus (North Atlantic and Baltic Sea). Mytilus 

specimens in our study have been found to be a crossbreed between M. edulis and M. trossulus 24. 

3.2. Biomineral ultra-architecture of the shell  

Scanning electron microscopy (SEM) of cross-sections of the shell revealed presence of multiple layers, 

however distinct and recognizable mineralized layers each varying in thickness and microstructural 

features. At the posterior regions of the shell, from dorsal to ventral side, the outer most layer starts with 

an organic layer called periostracum. Periostracum is a protective leathery layer that has a substantial 

importance for the mineralization and templating of the first calcified layer. Subjacent to the periostracum 

is the calcified oblique prismatic layer, exhibiting a closely packed, ordered and highly elongated rod-

like ultrastructure, which is developed around 19° relative to the periostracum layer. Subsequently, the 

prismatic and nacreous layers are located, both developed perpendicular to the periostracum (Fig. 1C). 

The prismatic layer consists of radially elongated short monocrystals while the interior nacreous layer 

comprises a brick and mortar microstructure, assembled from tablets with uniform thickness and widths. 

Among all, oblique prismatic sheets represent the main and thickest (≃ 200 µm) mineralized layer. The 

oblique prismatic layer alone constitutes about 86% of the overall shell thickness in comparison to the 

nacreous (≃ 30 µm) and prismatic (≃ 0.4 µm) layer which only represent about 13% and less than 0.05 

% respectively. In addition, probing the cross-section of the shell at the anterior region (growth front) 

revealed the presence of only the periostracum and oblique prismatic layer (with a thickness of ≃125 µm 

forming 100% calcified layer) (Fig. 1D). We found many similarities in the ultra-architecture of the M. 

edulis L. shell in this study and the closely related M. edulis. However, we also found differences in the 

thickness of the layers comparing these result to an earlier studied adult M. edulis shells 25. Table 1 

summarizes these differences. 
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Table 1. M. edulis L. versus M. edulis shell 

Layers M. edulis L. Mytilus edulis 

µm % µm % 

Inorganic   

Oblique prismatic 200 86 296 80 

Prismatic 0.2 0.05 4 1 

Nacreous 30 13 66 18 

Organic   

Periostracum 30 - 15 - 

Table 1. Comparison between the thickness of inorganic and organic layers in the M. edulis L. and M. 

edulis shell.  

3.3. Calcite and aragonite  

To investigate the nature of the shell and its variability in the calcified composition we performed XRD. 

The results (Fig. 2A) illustrated that the shell, in fact, contains calcium carbonate (CaCO3) which has 

been shown for many other seashells 26. Spectra showed that the shell mainly constitutes of calcite, but 

reflections corresponding to aragonite were also noticeable. Calcite and aragonite both were found to be 

the most stable polymorph of CaCO3. We further mapped the distribution of each polymorph across the 

shell using simultaneous high-resolution synchrotron WAXS/SAXS mapping (Fig. 2B and C). This 

revealed two very distinct phases of calcite and aragonite. A thick outer region comprises calcite 

corresponding to the oblique prismatic layer and a thinner region toward the ventral side comprise of 

aragonite corresponding to prismatic and nacreous layers.  
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Fig. 2. (A) XRD of the bulk shell powder. (B) Representative 2D synchrotron WAXS/SAXS diffraction 

patterns and their extracted 1D profile corresponding to oblique prismatic and nacreous mineralized 

layers. (C) Heat-map illustrating scattering intensity distribution of the calcite and aragonite throughout 

the ultra-architecture of the shell. Each square corresponds to single measurement point. Cyan indicates 

distribution of the calcite and orange displays the aragonite.   
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3.4. Oblique prismatic layer  

High magnification SEM images from oblique prismatic showed that it is made from individual calcified 

rod-like ultrastructure with diameter of 0.5 µm and lengths stretching from 120 to 200 µm (aspect ratio 

ranging from 1:240 to 1:400) in posterior and anterior region respectively. Rods were tightly packed and 

oriented at 19° (posterior region) relative to periostracum layer and 22° (anterior region) (Fig. 1D).  An 

earlier report demonstrated 45° of orientation for the rods in M. edulis in the anterior region 25. However, 

the degree of orientation of the rods in the posterior region of the shell was not in the scope of earlier 

studies. We further investigated the morphology of the rods in more detail using high-magnification SEM 

imaging (Fig. 3). We noticed the presence of nanometer-sized pores with a diameters of about 40-50 nm. 

These were randomly distributed throughout the length of the rods. Investigating cracked rods, we 

noticed that in fact these pores are opening of channels extending at around 1µm in length within the 

core of the calcified rods, mostly present at the anterior regions close to the ventral side.  

 

Fig. 3.  Characterization of the calcified rods in the oblique prismatic layer located at the anterior-

ventral side of the shell. High magnification SEM images revealed the presence of pores with diameters 

of 40-50 nm forming openings of channels that extend through the rods. Blue arrows indicate the opening 

of the pores. Fracturing the rods also shows also that the channels extended through the rods.  
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3.5. Mechanical properties 

To gain additional insight into the mechanical properties of the shell, we performed nanoindentation 

mapping on longitudinal and transversal cross-sectional cuts of the two identical shell originating from 

the same mussel (Fig. 4A, B, and fig. S2A). Probing the longitudinal cut exhibited a gradient of 

mechanical properties. Moving from anterior to the posterior region we collected the profile at nine 

positions, each three millimeters apart from each other and noticed an increase in the stiffness value of 

about 53 ±5.9 GPa to 80 ±16.5 GPa. For the same set of experiment, the calculated hardness showed 

values increasing from 1.5 GPa at the anterior region to around 4 GPa at the posterior region. We then 

performed nanoindentation on the other shell, in which we made a transversal cut corresponding to 

position five of the longitudinal cut and performed nanoindentation at five different positions (Fig. 4C, 

D, and fig. S2B). Moving laterally, Young’s modulus was ranging from 60 to 66 GPa to and hardness 

value ranging from 2.5 to 3 GPa.  
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Fig. 4. Mechanical properties derived from nanoindentation experiments performed on the longitudinal 

and transversal cross-section of the shell. (A) Profile of Young’s moduli obtained at nine different 

positions across longitudinal cross-section and (B) average Young’s modulus and hardness values for 

each position. (C) Profile of Young’s moduli obtained at nine different positions across transversal cross-

section and (D) average Young’s modulus and hardness value for each position. 

3.6. Organic-rich interface 

By studying fracture surfaces of the hydrated oblique prismatic layer, we noticed the presence of an 

organic adhesive matrix filling the interfaces between the rods (Fig. 4A). Most importantly, we noticed 
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that the gel-like adhesive matrix not only oozed out from the interfaces of the rods but also from the 

openings of the nano-sized pores. Similar gel-like organic matrix have been observed in fractured shell 

of Atrina rigida and Pinctada margaritifera 4.This provided the basis to hypothesize that the observed nano-

sized pores may have a function in transporting matrix material during the biomineralization and 

adhesion of the rods. In addition, we identified regions in which adhesive organic matrix formed 

filaments, bridging cracks while fracturing. It is noticeable that filaments are distinctly oriented 

perpendicular to the direction of the crack (Fig. 4A), suggesting resistance to fracture by dissipating 

energy through the formation of nano-sized filaments which deflects the cracks into regions in which 

propagation becomes more difficult.  

 

In order to investigate the nature of the matrix and the compositions in more detail and compare to earlier 

studies, we performed FTIR experiments in transmission mode. Fig. 5B and C illustrate FTIR spectra of 

the bulk shell powder, containing soluble and insoluble organic remains after decalcification (either using 

1M EDTA or 5% v/v acetic acid). Spectra strongly exhibit the presence of organic-rich-matrix and 

calcium carbonate (Table S1). The organic-rich-matrix exhibits three main FTIR band ranges 27–29. At 

834-899 cm-1 stretching vibrations of the C-O-C and C-C bonds corresponded to α-chitin as expected. In 

the range of 1100-1700 cm-1 multiple bands showed up, mainly corresponding to amide (I, II and III) 

bands of protein (C=O, C-N, N-H, C-N and C-C vibrations) and α-chitin (CH2, OH, and C=O vibration). 

Finally, the 2962 cm-1 band corresponds to amide B band of α-chitin.  

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/636696doi: bioRxiv preprint 

https://doi.org/10.1101/636696
http://creativecommons.org/licenses/by/4.0/


 

Fig. 5. (A) Environmental SEM images from the fracture surface of the hydrated oblique prismatic layer, 

illustrating organic adhesive matrix filling the interfaces between the calcified rods also regions in which 

the organic-rich matrix bridges the crack by forming filaments. Yellow arrows show a gel-like adhesive 

matrix that oozes out from the interfaces of the rods but also from the openings of nano-sized channels 

shown by blue arrows. Red arrows show the filaments bridging the cracks and they are oriented 
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perpendicular in the direction of crack propagation. (B) FTIR spectra of the bulk shell powder. (C) FTIR 

spectra of the extracted organic matrix after decalcification.  

3.7. Protein in the matrix  

It has become more and more clear that proteins play crucial roles during mineralization and assembly 

of marine shells. Proteins (small quantities of less than 1 %) along with the chitin network have been 

shown to provide structural integrity, functioning as soft, energy-dissipating matrix by hindering crack 

propagation through the interfaces and increasing the toughness (Feng et al., 2017; Zhang et al., 2012; 

Bram et al., 2012; Fabio and M., 2012). Therefore, we set to explore proteins extracted from the shell. 

Fig. 6A illustrates sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the 

extracted proteins. Proteins were extracted after decalcification either using 1M EDTA or 5% v/v acetic 

acid. Presence of more protein extracts was noticeable in the insoluble fractions than soluble fractions 

obtained independent of extraction method. Clear bands, one at 100 kD and the other one at 45 kD in the 

insoluble extracts were noticeable. However, we did not observe similar bands in the soluble fraction.  

Further, 100 kD and 45 kD were subjected to in-gel trypsin digest (Fig. 6B) for de novo sequencing. Ten 

fragments from tryptic digest of 100kD protein and six from 45kD were selected, which had the strongest 

peak as well as the highest quality factor. Fig. 6C and D illustrates product ion spectrum and identified 

peptides with de novo sequencing for the corresponding isolated tryptic fragments. To identify possible 

hits to existing protein sequences, resulted monoisotopic masses cross-referenced using MASCOT search 

engine (Matrix Science, London, UK; version 2.1) against NCBI server (http://www.ncbi.nlm.nih.gov). 

In addition to that, identified de novo sequences cross-checked manually against BLASTp, Swiss-Prot 

and UniProt. However, we did not find any significant hits. Even though it would be too early to draw 

any conclusion about the nature of the intact proteins using these identified short fragments, but analyzing 

the amino acid composition Fig. S3 showed 100 kD protein might be rich in glycine, serine, asparagine, 

alanine, proline and arginine. However, 45 kD proteins mostly contained alanine, glycine, glutamine, 

lysine, serine, tryptophan and tyrosine.  
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Fig. 6. (A) SDS-PAGE of the soluble and insoluble protein extracted after decalcification of the shell 

using 1m EDTA pH 8 (marked as S_ED and In_ED) and 5% v/v acetic acid (marked S_AC and In_AC). 

Molecular weight markers are indicated as MW. (B) Mass spectrum of fragments produced from tryptic 

digestion of 100 kD (In_ED) and 45 kD (In_ED) band. (C) MS/MS spectrum of ten peptides obtained 

from 100kD (IN-ED) digest with m/z ranging from 650-1315 and their corresponding sequences. (D) 

MS/MS spectrum of six peptides from 45 kD (IN-ED) digest with m/z ranging from 800-1100 and their 

corresponding sequences. 

4. Conclusion 

To our knowledge, this is the first detailed study on the structure of M. edulis L. shell, commonly known 

as Finnish blue mussel found in the archipelago of SW-Finland (Northern Baltic Sea). We employed 

various techniques to investigate in detail, both inorganic mineralized components as well as the organic-

rich matrix of M. edulis L. Being closely related to Mytilus edulis we found a very similar ultra-
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architecture across the shell. However, we also found differences, for instance in the thickness and degree 

of orientation of the layers. Using high resolution SEM imaging and probing the calcified rods in the 

oblique prismatic layer, we found pores with a diameters of 40-50 nm and lengths up to a micrometer 

extending through the rods. These channels were only found in the anterior ventral part which lacks the 

nacreous part. We also noted that the matrix material was highly fluid, oozing out from the cracked 

surfaces. The fluidity of the matrix and the presence of the channels in the more newly formed parts of 

the shell, leads us to suggest that the channels might have a role for transport of the fluid organic matrix.  

Our results also show that the shell exhibits a gradient of mechanical properties. Moving from anterior 

to posterior region, we noticed an increase of both stiffness and hardness. This likely attributes to the fact 

that each region has quite distinct morphology as they are in the different developmental stage. At the 

posterior region, the biomineralized layer grows and developed earlier, hence this resulted in thicker and 

more compact motifs with noticeable differences in the degree of orientation than the anterior region. 

We hypothesize that this could possibly be a generic characteristic for other closely related taxa of 

mussels including M. edulis as this has not been in the scope of earlier studies to our knowledge. This 

finding could provide inspiration for designing lightweight load-bearing materials in which a gradient of 

mechanical properties is crucial. There is growing evidence suggesting that the organic-rich interface 

largely governs both intrinsic and extrinsic toughening in such materials. In addition to that, their 

substantial importance for controlling both nucleation and inhibition of the crystal growth and the 

adhesion of the rod cannot be ignored. We identified chitin and protein as the main component of the 

organic-rich interfacial matrix. We found protein-chitin-rich interface forms less than 1% volume 

fraction of the shell. However sufficient to work in synergy with their stiff surrounding architecture to 

provide non-linear deformation upon initiation of the cracks. This results in the propagation of the cracks 

into conformations that requires considerable energy before undergoing catastrophic failure with 

elongated filaments of chitin-protein, bridging crack at the interface of the calcified rods. Proteomic 

analysis showed two abundant proteins with sizes around 100 kD and 45 kD. In future, a combination of 

high-throughput RNA-sequencing, advanced proteomics analysis, and X-ray crystallography could be 

applied to identify the full-length sequences of these proteins and find possible sequence or structural 

homology to other known proteins. Eventually, this could be combined with molecular dynamic 

simulations to accelerate our understanding of their key molecular interactions with chitin and CaCO3 

and their colloidal complexation toward structure formation.  
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