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Abstract 8 

1. The biodiversity of a site includes the absent species from the region that are theoretically 9 
able to live in the site’s particular ecological conditions. These species constitute the dark 10 
diversity of the site. Unlike present species, dark diversity is unobservable and can only be 11 
estimated. Most existing methods to designate dark diversity act in a binary fashion. 12 
However, dark diversity is more suitably defined as a fuzzy set—in which the degree of 13 
certainty about species membership is expressed as a probability. 14 

2. We present a new method to estimate probabilistic dark diversity based on the 15 
hypergeometric distribution. The method relies on co-occurrences to infer the strength of the 16 
association between pairs of species and assign probabilistic adscription to dark diversity to 17 
absent species. We compare it with two established methods to estimate dark diversity (Beals 18 
index and favorability correction). To test the methods, we created simulations based on 19 
individual agents in which the suitability of each species in each site is known. We compared 20 
the ability of the methods to accurately predict suitability and the size of dark diversity, and 21 
compared their sensitivity to data availability. Further, we assessed the methods in two real 22 
datasets with nested sampling designs. 23 

3. Our simulations revealed that predictions of the Beals method were extremely sensitive to 24 
species frequency, and predicted suitability poorly. The Favorability transformation corrected 25 
this relationship, but did still predicted extremely low probabilities for species with very little 26 
information. The Hypergeometric method outperformed the Beals and Favorability methods 27 
in all considered aspects in the simulations and displayed better characteristics in the real 28 
datasets. 29 

4. Probabilistic consideratiosn of biodiversity will help to acknowledge the uncertainty 30 
associated with ecological information. Although the Beals method has been described as the 31 
best estimator of dark diversity, it should be preferred only when the goal is to predict future 32 
apperances of species. However, studies on dark diversity should focus on the ecological 33 
affinities of species. The Hypergeometric method is the most promising method to estimate 34 
probabilistic dark diversity and species pool composition based on co-occurrences.  35 
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Introduction 36 

The biodiversity of a site consists not only of those species actually present, but also of absent species 37 

from the region that are theoretically able to live in the site’s particular ecological conditions (its dark 38 

diversity; Pärtel, Szava-Kovats, & Zobel, 2011). Unlike present species, dark diversity is, by definition, 39 

unobservable and must be estimated. The increasing recognition of the importance of considering absent 40 

species (Bennett & Pärtel, 2017; de Bello et al., 2012; Pärtel et al., 2011) has recently seen the 41 

development of methods to estimate the size and composition of dark diversity (de Bello et al., 2016; 42 

Karger et al., 2016; Lewis, Szava-Kovats, & Pärtel, 2016), although ample room remains for 43 

methodological improvements. Methods to estimate dark diversity include the use of indicators of the 44 

position of species’ niches along environmental gradients (de Bello et al., 2016; Lewis et al., 2017), 45 

species distribution modelling (Estrada, Barbosa, & Real, 2018; Ronk, de Bello, Fibich, & Pärtel, 2016), 46 

regional surveys of the habitat of interest (Jiménez-Alfaro et al., 2018), or species co-occurrence 47 

patterns (Brown et al., 2019; de Bello et al., 2016; Lewis et al., 2016).  48 

Many of these methods designate dark diversity in a binary fashion, i.e., any given species either 49 

belongs (1) or does not belong (0) to local dark diversity. However, binary classification requires 50 

establishing thresholds to define which species are included in dark diversity. Despite efforts to make 51 

this procedure as aseptic as possible, the selection of thresholds remains rather arbitrary (Karger et al., 52 

2016), can affect the results (Lewis et al., 2016), and is often difficult to justify. By contrast, dark 53 

diversity is more suitably defined as a fuzzy set—in which the degree of certainty about species 54 

membership is expressed as a probability—rather than as a binary designation. In other words, the 55 

probability of a species passing through all the different ecological filters ultimately determines the 56 

probability that the species is part of the dark diversity of a given site. 57 

Although the justification for probabilistic approaches to dark diversity is long recognized (e.g. 58 

Mokany & Paini, 2011; Pärtel, Zobel, Zobel, van der Maarel, & Partel, 1996), methods adopting this 59 

approach are only recently being developed (Karger et al., 2016; Lessard et al., 2016; Real, Márcia 60 

Barbosa, & Bull, 2017). Species co-occurrence patterns offer a pragmatic method for the probabilistic 61 

approach. Species that frequently co-occur share similar ecological requirements (integrating both 62 

abiotic and biotic conditions). Imagine we are interested in the status of a particular species that has not 63 

been observed in a community. The presence of other species that tend to be found together with this 64 

species suggests that the probability of membership in local dark diversity is high. The most widely 65 

used method to estimate dark diversity based on co-occurrence patterns is the Beals index (Beals, 1984; 66 

Ewald, 2002). Evidence suggests that estimations of dark diversity based on the Beals index have 67 

greater predictive ability than relying on databases with habitat requirements of species (de Bello et al., 68 

2016; Lewis et al., 2016). This method assigns to each species and site the probability of the species 69 

being present, which is computed by combining information on the identity of the species actually found 70 

in the community (observed diversity) and their patterns of co-occurrence with the focal species. 71 

However, Beals values increase monotonically with the frequency of the species in the region (De 72 
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Cáceres & Legendre, 2008; Lewis et al., 2016; Münzbergová & Herben, 2004). This is problematic, 73 

because the fact that a species is rarely observed in a set of communities is not necessarily an indicator 74 

that the species is not part of the dark diversity of some sites, particularly if dispersal limitation plays a 75 

role (Jiménez-Alfaro et al., 2018; Riibak et al., 2015). Actually, the probability that a species will appear 76 

in a site where it is currently absent depends on a combination of the suitability of the local conditions 77 

and factors related to dispersal, including regional frequency and dispersal ability. Accordingly, Beals 78 

values have been used in studies aiming to predict species appearances in the near future without 79 

distinguishing habitat suitability per se (Karger et al., 2016). However, when studying dark diversity 80 

we are interested only on species suitability. One way to resolve this issue is to apply species-specific 81 

thresholds (Münzbergová & Herben, 2004), resulting in a binary classification of species. Although 82 

such a classification is independent of species frequency, it lacks the preferred notion of dark diversity 83 

in probabilistic terms. 84 

One alternative is to transform indices affected by species frequency (such as Beals) into pure 85 

indicators of the suitability of the local conditions for each particular species (Favorability; Real, 86 

Barbosa, & Vargas, 2006). The favorability transformation provides information on the likelihood of a 87 

species to be found in a site with respect to random expectations (i.e. regardless of its presence/absence 88 

ratio in the dataset; Real et al., 2006). This solution—which has been applied to logistic regressions in 89 

the context of species distribution modelling (Olivero et al., 2017; Real et al., 2017)—could also be 90 

applied to estimate probabilistic dark diversity from the Beals index. Alternatively, rather than solving 91 

the issue of frequency with post-hoc transformations, we propose that species suitability in a site can 92 

be estimated directly by comparing the realised co-occurrence patterns of each pair of species to that 93 

expected under the assumption of their complete lack of association. The degree to which the observed 94 

co-occurrence between a pair of species departs from random association can be then used as the 95 

indicator value for that pair of species. Associations between pairs of species can be analysed using the 96 

hypergeometric distribution (Griffith, Veech, & Marsh, 2016). 97 

In this paper, we advance towards the establishment of methods to estimate probabilistic dark 98 

diversity using species co-occurrence matrices. We first present a novel method based on the 99 

hypergeometric probability distribution to assign probabilistic estimates of dark diversity. We test this, 100 

along with raw Beals values and its transformation into favorability, in a simulated dataset created 101 

through individual-based modelling, resulting into communities with known observed and dark 102 

diversity. We subsequently compare the different methods using a real dataset with a nested sampling 103 

structure (Lewis et al., 2016). This comparison allows us to distinguish features of these methods, 104 

including their probabilistic distributions, their ability to estimate accurately the ecological suitability 105 

of sites for species, or their dependence on the amount of data available. 106 

 107 

Simulations and dark diversity estimations 108 
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Comparing the performance of methods to estimate dark diversity is challenging because dark diversity 109 

is not observable in natural conditions. Some studies have used datasets with nested hierarchical 110 

sampling designs, where vegetation is sampled in a small plot that is contained within a larger plot 111 

(Brown et al., 2019; de Bello et al., 2016; Lewis et al., 2016). In these studies, the information from the 112 

smaller plot is used to build a species x species co-occurrence matrix, and the estimations of dark 113 

diversity made from the smaller plots are confronted with the species present in the larger plots. It is 114 

unclear, however, to what point species in the larger plot reflect the true dark diversity of the smaller 115 

plot. Species whose ecological requirements match those of the site are not necessarily present in the 116 

surroundings. This can happen, for example, when a species has been unable to disperse to a favourable 117 

site, which is more likely the case for regionally rare species. As a result, considering that the dark 118 

diversity of the small plot can be derived from the species present in the surroundings likely favours 119 

methods whose predictions reflect species frequency. However, as discussed above, these methods do 120 

not necessarily reflect better the suitability of species. Simulations which assign the match between the 121 

ecological requirements of species and the environmental characteristics of sites are a valuable 122 

alternative in this case (Lewis et al., 2016). In short, we created a virtual landscape containing different 123 

habitats and a set of species with different suitability for these habitats and allowed communities to 124 

develop following simple rules for a period of time (see below). Finally, we sampled the communities 125 

and used the co-occurrence pattern of species to estimate dark diversity with the different methods, 126 

which we finally compared with species suitability. 127 

Simulations were based on Jõks & Pärtel (2019), with the difference that our agents represented 128 

individuals of a species rather than populations. We created a 100 x 100 grid divided into 100 plots 129 

(each encompassing 10 x 10 cells); cells could either contain an individual or be empty. Individuals 130 

acted according to simple rules that corresponded to some of the basic processes that determine diversity 131 

(selection, drift, and dispersal; see below and Vellend, 2010). Among these processes, selection 132 

depended on the suitability of each species to each plot. For this, we assigned the same value for 133 

environment to all the cells in the same plot, which was drawn from a normal distribution with µ=0 and 134 

σ=5. We then created a set of 100 species, with each species having an optimal value in the environment 135 

drawn from a uniform distribution from -10 to 10; all individuals of a species had the same value (i.e. 136 

there was no intraspecific variability). Once these values were assigned, we estimated the distance 137 

between each community’s environment and each species optimum, considering the environment as a 138 

circular variable. Suitability indicates how close an environment is to the optimum of a given species; 139 

suitability was 1 when the environment value in the plot was equal to the species optimum and decreased 140 

towards 0 as distance increased (following a normal distribution). 141 

Simulations started with an empty grid (no individuals present), and were run for 5250 sequential 142 

cycles. In each cycle, the following processes (and sub-processes) took place: 143 
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Dispersal. Species were added to communities through dispersal (Vellend, 2010), which had two 144 

sources in our simulation: immigration from the region and reproduction. Immigration simulated the 145 

arrival to the grid of individuals belonging to species from outside the landscape. In each cycle, each 146 

cell had a 10% probability of receiving an individual from a randomly selected species from the region. 147 

Established individuals (see “Selection” below) had a 40% probability of reproducing; reproducing 148 

individuals created a propagule which was dispersed in a random direction at a distance that was chosen 149 

from a log-normal distribution with a mean value of 10% the maximum distance between cells in the 150 

grid. All species had similar dispersal abilities. To avoid edge effects, we set periodic boundary 151 

conditions in the grid; this way, when a propagule reached the boundaries of the grid, its dispersal 152 

continued from the opposite side. When individuals from more than one species arrived at the same cell 153 

in a cycle, the retained species was randomly selected among the arriving species. 154 

Selection. This category included processes regulating interactions between species and of 155 

species with their environment. We considered two main selection sub-processes, both related with 156 

suitability: establishment and competition. Establishment decided whether a propagule arriving to a cell 157 

formed an adult individual or died. The probability that a propagule established in a cell was equal to 158 

the suitability of the species in the corresponding plot. Competition took place when an individual was 159 

able to establish in a cell previously occupied by another individual (the “local” individual). In this case, 160 

the difference in competitive abilities between the arriving and the local individuals was estimated as 161 

their difference in suitability (DiffSuit = suitabilitylocal – suitabilitydispersed). The probability that the local 162 

would persist was estimated as the logistic function of DiffSuit. Through the combined effect of 163 

establishment and competition, species with higher suitability for a given plot should be more frequent 164 

and abundant in this plot. 165 

Drift. This category included processes that randomly changed species abundances (Vellend, 166 

2010). We incorporated it in the simulations by including mortality: in each cycle, each individual had 167 

a fixed 10% probability of dying, regardless of its suitability. 168 

We built a species x species co-occurrence matrix from the composition after the final cycle, and 169 

then estimated probabilistic dark diversity for each plot using three different co-occurrence based 170 

methods: the Beals index, Favorability, and the newly developed Hypergeometric method. We provide 171 

the functions for each of these processes, as well as the code used for the simulations in Appendix 1. 172 

 173 

Probabilistic estimations of dark diversity 174 

 175 

HYPERGEOMETRIC METHOD 176 
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The premise of the hypergeometric method is simple: for each pair of species we can compare 177 

their realised number of co-occurrences with random expectations (i.e. if there was no association 178 

between species). Let us consider two species i and j; the probability that they co-occur in a number of 179 

sites M is given by the mass function of the hypergeometric distribution (Griffith et al., 2016; Veech, 180 

2013): 181 

𝑃𝑖𝑗=𝑀 =
(𝑛𝑖

𝑀
) (𝑁−𝑛𝑖

𝑛𝑗−𝑀
)

( 𝑁
𝑛𝑗

)
, 182 

where ni and nj are the total number of occurrences of species i and j, respectively, and N is the 183 

total number of sites sampled. The mean of this distribution (𝑀𝑖𝑗) denotes the expected number of co-184 

occurrences between species i and j is given by: 185 

𝑀𝑖𝑗 =
𝑛𝑖𝑛𝑗

𝑁
  186 

Logically, if the number of actual co-occurrences is greater than expected by chance, the two 187 

species are positively associated, and vice versa. We can estimate this departure from expected (ES, 188 

effect size) simply by subtracting �̅� to M: 189 

𝐸𝑆𝑖𝑗 =  𝑀𝑖𝑗 − 𝑀𝑖𝑗 190 

ES, however does not convey information on the strength of the association (or lack thereof) 191 

between two species. For this, we can estimate standardized effect sizes (SES) by dividing the effect 192 

size by the square root of the variance of the hypergeometric distribution (the standard deviation): 193 

𝑉𝑎𝑟𝑖𝑗 = (
𝑛𝑖𝑛𝑗

𝑁
) (

𝑁 − 𝑛𝑖

𝑁
) (

𝑁 − 𝑛𝑗

𝑁 − 1
) 194 

𝑆𝐸𝑆𝑖𝑗 =  
𝐸𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒

√𝑉𝑎𝑟𝑖𝑗

 195 

SES indicates how many standard deviations the observed number of co-occurrences is from the 196 

expected value. They can then be expressed as probabilities (Pij) by confronting the SES value with the 197 

cumulative normal distribution function with mean=0 and standard deviation=1. Probabilities close to 198 

1 indicate that the two species are positively associated, whereas probabilities close to 0 indicate that 199 

the two species are negatively associated; intermediate values denote a random association. This 200 

procedure can be applied to all pairs of species to build a symmetric indication matrix reflecting the 201 

strength of the association between all species pairs. The indication matrix can then be used to predict 202 

the probabilistic dark diversity of a given site (k) for which we know the observed diversity. This 203 

probability can be estimated for each of the absent species in the site (i.e. all species in the dataset that 204 

were not present in the site) simply by averaging the indication values of the species actually present in 205 

the community: 206 

𝑃𝑘𝑖 =
1

𝑆𝑘
∑ 𝑃𝑖𝑗𝐼𝑘𝑗,

𝑆

𝑗≠𝑖

 207 
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where Sk is the total number of species found in site k, Ikj reflects the incidence (0, 1) of the 208 

indicator species j in site k, and S is the total number of species in the region. Hence, the probability of 209 

an absent species belonging to the dark diversity of a site is high if it tends to have positive associations 210 

with those species that are present, and negative associations result in a low probability of membership.  211 

 212 

BEALS INDEX 213 

The Beals probability that a species i should be present in a site k (Pki) can be estimated following 214 

(Münzbergová & Herben, 2004): 215 

 216 

𝑃𝑘𝑖 =
1

𝑆𝑘 − 𝐼𝑘𝑖
∑

𝑀𝑖𝑗𝐼𝑘𝑗

𝑛𝑗
,

𝑆

𝑗≠𝑖

 217 

where Sk is the total number of species found in site k, Iki and Ikj reflect the incidence (0, 1) of 218 

species i and j in site k, respectively, S is the total number of species in the region, Mij is the number of 219 

co-occurrences between species i and j, and nj is the total number of occurrences of species j, 220 

considering all sites. The probabilities predicted by the Beals index are correlated with the frequency 221 

of the species in the considered dataset, which has led some authors to recommend setting a species-222 

specific probability threshold, which effectively creates a binary index (Lewis et al., 2016; 223 

Münzbergová & Herben, 2004). 224 

 225 

FAVORABILITY INDEX 226 

An alternative that avoids thresholding and makes the probabilities independent of species frequency is 227 

the favorability index proposed by Real, Barbosa, & Vargas (2006): 228 

𝐹𝑘𝑖 =

𝑃𝑘𝑖
(1 − 𝑃𝑘𝑖)

𝑛𝑖
𝑁 − 𝑛𝑖

+
𝑃𝑘𝑖

(1 − 𝑃𝑘𝑖)

, 229 

where Fki is the favorability of site k for species i, Pki is a probability index affected by the global 230 

frequency of the species (i.e. the Beals index in this case). 231 

 232 

Methods performance comparison 233 

The advantage of using simulations to test dark diversity methods is that information about the 234 

suitability of absent species in each plot is predetermined and can be compared to the probabilities 235 

obtained from each method. We designed different tests to compare specific aspects of the methods. 236 

TEST 1: CORRELATION WITH SUITABILITY AND BIAS 237 

Test rationale. We predicted the probabilities of all the absent species from all the communities 238 

for each method. We then estimated the Pearson correlation coefficient between the suitability of the 239 

species in the communities and the probability obtained from each method. A good method should 240 
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exhibit a strong correlation, reflecting its ability to characterize the suitability of each species in each 241 

community. We also examined the accuracy of each method (closeness to the 1:1 line) by estimating 242 

their mean absolute error (MAE): 243 

𝑀𝐴𝐸 =
1

𝑆 ∗ 𝑁
∑ ∑|𝑦𝑘𝑖 − 𝑃𝑘𝑖|,

𝑆

𝑖=1

𝑁

𝑘=1

 244 

where 𝑦𝑘𝑖 is the real value of suitability for species i in site k and 𝑃𝑘𝑖 is the probability assigned 245 

by each method.  246 

Test results. Our results revealed that the Hypergeometric method exhibited the most desirable 247 

characteristics. First, it showed the strongest correlation with suitability (which is ultimately the goal of 248 

a method for detecting dark diversity), followed by the Favorability method (Fig. 1). By contrast, the 249 

Beals index presented a substantially weaker correlation. However, Favorability exhibited a narrow 250 

range of predicted probabilities, with most values close to 0.5, despite suitability values were evenly 251 

spread across the entire 0-1 range. This resulted in Favorability being the least accurate method in our 252 

tests (MAE = 0.25). By contrast, the Hypergeometric method showed a much wider range of predicted 253 

probabilities, and more accurate estimations of suitability (MAE = 0.17; Fig. 1). 254 

 255 

TEST 2: PREDICTIVE ABILITY AND RELATIONSHIP WITH DATASET SIZE. 256 

Test rationale. One potentially important aspect in comparing these methods is their sensitivity to the 257 

size of the dataset. Some methods may be more suitable for datasets containing many sites than those 258 

containing few sites. To examine this, we selected random subsets of varying size (from 5 to 95 259 

communities in intervals of 5) of the communities after the last simulation step. From these reduced 260 

datasets, we estimated the correlation between the probability obtained from each method to absent 261 

species and their suitability in communities (as in Test 1). We repeated this procedure 100 times for 262 

each size, attaining 100 values of the correlation for each size and method. We then examined how the 263 

correlation improved as a function of the size of the dataset for each method. For this, for each subset 264 

(i.e. each sample size), we performed a linear mixed model using the method as a fixed effects 265 

explanatory variable and each random subset (100 repetitions) as a random effect. We then performed 266 

Tukey post-hoc tests to detect differences among methods. 267 

Test results. Our results showed that the Hypergeometric method performed best for most sample sizes 268 

(Fig. 2). The Favorability method outperformed the Hypergeometric method only with a sample size of 269 

5 communities, which is an unrealistically low value. The hypergeometric method’s performance 270 

increased more rapidly than that of the other methods with increasing number of communities and was 271 

the superior method for all sampling sizes greater than 15 communities. Beals’s predictive ability was 272 

inferior to Favorability’s for all sample sizes (Fig. 2). 273 

 274 

TEST 3: ESTIMATIONS OF DARK DIVERSITY SIZE 275 
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Test rationale. In some cases, it is interesting to characterize the size of dark diversity (i.e. its expected 276 

number of species). For this. the probabilities for all species in a given site can be added (Karger et al., 277 

2016). This approach considers our level of certainty about species membership in dark diversity: 278 

species with low probabilities will count little towards the total dark diversity size, whereas species with 279 

high probabilities will contribute greatly. Using the data from the last simulation, we tested the 280 

relationship between the size of dark diversity predicted by each method and the sum of the suitability 281 

of the absent species in each community. As in Test 1, we also estimated MAE to assess the accuracy 282 

of each method. 283 

Test results. The size of dark diversity based on the Beals index had a non-significant correlation with 284 

the size of dark diversity based on suitability (p = 0.485; Fig. 3). By contrast, both the Favorability and 285 

the Hypergeometric methods exhibited positive relationships between the predicted size of dark 286 

diversity and the size of dark diversity based on suitability, with similar predictive ability (p < 0.001 in 287 

both cases; Fig. 3). However, the sizes of dark diversity estimated with the hypergeometric method 288 

were much more similar to those based on suitability (59.3% reduction in MAE), whereas sizes based 289 

on suitability were always overestimated. 290 

 291 

TEST 4: CORRELATION BETWEEN PREDICTIONS AND SPECIES REGIONAL FREQUENCY 292 

Test rationale. Finally, we explored the effect of species regional frequency on the values that each 293 

method predicts. The predictions of a method that simply reflects species frequency will be biased 294 

(greater probabilities for more frequent species), and not satisfying the original definition of dark 295 

diversity, which does not depend on species regional frequency, but rather on their ecological 296 

requirements. To explore this, we estimated the correlation between the probability obtained for species 297 

not observed in the community and the frequency of species in the dataset (number of communities in 298 

which a species was found). Ideally, suitable methods to estimate probabilistic dark diversity should 299 

not show strong correlations between these two variables. 300 

Test results. The predictions of the Beals index showed an extremely strong positive correlation with 301 

species regional frequency (Fig. 4). The other two indices also showed positive (but notably weaker) 302 

correlations with regional frequency. Favorability, in principle designed to mitigate this correlation, 303 

exhibited the weakest correlation, whereas the Hypergeometric method predictions were the least 304 

affected by the regional frequency of species (Fig. 4). 305 

 306 

Real data example. 307 

We applied the three methods in two vegetation datasets with a nested hierarchical sampling 308 

design. The first dataset was a systematic sample of Swiss forests (“Swiss dataset”; Wohlgemuth, 309 

Moser, Brändli, Kull, & Schütz, 2008), with species recorded in 707 sites at two nested scales (30 m2 310 

and 500 m2), with a total of 772 species. The second dataset contained coastal grassland vegetation from 311 

Scotland (“Scottish dataset”; Shaw, Hewett, & Pizzey, 1983), encompassing 3033 sites and 465 species. 312 
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Species identities were also recorded at two nested scales (4 m2 and 200 m2). Following Lewis et al. 313 

(2015), we built species x species co-occurrence matrices in the smaller plots, and then estimated 314 

probabilistic dark diversity using the three different probabilistic co-occurrence based methods. 315 

Similarly to Test 1 for the simulated dataset, we explored the probabilities obtained from each 316 

method for all species in all communities. We also compared the probabilities that each method assigned 317 

to species designated as “Absent” (species present in neither nested plots), as “Dark” (species absent 318 

from the small plot but present in the large plot), and “Observed” (species present in the small plot). 319 

Finally, as in Test 4 for the simulated dataset, we explored the correlation between the values predicted 320 

by each method and the frequency of the species in the region. 321 

In these datasets, both the Hypergeometric and the Favorability methods predicted probabilities 322 

encompassing the whole 0-1 range, with average predictions being around 0.4 for both methods. By 323 

contrast, the raw Beals index predicted extremely low probabilities on average (Fig. 5). This behaviour 324 

reflects the effect of regional frequency in the Beals raw index; this effect was absent in the favorability 325 

correction, which should reflect deviations from the general frequency of species (thus being higher for 326 

sites where the conditions are better suited for the species; Real et al. 2017). The distribution of 327 

Favorability probabilities was bimodal, with one peak of probabilities equal to 0, much more marked 328 

in the Scottish dataset (30.3% of the predicted probabilities in the Scottish dataset and 12.7% in the 329 

Swiss dataset were exactly 0), and the second peak resembling a normal distribution centred around 330 

0.5. This bimodality was caused by the great number of rare species occurring only in one or two sites, 331 

which generally are assigned a 0 probability in the Beals index method, and which is maintained in the 332 

Favorability method. By contrast, the Hypergeometric method assigned to these species in most cases 333 

a probability slightly less than 0.5. The Hypergeometric method produces probabilities near 0.5 in two 334 

situations: from a genuine lack of association among species, or from a lack of information due to the 335 

species having low frequency (or theoretically high frequency). The latter restricts the number of ways 336 

in which species can co-occur (two species with only one appearance each in a dataset can co-occur in 337 

one site), and hence departures from random co-occurrences can never be large. Values close to 0.5 338 

effectively express a lack of information on the ecological requirements of rare species, which can be 339 

considered an advantage of the Hypergeometric method. All methods worked similarly well in 340 

assigning ordered probabilities to species according to their status, with each method assigning the 341 

lowest probabilities to absent species and the highest probabilities to present species. 342 

Similarly to the results of Test 4, the correlation between predictions of the Beals index and the 343 

regional frequency of species were extremely high (Fig. 6). In contrast with the simulated dataset, the 344 

Hypergeometric method—not Favorability—exhibited the weakest correlation, particularly in the 345 

Scottish dataset (Fig. 6), probably due to the aforementioned effect of rare species on Favorability 346 

predictions. Examination of the relationship between the frequency of the species and its average 347 

probability for the Hypergeometric method revealed probabilities close to 0.5 for the least frequent 348 

species, with the predictions becoming more variable as frequency increased. 349 
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 350 

Discussion 351 

With this study we aimed to advance the development of probabilistic methods to estimate dark 352 

diversity (the absent part of the site-specific species pool) using species co-occurrences. By linking 353 

local and regional scales, dark diversity can help us to understand better biodiversity and its dynamics 354 

(Pärtel, Bennett, & Zobel, 2016). However, unlike observed diversity, dark diversity is not directly 355 

measurable, and depends on algorithmic estimation. Here, we presented a fully probabilistic method to 356 

estimate dark diversity using the co-occurrence matrix of species based on the hypergeometric 357 

distribution (Griffith et al., 2016). We compared its performance with other two extant methods based 358 

on species co-occurrences (Beals and Favorability) using simulations that include information on the 359 

ecological affinities of species within communities (suitability). By considering several criteria 360 

(distribution of predicted probabilities, predictive ability, and estimations of dark diversity size) we 361 

found that, although Favorability was generally superior than Beals, the Hypergeometric method 362 

performed better than the two other probabilistic methods. Further, we compared the results obtained 363 

from each method in two real datasets, showing that the positive features of the Hypergeometric method 364 

are also apparent in real-world applications. 365 

The fact that dark diversity cannot be observed directly has two important implications. First, by 366 

acknowledging this lack of determinism, probabilistic approaches are particularly attractive alternatives 367 

to estimate dark diversity (Real et al., 2017). Despite insistences that dark diversity should be estimated 368 

probabilistically have accompanied the concept since its inception (Mokany & Paini, 2011), only 369 

recently have such approaches been adopted (Brown et al., 2019; de Bello et al., 2016; Karger et al., 370 

2016; Lessard et al., 2016). Second, measuring dark diversity poses a methodological challenge, since 371 

there are no appropriate benchmarks to compare methods. Previous tests of dark diversity estimation 372 

methods have used nested datasets or repeated sampling in order to “observe” dark diversity (Brown et 373 

al., 2019; de Bello et al., 2016; Karger et al., 2016; Lewis et al., 2016). These studies have frequently 374 

found that Beals is the most suitable method. Although some of these studies acknowledge the 375 

imperfection of these tests because only an unknown portion of the true dark diversity is observed 376 

(Brown et al., 2019), the observed part of dark diversity is non-random. This is because species that are 377 

found in the observed portion of the dark diversity of a site are likely to be not only ecologically suitable, 378 

but also to have a greater frequency in the region (De Cáceres & Legendre, 2008; Real et al., 2017). 379 

Although many highly suitable species might be absent due to dispersal limitation (Riibak et al., 2015; 380 

Zobel, 2016), species with high frequency in the region may have also a high availability of propagules 381 

and can be present in less suitable sites due to source-sink dynamics (Pulliam, 2000). As a consequence, 382 

using nested or resampled datasets to calibrate and compare methods to estimate dark diversity can lead 383 

to biased results favouring indices—such as the Beals index—that predict greater probabilities for the 384 

most frequent species. Although the Beals index is a good predictor of the probability of occurrence of 385 

the target species (De Cáceres & Legendre, 2008), it is not necessarily a good predictor of their 386 
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suitability in a given site. At this point it is important to consider that—despite the different definitions 387 

attributed to “species pool” (Zobel, 2016)—dark diversity refers to those species that are absent from a 388 

site despite suitable ecological conditions (Pärtel et al., 2011). According to this criteria, our simulations 389 

revealed that Beals was clearly outperformed by the two other methods in terms of its ability to estimate 390 

suitability and dark diversity size. Consequently, while we agree that the raw Beals index can be useful 391 

for predicting which species will be observed as we increase sampling effort (either in space or in time; 392 

Karger et al., 2016), this is largely because it serves as a very good proxy of species general frequency, 393 

and more frequent species are found more often. However, we recommend that future studies estimating 394 

species adscription to dark diversity should focus on the ecological affinities of species, rather than on 395 

predicting occurrences in space or time. 396 

Favorability and Hypergeometric methods are less affected by species frequency, and better 397 

indicators of the site suitability. Favorability, based on a correction of Beals to remove the effect of 398 

species frequency (Real et al., 2017), predicted species suitability and dark diversity size in our 399 

simulations better than Beals. However, the method was not completely free from the effect of species 400 

frequency in the region, since it assigned 0 probability to species for which there was no information 401 

(i.e. none of the species recorded in the site had co-occurred with the target species), which tended to 402 

be extremely rare species. Such extreme predictions for species with little information is not what one 403 

would expect if probabilities of adscription to dark diversity reflect the suitability of species in a site. 404 

This is not an issue of the Favorability transformation itself, but is inherited from the fact that the Beals 405 

index can result in probabilities of exactly 0. By contrast, the Hypergeometric method assigned 406 

probabilities close to 0.5 in these rare species, thereby expressing better the lack of available 407 

information: whether to include very infrequent species in dark diversity is akin to coin flipping, 408 

whereas more confident predictions can be made for common species. In fact, the Hypergeometric 409 

method is most reliable for pairs of species with intermediate incidence (Lavender, Schamp, Arnott, & 410 

Rusak, 2019). In any case, the Hypergeometric method outperformed Favorability in all considered 411 

aspects of our simulations. Although all methods proved capable of discriminating between observed 412 

and non-observed species, the distribution of probabilities of the Hypergeometric method exhibited the 413 

most appropriate shape, encompassing the whole range of available probability. Moreover, it was the 414 

best method for predicting the ecological affinity of species for all reasonably sized datasets. It was also 415 

the best calibrated method, returning unbiased predictions of both suitability and dark diversity size. In 416 

addition, it exhibited positive features in real datasets, including the aforementioned lack of extreme 417 

predictions, a good ability to resolve between absent and present species, and a reasonable relationship 418 

between predicted probabilities and species frequency. As a consequence, we conclude that the 419 

Hypergeometric method is currently the most promising method to estimate probabilistic dark diversity 420 

and species pool composition based on co-occurrences. 421 

Conclusions 422 
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Methods based on species co-occurrence patterns have proven to be a powerful tool to estimate 423 

probabilistic dark diversity. They integrate information on abiotic and abiotic conditions, which makes 424 

them good at characterizing the realized niches of species (Lewis et al., 2016). Most importantly, 425 

information on species co-occurrences is increasingly available in a wide range of environments and 426 

regions, which should allow us to improve estimation of species pairwise associations. An important 427 

aspect to consider is that correct characterizations of dark diversity based on species co-occurrences 428 

require reliable and complete sampling of the species that are present. This can be challenging for sites 429 

containing many elusive or inconspicuous species (Boussarie et al., 2018). On the other hand, 430 

estimations of probabilistic methods might help to improve assessment of observed diversity by 431 

indicating apparently absent species with a high probability of having eluded detection. Among the 432 

methods considered here, existing evidence suggests that the Hypergeometric method is the most 433 

suitable to detect pairwise associations among species (Lavender et al., 2019). However, species do not 434 

occur in pairs, but form diverse interacting networks, so that restricting our analyses to pairwise co-435 

occurrences is likely neglecting substantial amounts of ecological information. Future methods to 436 

estimate probabilistic dark diversity would benefit greatly from co-occurrence based methods that look 437 

beyond associations between pairs of species. Considering biodiversity from a probabilistic point of 438 

view is a meaningful way to acknowledge the uncertainty associated with ecological information. The 439 

development of probabilistic dark diversity joins similar advances made in functional diversity 440 

(Carmona, de Bello, Mason, & Leps, 2016). Future integration of probabilistic species pools and 441 

functional diversity will advance our understanding of assembly processes and conservation status of 442 

ecological systems at multiple spatial and temporal scales. In order to help ecologists implement all the 443 

methods shown here, we have developed the ‘DarkDiv’ R package (Carmona, 2019; freely available in 444 

https://CRAN.R-project.org/package=DarkDiv). 445 

 446 
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  545 

Fig. 1.  Relationship between the probabilities assigned by each method to the species absent 546 

from each community and their suitability in each community. Continuous coloured lines indicate the 547 

fit of a linear model between the two variables and the dashed line indicates a 1:1 relationship. Pearson 548 

correlation coefficient and mean absolute error (MAE; indicating closeness to the 1:1 line) are shown 549 

in each plot. 550 

  551 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 15, 2019. ; https://doi.org/10.1101/636753doi: bioRxiv preprint 

https://doi.org/10.1101/636753
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

 552 

Fig. 2. Predictive ability of the different methods as a function of sample size. Each plot shows 553 

how the correlation (Pearson) between the suitability of absent species in each plot and the 554 

probabilistic value given by each method varies as the number of plots increased (see main text for 555 

further explanations). Letters above each boxplot show differences in a Tukey post-hoc test (α=0.05) 556 

comparing methods within the same sample size, considering each random repetition as a random 557 

factor. 558 
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 560 

Fig. 3. Relationship between the size of dark diversity predicted by each method and the true size 561 

of dark diversity according to the summed suitability of absent species in each community. Continuous 562 

coloured lines indicate the fit of a linear model between the two variables and the dashed line indicates 563 

a 1:1 relationship. Pearson correlation coefficient and mean absolute error (MAE; indicating closeness 564 

to the 1:1 line) are shown in each plot. 565 
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 567 

Fig. 4. Correlation (Pearson) between the probabilities predicted by each method for the absent 568 

species from each site and the regional frequency of species in the simulated dataset. Letters above 569 

each boxplot show differences in a Tukey post-hoc test (α=0.05) comparing methods. 570 
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 572 

Fig. 5. Distribution of the probabilities obtained from each method, considering all species in 573 

all the sites of each dataset. The grey dashed line indicate the average probability of each method in 574 

each dataset. The subplots show the different probabilities obtained from each method in each dataset 575 

to species categorized as “absent” (A; species not found in the considered site at any scale), “dark” 576 

(D; species found in the large plot, but not in the small one) and “observed” (O; species found in the 577 

small plot). 578 
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 580 

Fig. 6. Correlation (Pearson) between the probabilities predicted by each method for the absent 581 

species from each site and regional frequency of species in the real datasets. Letters above each boxplot 582 

show differences in a Tukey post-hoc test (α=0.05) comparing methods. 583 
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