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16 Abstract

17 People usually switch their attention between the options when trying to make a decision. 

18 In our experiments, we bound motor effort to such switching behavior during a two-alternative 

19 perceptual decision-making task and recorded the sampling patterns by computer mouse cursor 

20 tracking. We found that the time and motor cost to make the decision positively correlated to 

21 the number of switches and increased with the difficulty of the task. Specifically, the first and 

22 last sampled items were decided in an attempt to minimize the overall motor effort during the 

23 task, and both were manipulatable by biasing the relevant motor cost. Moreover, the last 

24 sampled item was more likely to be chosen, and the cumulative sampling amount also biased 

25 to the chosen item during the later phase of the sampling. Assuming that attention switching is 

26 independent of the decision variable, conventional attentional drift-diffusion model (aDDM) 

27 was inadequate to explain the size of the last-sampling bias in our experimental conditions. 

28 Meanwhile, our Bayesian Network analysis showed that the causal relationship between 

29 attention and decision is bidirectional. We concluded that the sampling behavior during 

30 perceptual decision-making is actively adapted to the motor effort in the specific task settings, 

31 as well as the temporary decision.

32

33 Introduction

34 When people try to make a decision between two similar products in a shopping center, 

35 they often approach each shelf on which the products are displayed, or even pick them up to 

36 have a closer look. If the choice is really difficult to make, people may walk back-and-forth the 

37 two shelves for a long time. Many people will start by examining the product around the 

38 entrance of the shop, but eventually choose the one near the checkout counter to save some 
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39 effort. This daily example indicates that our decisions are not solely shaped by the objective 

40 values of the alternatives, but also other factors including the motor effort related to the 

41 sampling and action execution processes. However, sensorimotor aspects have not been 

42 integrated into decision-making studies until recently. It is still an on-going controversy 

43 whether action is part of decision-making: According to the Embodied Choice model, action 

44 execution is part of the decision-making process rather than merely a means to report the 

45 decision; in other words, action can feed back into the decision-making [1]. Under such 

46 guidance, studies have been trying to examine decision-making through analyzing movement 

47 patterns [2] as well as to seek neural imaging evidence on the involvement of sensorimotor 

48 system during decision-making [3]. On the other hand, Aczel et al. [4] argued that the observed 

49 bias in decisions was caused by the difference in motor effort needed during action, not by the 

50 movement toward one of the options as the Embodied Choice model proposed. There have been 

51 several studies focusing on the influence of motor effort during action upon decision-making: 

52 Perceptual decision-making has been reported to be biased to the choice associated with less 

53 motor cost to respond [5], and such bias still exists in subsequent decisions when no motor 

54 effort difference is present [6]. De Lange and Fritsche [7] suggested that motor cost can 

55 influence decision-making in a similar manner to rewards. In addition, motor effort can also 

56 affect changes of mind during decision-making [8]. However, no investigation has been focused 

57 on the motor effort related to the sampling behavior: Although in some studies two or more 

58 spatially separated visual stimuli were used as choices during the task, the main form of 

59 movement involved during sampling was the eye movement (saccade), of which time cost 

60 instead of energy cost seems to be the major consideration [9].

61 Another issue following the separation of the alternatives in space is the attention 

62 allocation during sampling. Typically, the decision-maker switches his attention (behaviorally 

63 shown as switching the gaze) between the options at least once, and sometimes multiple times. 
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64 What is the relationship between attention and decision-making? Shimojo et al. [10] proposed 

65 that the bias in gazing behavior during sampling can both reflect and influence preference 

66 decision: such gaze bias to the finally chosen item is continually reinforced, which was named 

67 the gaze cascade effect. Other results that manipulations in attention biased choices have been 

68 reported as well [11-15], but there is rare evidence supporting that temporary choices can 

69 influence attention allocation. Under the assumption that attention can influence value 

70 integration during decision-making, the attentional drift-diffusion model (aDDM) was 

71 proposed [16]. Unlike the traditional drift-diffusion model, in which the relative evidence 

72 accumulates at a constant rate (the drift rate) within one decision, the aDDM allows the drift 

73 rate to change with attention: the option currently being attended (gazed at) shall receive more 

74 evidence. Such model has successfully explained the gaze patterns and several gaze-related 

75 biases in preference-based and perceptual decisions performed by human subjects [16, 17, 18]. 

76 Specifically, the aDDM assumes that the attention or gaze switches between the options 

77 randomly. Previously reported gaze cascade effect that preference affects attention can be 

78 readily explained by aDDM. Therefore, Krajbich [19] suggested that gaze or attention have a 

79 causal effect on choice, but not vice versa.

80 Under natural circumstances, humans actively gather information with attention and 

81 active sensing behaviors (shift of gaze and assisting limb/body movement) to sample relevant 

82 cues [20]. Sampling behavior itself can be regarded as a low-level decision-making process 

83 about what information to acquire, as well as where and when [21]. In this study, we aim to 

84 figure out the factors influencing sampling patterns during a basic perceptual decision-making 

85 task, especially how sampling behavior is adapted to the expected motor effort given the 

86 specific environment where the task is performed. We designed a paradigm in which motor 

87 effort was bind to the sampling and action execution processes, and manipulated the expected 

88 motor cost to examine corresponding changes in the sampling patterns. Additionally, we tested 
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89 the causal relationship between the temporary decision and the attention allocation strategy 

90 during sampling by stimulating an aDDM and analyzing a Bayesian Network model. 

91

92 Results

93 The visual stimuli in the task were two groups of black and white dots positioned 

94 separately at the left and the right side of the screen, and subjects were asked to decide in which 

95 group there were more white dots than in the other. In order to bind motor effort to the sampling 

96 process, we applied an artificial rule that ‘the sampling quality is in proportion to the distance 

97 between the agent and the alternative choice’, which in natural circumstances can be interpreted 

98 as ‘the closer one gets to look at an object, the more details can be seen’, and ‘getting closer’ 

99 needs motor effort. During sampling, a number of randomly selected dots were made invisible 

100 in each frame, and the number was in proportion to the distance between the cursor and each 

101 dot stimulus (Fig 1A). In this way, to get better sampling quality, subjects must make some 

102 motor effort to move the cursor closer to the stimulus they want to examine. The start position 

103 was randomly set between the two stimuli, and subjects were instructed to drag the cursor onto 

104 that position to initiate each trial. The motor effort in the action stage took the form of moving 

105 the cursor to the corresponding choice button placed below the dot stimuli on the screen and 

106 clicking on it to make the choice. We set two types of tasks: In the first type, the choice buttons 

107 were horizontally centered (Fig 1A), so the two stimuli were equally close to them, which made 

108 the motor effort required to move the cursor from each stimulus to the buttons approximately 

109 the same. In the second type, the choice buttons were positioned below the right stimuli (Fig 

110 1B), so that the right stimulus was closer to them than the left one, thus the required motor 

111 effort would be less if the right one was last sampled.

112
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113 Fig 1. Binding motor effort to the sampling and action execution stages of the decision-

114 making task. (A) The level of invisibility of each stimulus is in proportion to the distance 

115 between the current position of the mouse cursor and the two stimuli. The choice buttons are 

116 horizontally centered, so the distance from the two stimuli to the buttons are approximately the 

117 same. (B) The choice buttons are horizontally biased to the right, so the distance from the right 

118 stimulus to the buttons is shorter than that from the left.

119

120 General Sampling Patterns

121 We plotted the horizontal mouse cursor position recorded during the sampling period at 

122 each time point. Fig 2 shows the typical cursor position time series from a single block for one 

123 of the subjects. The 60 trials in the block were sorted by the start position. The length between 

124 the two stimuli was linearly mapped to a 0-to-1 scale and shown in a red-blue color gradient. 

125 The graph implies that the typical sampling pattern was to switch the cursor once or multiple 

126 times between the two stimuli. The cursor paused mostly at either the left-most or right-most 

127 part, which means only one of the stimulus was clearly visible at the time. Therefore, we can 

128 make the assumption that the eye gaze and the attention of the subject switched between the 

129 stimuli together with the cursor, which enables the comparison of our paradigm and former 

130 sequential sampling tasks and models.

131

132 Fig 2. Horizontal mouse cursor position plotted as time series during the trials. Data is 

133 from a single block (60 trials) performed by one subject and sorted by the start position in each 

134 trial. Red color indicates the cursor is currently positioned more to the right stimulus, while 

135 blue indicates left.

136
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137 Under this sampling pattern, if a subject made n switches in a trial, there would be n+1 

138 periods of sampling alternatively assigned to the two stimuli. Assuming that each sampling 

139 period has approximately the same duration, the total decision time (elapsed time from the 

140 beginning of the trial to when the decision is made, excluding the time to execute the action) 

141 should be correlated to the number of switches. On the other hand, most of the motor effort 

142 during sampling was spend on the switching movement, and a typical switch would be moving 

143 the cursor from the left stimulus to the right, the distance between them fixed. Therefore, the 

144 total motor effort during the trials, measured by the total horizontal moving distance of the 

145 cursor on the screen, should be correlated to the number of switches, too. Based on this, in order 

146 to minimize the time and motor cost during sampling, subjects should make as few switches as 

147 possible. The actual behavioral results well matched our analysis: Fig 3A plots the number of 

148 switches made in all trials across the subjects in a histogram. In 42.5% trials only one switch 

149 was made, and the percentage of trials got lower when more numbers of switches were made. 

150 Moreover, the proportion of trials with higher distinctions between the two stimuli was larger 

151 among the trials with fewer switches than among those with more switches. Fig 3B and 3C 

152 show that the decision time and the total horizontal moving distance of the cursor correlated to 

153 the number of switches significantly (Spearman’s ρ = 0.71, P = 2.0×10–148 for decision time 

154 and ρ = 0.84, P = 3.7×10–261 for horizontal moving distance). The results are in accordance with 

155 the speed-energy-accuracy trade-off rule: in order to maintain high accuracy in the perceptual 

156 decision-making task, subjects would invest more time and motor cost when the task was more 

157 difficult.

158

159 Fig 3. Number of switches between the stimuli, and its correlation to decision time and the 

160 total horizontal moving distance of the cursor on the screen during the trials. (A) 

161 Histogram of the number of switches in all trials, colors indicating the absolute distinction 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2019. ; https://doi.org/10.1101/637017doi: bioRxiv preprint 

https://doi.org/10.1101/637017
http://creativecommons.org/licenses/by/4.0/


162 between the two choices. (B) Correlation of decision time and number of switches during the 

163 trials. Spearman’s ρ = 0.71, P = 2.0×10–148. (C) Correlation of total horizontal moving distance 

164 of the cursor and number of switches during the trials. Spearman’s ρ = 0.84, P = 3.7×10–261. 

165 Error bars show 95% confidence intervals for data pooled across all subjects.

166

167 Influences of Motor Cost on Sampling Patterns

168 Apart from the general influence of task difficulty on the number of switches during 

169 sampling, the difference in motor cost depending on the start position and the choice button 

170 position can also affect sampling patterns. In the centered choice button condition and the right 

171 biased choice button condition, the psychometric choice curves (Fig 4A) were not significantly 

172 different, and the overall accuracy was also very similar (90.4% for centered choice button task 

173 and 91.5% for right biased choice button task). As the absolute distinction between the two 

174 choices increased, the number of switches (Fig 4B, Spearman’s ρ = –0.41, P = 2.6×10–40 for 

175 centered condition and ρ = –0.37, P = 4.0×10–33 for right biased condition), decision time (Fig 

176 4C, Spearman’s ρ = –0.28, P = 7.4×10–19 for centered condition and ρ = –0.46, P < 10–300 for 

177 right biased condition) and horizontal moving distance (Fig 4D, Spearman’s ρ = –0.35, P = 

178 1.7×10–28 for centered condition and ρ = –0.35, P = 2.3×10–29 for right biased condition) in the 

179 trials all decreased, but there were no significant difference between the centered and right 

180 biased conditions. Fig 4E shows the psychometric curves for the first sampled stimulus. The 

181 subjects tended to sample the stimulus closer to the start position in the trial, but with a 

182 systematic bias (usually to the left stimulus). This bias may be related to the cultural habit of 

183 dealing with items from left to right, for example while reading people usually start from the 

184 left. In the centered choice button condition, moving firstly to the stimulus closer to the start 

185 position would minimize the total horizontal moving distance during sampling. However, when 
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186 the choice buttons were biased to the right stimulus, if the subject expected to make only one 

187 switch (which was most likely, see Fig 3A), the sampling strategy to minimize motor cost would 

188 be to go for the left stimulus first and then the right, finally taking the shorter path from the 

189 right stimulus to the choice buttons. Such additional bias to sample the left stimulus first when 

190 the choice buttons were biased to the right was indeed observed in subjects’ behavior (Fig 4E). 

191 Regardless of the previous sampling sequence, it would always take less motor effort to execute 

192 the action if the subject sampled the right stimulus lastly in the right biased choice button 

193 condition. Fig 4F shows that subjects were more likely to sample the right stimulus last in the 

194 right biased choice button condition compared to the centered condition. Such a tendency was 

195 more significant for the trials in which the distinctions between the choices were low. In 

196 summary, the attempt to minimize motor cost during sampling as well as action execution can 

197 influence which stimulus to sample firstly and lastly.

198

199 Fig 4. Psychometrics for centered choice button task versus right biased choice button 

200 task. (A) Psychometric choice curves. (B) Number of switches between the stimuli. Spearman’s 

201 ρ = –0.41, P = 2.6×10–40 for centered condition and ρ = –0.37, P = 4.0×10–33 for right biased 

202 condition. (C) Decision time. Spearman’s ρ = –0.28, P = 7.4×10–19 for centered condition and 

203 ρ = –0.46, P < 10–300 for right biased condition. (D) Total horizontal moving distance of the 

204 cursor. Spearman’s ρ = –0.35, P = 1.7×10–28 for centered condition and ρ = –0.35, P = 2.3×10–29 

205 for right biased condition. (E) First sampled psychometric curves. (F) Last sampled choice bias. 

206 Significance levels are based on unpaired one-tail t-test, *P < 0.05, ***P < 0.001. Error bars 

207 show 95% confidence intervals for data pooled across all subjects. Shaded error bars show 95% 

208 confidence intervals based on generalized linear model fitting.

209
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210 Choice Biases Related to Sampling Processes

211 Firstly, the aDDM predicts a last-sampling bias, which means that subjects are more 

212 likely to choose the last sampled stimulus. That is because the discounted rate of evidence 

213 accumulation for the stimulus not being sampled will lead to the result that the decision variable 

214 is more likely to reach the barrier at the last sampled side [16]. Such bias has been reported in 

215 a number of human decision-making studies of both value-based and perceptual decisions [16, 

216 18]. However, the causal relationship behind the last-sampling bias is not completely clear: 

217 While the aDDM assumes that the current decision variable has no backward influence upon 

218 sampling patterns, there is rare evidence supporting or contradicting the causal effect of the 

219 temporary decision on the attention allocation during sampling [19].

220 In order to test whether the subjects tended to choose the particular stimulus because 

221 they sampled it lastly, or the subjects tended to sample the particular stimulus lastly because 

222 they wanted to choose it, or both, we set up a new type of sampling mode: The subjects should 

223 and could only make one switch between the stimuli, which means they had only one chance 

224 to sample each of the alternatives. The time to examine each stimulus was not limited, though. 

225 In this condition, the last sampled item would have been already decided when the subject 

226 started to sample the first stimulus, therefore it cannot be affected by the decision variable later. 

227 We built an aDDM and fitted its parameters to the behavioral data in the unlimited-switch mode, 

228 then we compared the size of the last-sampling bias in the unlimited- and one-switch sampling 

229 mode for human behavior and model output.

230 As Fig 5 shows, the aDDM fitted the basic psychometrics including the choice curve 

231 (Fig 5A), decision time (Fig 5B) and the number of switches (Fig 5C) in the unlimited-switch 

232 mode generally well. In the one-switch mode (Fig 5D and 5E), the decision time of the model 

233 output was similar to that of the human behaviors, but note that the overall accuracy (79.9%) 
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234 was lower compared to behavioral data (89.1%). In fact, the human subjects’ overall accuracy 

235 in the one-switch condition was not reduced obviously compared to that in the unlimited-switch 

236 condition (90.4%). This result is quite surprising, for in the one-switch mode the decision time 

237 was shorter, and this normally should lead to lower accuracy. If the accuracy has not been 

238 significantly improved by making further switches, which would cost extra time and energy, 

239 why would the subject make them? One possible reason is that subjects would like to check the 

240 previously sampled stimuli again to verify their preliminary decision [22], which would 

241 increase the confidence in their decision.

242

243 Fig 5. Psychometrics for human subjects’ behavioral data versus fitted aDDM output. (A) 

244 Psychometric choice curves in the unlimited-switch task. (B) Decision time in the unlimited-

245 switch task. (C) Number of switches in the unlimited-switch task. (D) Psychometric choice 

246 curves in the one-switch task. (E) Decision time in the one-switch task. Error bars show 95% 

247 confidence intervals for data pooled across all subjects. Shaded error bars show 95% confidence 

248 intervals based on generalized linear model fitting.

249

250 We then compared the last-sampling bias in our model output and that in the subjects’ 

251 behavioral data: In the unlimited- and one-switch mode, both human behavior and model output 

252 exhibited a bias to choose the last sampled stimulus (Fig 6). However, in the unlimited-switch 

253 mode, the bias size for model output was smaller than human behavior: When the distinction 

254 between the two choices was zero, the difference in the fitted probability of choosing right when 

255 right was last sampled versus when left was last sampled (∆p) was 0.59 for human subjects but 

256 only 0.27 for the model (Fig 6A). Such deducted size of the last-sampling bias in fitted aDDM 

257 compared to human data has also been reported in another perceptual decision-making study, 

258 where ∆p = 0.51 for human data and ∆p = 0.26 for aDDM [18]. Moreover, compared to the 
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259 unlimited-switch mode, the size of the last-sampling bias decreased for human behavior (∆p = 

260 0.30) but increased for model output (∆p = 0.47) when only one switch was allowed (Fig 6B). 

261

262 Fig 6. Last-sampling bias for human subjects’ behavioral data versus fitted aDDM model 

263 output. (A) Last-sampling bias in the unlimited-switch mode. (B) Last-sampling bias in the 

264 one-switch mode. Shaded error bars show 95% confidence intervals based on generalized linear 

265 model fitting.

266

267 To quantify the size of the last-sampling bias, we built a Bayesian Network model 

268 depicting the causal relationship between the last sampled item and the decision.

269  (2)

p right last chosen right last sampled 
 p right chosen DV ,right last sampled  p DV right last sampled  dDV

 p right chosen DV ,right last sampled  p right last sampled DV 
p right last sampled  p DV d DV

270 Equation (1) gives the general form of conditional dependence relationship behind the last-

271 sampling bias: p(right chosen | right last sampled) is the probability of choosing the right item 

272 given that the right item is last sampled. DV is the decision variable at the time the last sampling 

273 starts, and p(DV) is its prior distribution. When the distinction between the two choices is 0, 

274 the expected DV is also 0. If the subjects have a tendency to choose the last sampled item, 

275 p(right chosen | DV, right last sampled) should be higher. On the other hand, if the subjects 

276 have a tendency to sampled the item that the current decision variable biases to, the likelihood 

277 p(right last sampled | DV) should be higher when DV is closer to the right barrier and lower 

278 when DV is closer to the left barrier. p(right last sampled) can be regarded as a constant value 

279 irrelevant to DV.
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280 Altogether, there are three possible hypotheses regarding the causal relationship 

281 between the last sampled item and the decision: Fig 7A displays the graphical models for these 

282 hypotheses. Model (a) as well as the aDDM assumes that the final decision is dependent on the 

283 last sampled item, but the last sampled item is independent of the decision variable. In the 

284 aDDM, for each given DV, p(right chosen | DV, right last sampled) is decided by the value 

285 scaling parameter d, the noise level parameter σ and the discounting parameter θ for the 

286 unattended item, and the mean is higher than 0.5. Since the last sampled item is independent of 

287 DV, we have:

288  (3)
p right chosen right last sampled 
 p right chosen DV ,right last sampled  p DV  dDV

289 Therefore, the bias is solely due to the term p(right chosen | DV, right last sampled). In the one-

290 switch mode, the elapsed time before the last sampling is shorter, thus p(DV) will have smaller 

291 variance so that p(right chosen | right last sampled) will become even larger, which is in 

292 accordance with the actual model stimulation results (Fig 6B). Similarly, the value of p(right 

293 chosen | right last sampled) should be the same for centered and biased choice buttons. However, 

294 if we assume that the last sampled item is dependent on DV but the final decision is independent 

295 of the last sampled item, as in Model (b), we shall have:

296  (4)

p right last chosen right last sampled 
 p right chosen DV  p right last sampled DV 

p right last sampled  p DV d DV

297 In this model, the bias is due to the term p(right last sampled | DV) instead, while the term 

298 p(right chosen | DV) is unbiased. If only one switch is allowed, the last sampled item can no 

299 longer depend on DV, so we have:

300  (5)p right last chosen right last sampled   p right chosen DV  p DV d DV
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301 And the mean of p(right chosen | right last sampled) will fall back to 0.5. In the biased choice 

302 button task, the last sampled item depends on not only DV but also motor cost considerations, 

303 so the slope of likelihood p(right last sampled | DV) will become smaller compared to the 

304 centered choice button condition, resulting in the reduced bias size in p(right chosen | right last 

305 sampled). Finally, model (c) shows a third possibility that the last sampled item is dependent 

306 on DV, and the final decision is also dependent on the last sampled item. In this model the 

307 mathematical expression takes the full form in Equation (1), and the total bias in p(right chosen 

308 | right last sampled) has two sources: The last sampled item is more likely to be chosen, so 

309 p(right chosen | DV, right last sampled) is biased; the currently winning item is more likely to 

310 be last sampled, so p(right last sampled | DV) is also biased. Under such an assumption, in the 

311 one-switch mode the last-sampling bias should still exist because the term p(right chosen | DV, 

312 right last sampled) is biased, but the size will decrease because the term p(right last sampled | 

313 DV) now disappears. In the biased choice button task, the bias will also become smaller because 

314 the last sampled item is now dependent on an extra factor related to the motor cost. Fig 7B 

315 shows p(right chosen | right last sampled) for human subjects’ behavioral data in the three 

316 experimental conditions: Compared to the centered unlimited-switch condition, in the one-

317 switch mode p(right chosen | right last sampled) decreased but was still higher than 0.5 when 

318 the distinction between choices was zero, while in the right biased button task the size of the 

319 last-sampling bias also decreased. Among the three hypotheses, only Model (c) correctly 

320 predicted the behavior of the subjects. Therefore, we drew the conclusion that the causal 

321 relationship between sampling patterns and the decision is bidirectional.

322

323 Fig 7. Causal relationship for the last-sampling bias. (A) Graphical models for possible 

324 hypotheses of the conditional dependence relationship between the last sampled stimulus and 

325 the decision. Arrows show dependency between the events or variables, and dashed arrows 
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326 show dependency assumed to exist in the model, but made impossible under certain 

327 experimental conditions. (B) Probability of choosing the right item given the right item is last 

328 sampled for human subjects’ behavioral data. The last-sampling bias exists in all three 

329 conditions, but the size is smaller in one-switch and right-biased choice button tasks. Shaded 

330 error bars show 95% confidence intervals based on generalized linear model fitting.

331

332 In addition, the aDDM also predicts that the subjects are more likely to choose the 

333 stimulus with longer overall sampling time. In our paradigm, the noise level for the stimuli is 

334 varying during the trial, therefore we changed the sampling time length to the cumulative 

335 sampling amount (CSA), which is defined as the integral of the proportion of visible dots with 

336 respect to time for each stimulus. Instead of focusing merely on the overall sampling amount, 

337 we studied the time course of the correlation between the CSA and the final choice: We plotted 

338 the odds ratio (Nleft CSA larger, left chosen·Nright CSA larger, right chosen·N–1
left CSA larger, right chosen·N–1

right CSA 

339 larger, left chosen, in which N is the number of trials across all subjects) for the three experimental 

340 conditions as time series in Fig 8. Note that the average finishing time of the first sampling is 

341 at 1345 ms, and the second sampling at 2256 ms. There are a few interesting phenomena shown 

342 in the results: First, only in the unlimited-switch mode with centered choice buttons the overall 

343 CSA was significantly correlated to the final choice. Second, such correlation became 

344 significant only in the later period of the sampling process. Third, in the one-switch mode, 

345 subjects tended to sample the stimulus with fewer white dots (the wrong choice) first and save 

346 the stimulus with more white dots (the correct choice) for the second, which is also the last 

347 sampling. As a result, there was a significant negative correlation between the first sampled 

348 stimulus and the final choice in the one-switch mode, which was not found in the other two 

349 conditions. Recall that the further switches made in the sampling process have not improved 

350 the accuracy of the decision much. Combined with the fact that the extra sampling was mostly 
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351 spent on the finally chosen stimulus (but the decision has already formed after the first two 

352 samplings), we deduce that sampling patterns in the later period depend on the preliminary 

353 decision: Subjects will make extra switches to and spend extra time dwelling on the 

354 predetermined choice in order to verify their decision. Moreover, when the subjects know in 

355 advance that only one switch can be made, even the earlier period of the sampling process can 

356 be influenced by the decision variable. However, other factors, for example motor cost 

357 considerations can disrupt such verifying sampling behavior.

358

359 Fig 8. Correlation of the cumulative sampling amount and the final choice plotted as 

360 functions of the elapsed time in the trials. (A) Odds ratio of choosing the stimulus with higher 

361 cumulative sampling amount till the specific time point in the trials versus not choosing it. (B) 

362 The first 2000 ms enlarged. (C) Proportion of trials already ended before the specific time point.

363

364 Discussion

365 In summary, the adaptive sampling behavior during perceptual decision-making 

366 exhibits the following patterns: First, the number of switches between the alternatives as well 

367 as the total time and motor cost during sampling is related to the difficulty of the task: the more 

368 difficult the task is, the more times the stimuli are resampled. Second, the sampling order 

369 depends on the start position and the choice button position in an attempt to minimize the total 

370 moving distance of the mouse cursor. Third, attention biases to the eventually chosen item 

371 during the later phase of the sampling. Combining the modeling results, we conclude that the 

372 sampling pattern is shaped by both motor cost and the current decision. We integrate our 

373 findings into the previous framework and draw a new model for decision-making process 

374 considering motor effort during sampling and action (Fig 9): (b) The current decision variable 
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375 influences sampling patterns and (e) motor cost influences sampling patterns together depict 

376 the adaptive nature of sampling during decision-making.

377

378 Fig 9. Model for decision-making process considering the motor effort in both sampling 

379 and action. (a) Sampling patterns influence the decision. (b) The current decision variable 

380 influences sampling patterns. (c) The final decision is translated into action. (d) Action 

381 properties influence the decision. (e) Motor cost influences sampling patterns. (f) Motor cost 

382 influences action.

383

384 Wispinski et al. [23] reviewed recent computational models, behavioral studies and 

385 neural recordings, and drew the conclusion that decision-making is a continuous process from 

386 the presentation of behaviorally relevant options until movement completion. Previous studies 

387 suggested that motor effort related to the action phase can influence the decision [4-6, 8], and 

388 our results expand the conclusion to that the sampling behavior can also be influenced by motor 

389 effort related to both sampling and action. It further supports the idea that sensorimotor aspects 

390 should be considered as an actively integrated part of the decision-making process. However, 

391 while our manipulation of motor effort biased the last sampled item, it did not bias the choices 

392 made by the subjects. One possible reason is that the choice is not relevant to the motor effort 

393 difference in the task; another possibility is that explicit knowledge of the motor cost will help 

394 to avoid integrating irrelevant factors into the decision to maintain high accuracy [24]. In 

395 addition, there are several studies focusing on the representation of motor effort and how it is 

396 related to cost minimization in decision-making as well as motor control [25, 26]. Future studies 

397 may further quantify the effect of motor cost on decision-making based on similar methods.
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398 The relationship between attention and eye movement during decision-making has been 

399 studied abundantly [27], but researches that highlight limb and body movements during the 

400 sampling process are rare, even though in naturalistic circumstances such movements usually 

401 accompany and cooperate with eye movements in order to get best sampling of information. In 

402 our research, we designed a paradigm based on computer mouse tracking in which both gaze 

403 shift and hand movement (moving the mouse) are necessary to switch attention between the 

404 options. Although mouse tracking and eye tracking are both commonly applied process tracking 

405 methods in decision-making research, their original purposes are slightly different: While eye 

406 tracking mostly target on attention and information searching strategies, mouse cursor tracking 

407 data reflect more about indecision and momentary preference [28]. In our paradigm however, 

408 subjects must move the cursor closer to get a better view of each stimulus, as if approaching a 

409 real object to have a better look. In this way, the mouse trajectory can reflect attention during 

410 sampling as eye traces did in previous studies. Moreover, our paradigm can be applied to study 

411 eye-hand cooperation and coordination during decision-making as well.

412 Traditionally, sequential sampling models assume that during decision-making, subjects 

413 sample their options continuously until the relative evidence for one option reaches a 

414 predetermined threshold, and such models capture the speed-accuracy trade-off phenomenon 

415 well [19, 29, 30]. In our study, the decision time correlated to the difficulty of the decision, 

416 which is in accordance with previous theories. However, our results showed that subjects would 

417 make extra switches between the items and spend more time during which the accuracy of the 

418 decision has not been improved significantly. Specifically, these extra switches were biased to 

419 the choice eventually made. According to Krajbich [19], even as the decision variable evolves 

420 and one option emerges as the winning one, it is still optimal to continue sampling information 

421 randomly instead of favoring the leading option, since the information from both the winning 

422 and losing options are of equal importance. In contrast, other studies [10, 31, 32] as well as our 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2019. ; https://doi.org/10.1101/637017doi: bioRxiv preprint 

https://doi.org/10.1101/637017
http://creativecommons.org/licenses/by/4.0/


423 results reported a clear bias to examine the finally chosen option more during the later phase of 

424 sampling. Mullett and Stewart [31] suggested that such bias may be due to a relative instead of 

425 absolute stopping rule. In fact, allowing the current decision variable to feed back into the 

426 sampling patterns will push the decision variable further to the leading option and accelerate 

427 the decision process. Such acceleration will not necessarily reduce the accuracy of the decision, 

428 because it only happens at the later stage of sampling in which the main task is just to validate 

429 the decision. This validating phase may be longer for perceptual decisions, for people tend to 

430 respond with more caution in perceptual decisions than in preferential decisions, especially 

431 when the stimuli are ambiguous [33]. Meanwhile, how these sub-thresholds within the 

432 preliminary decision phase and the validating phase are determined remains to be discussed.

433 Finally, our study provided evidence for the bidirectional causal relationship between 

434 attention during sampling and decisions by a Bayesian Network analysis. Bayesian Networks 

435 have been customarily applied for probabilistic causal dependence assessment and inference in 

436 a wide range of areas [34], including life science researches [35, 36]. It is capable of depicting 

437 and predicting the conditional dependences between experimental variables through observed 

438 data, thus becomes a very helpful tool for psychological studies. In our practice, we listed all 

439 possible network structures, which correspond to different hypotheses on the causal relationship 

440 between the last sampled item, the decision variable and the chosen item, and compared the 

441 predicted conditional probability of choosing the last sampled item with behavioral data. 

442 Contradicting previous literature [19], our results imply that attention is not randomly switching 

443 between the options but drawn to the winning item during the later stage of the sampling. This 

444 may lead to some modification to the basic assumptions of the aDDM in the future.

445

446 Methods
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447 Participants

448 A total of 24 subjects participated in the study (13 females, age 20 – 30); all of them 

449 were university students. Subjects wore glasses for eyesight correction if needed. In order to 

450 avoid interference of previous experimental modes upon later sampling patterns, we divided 

451 the subjects into 3 groups, each containing 8 subjects, and asked each group to perform under 

452 only one mode (Centered: 4 females, mean age 25.9; Right Biased: 5 females, mean age 26.1; 

453 One-Switch: 4 females, mean age 24.9). The research was approved by the institutional ethics 

454 committee of Eotvos Lorand University, Hungary. All subjects provided informed written 

455 consent, and none declared any history of neurological diseases.

456

457 Paradigm and Stimuli

458 The paradigm was based on a two-alternative perceptual decision-making task: There 

459 were two imaginary circles on the left and right side of the screen (diameter 3.5 cm, distance 

460 20 cm between the centers), each containing 100 dots. The dots were either black or white on a 

461 50% gray background, and the proportions of white dots were different between the two groups. 

462 Subjects must decide in which group there were more white dots than in the other. To trigger 

463 each trial, subjects should use the computer mouse to drag the cursor to a small square box 

464 located at a random position (uniformly drawn from the central 80% range between the 

465 boundaries of the two stimuli), and stay there for a short period of time (1000 – 1500 ms 

466 randomly). After the trial was triggered, the two dot stimuli and two choice buttons would 

467 appear on the screen (Fig 1).

468 In the paradigm, a number of randomly selected dots were set invisible in each frame, 

469 and the number was in proportion to the distance between the cursor and each dot stimulus (Fig 

470 1A). Subjects were told to avoid pausing the mouse cursor in the middle of the screen while 
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471 looking at the stimuli on the two sides. In the unlimited-switch sampling mode, subjects could 

472 check each stimulus for as many times as they thought necessary. In the one-switch sampling 

473 mode, each stimulus could be examined only one time: after the cursor approached close 

474 enough to the stimulus (minimum 90% visibility) and then left, this stimulus would be masked 

475 and could not be examined again in this trial. Subjects were instructed not to move their mouse 

476 to masked stimuli during the task. System mouse acceleration was canceled to ensure the cursor 

477 movement on the screen was approximately linearly mapped to the actual movement of the 

478 mouse. Subjects were told not to pick up the mouse from the surface of the desk amid each trial.

479 We asked the subjects to move the cursor to the button corresponding to their choice 

480 (left stimulus – left button, and vice versa) and click on it to complete the trial. The choice 

481 buttons were positioned below the dot stimuli (vertically 7 cm from the centers of the stimuli) 

482 so that the y-axis downward movement of the mouse cursor would mark the start of the action 

483 execution stage. We set two types of tasks: In the first type, the choice buttons were horizontally 

484 centered (Fig 1A); in the second type, the choice buttons were positioned below the right stimuli 

485 (Fig 1B). The distinction between the two choices was defined as the difference between the 

486 proportions of white dots in the two groups. In each trial, we randomly drew an average 

487 proportion  from 40% – 60%, and then drew separately a distinction proportion  from 0% – 𝐴 𝐷

488 30%, so the proportion of white dots for the two groups would be A±0.5D. We randomly 

489 assigned the two calculated proportions to the left and right group, making sure that in half of 

490 the total number of trials there were more white dots in the left. 

491 The display screen had a width of 28.5 cm and a height of 18 cm, resolution 1280×800 

492 pixels, refresh rate 60 Hz. The screen was placed at a normal distance in front of the subjects 

493 when using computers (approximately 50 – 70 cm). We recorded the mouse trajectory from the 

494 moment the trial was triggered to when a button was clicked and the final decision in each trial 
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495 for later analysis. The stimuli and mouse tracking codes were programmed in MATLAB 

496 Psychtoolbox-3.

497

498 Modeling

499 We built an aDDM following the framework proposed by Krajbich et al. [16]. The 

500 relative value for each dot stimulus was set as:

501  (6)
rleft  kpleft

rright  kpright







502 Here pleft and pright were the proportion of white dots in each stimulus. The range of pleft and 

503 pright in the experiment was 0.25 – 0.75; we set constant k = 4 so the range of rleft and rright was 

504 1 – 3. The decision variable (DV) started from 0 in each stimulation, and the decision barriers 

505 were +1 for choosing the left stimulus and –1 for choosing the left stimulus. We used the 

506 multiplicative model [37]: the drift rates (v) in the model were given as:

507  (7)
v  d rleft rright ,left attended

v  d rleft  rright ,right attended









508 Here d was the value scaling parameter, and θ was the multiplicative attentional discounting 

509 parameter. Let DVt denote the value of the decision variable at time t. For every time step ∆t, 

510 we have:

511  (8)DVtt  DVt  vt   t

512 εt was drawn from zero mean Gaussian distribution with standard deviation σ. We assume that 

513 the first sampling is to the left stimulus with a fixed probability, and its duration drawn from a 

514 fixed distribution. Each following sampling is made alternatively between left and right which 
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515 will continue until it reaches a max time limit drawn from a fixed distribution or the decision 

516 variable reaches one barrier. We then fitted the three parameters in the model (θ, d and σ) to the 

517 overall accuracy and the number of switches made in each trial for human behavioral data. The 

518 best fitting set of parameters was θ = 0.52, d = 0.0097 and σ = 0.018. The fitted decision time 

519 (T) was calculated in the following way:

520  (9)T  kt  nt0

521 Here t denoted the decision time in the stimulation, k the time scaling factor, n the number of 

522 switches in the stimulation, and t0 the fixed time spent on switching between the stimuli. k and 

523 t0 were fitted to the behavioral data. 

524 For the one-switch mode, there are two possible models regarding the stop rule for the 

525 second and last sampling: the second sampling can stop either when the decision variable 

526 reaches one barrier or when its duration reaches the limit, or it can go on until one barrier is 

527 reached without max time limit. The latter version fitted the decision time for human subjects 

528 in the one-switch mode better, therefore we applied this assumption.

529 After the parameters for the aDDM were fitted, we ran the stimulation for 960 trials 

530 (sample size equal to 120 trials multiplied by 8 subjects) in both the unlimited- and one-switch 

531 sampling modes, and compared the output with human behavioral data.

532
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