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Abstract 16 

People usually switch their attention between the options when trying to make a 17 

decision. In our experiments, we bound motor effort to such switching behavior during a two-18 

alternative perceptual decision-making task and recorded the sampling patterns by computer 19 

mouse cursor tracking. We found that the time and motor cost to make the decision positively 20 

correlated with the number of switches between the stimuli and increased with the difficulty 21 

of the task. Specifically, the first and last sampled items were chosen in an attempt to 22 

minimize the overall motor effort during the task and were manipulable by biasing the 23 

relevant motor cost. Moreover, we observed the last-sampling bias that the last sampled item 24 

was more likely to be chosen by the subjects. We listed all possible Bayesian Network models 25 

for different hypotheses regarding the causal relationship behind the last-sampling bias, and 26 

only the model assuming bidirectional dependency between attention and decision 27 

successfully predicted the empirical results. Meanwhile, denying that the current decision 28 

variable can feedback into the attention switching patterns during sampling, the conventional 29 

attentional drift-diffusion model (aDDM) was inadequate to explain the size of the last-30 

sampling bias in our experimental conditions. We concluded that the sampling behavior 31 

during perceptual decision-making actively adapted to the motor effort in the specific task 32 

settings, as well as the temporary decision. 33 

 34 

Introduction 35 

 When people try to choose between two similar products in a shopping center, they 36 

often approach each shelf where the products are displayed to have a closer look. If the choice 37 

is difficult to make, people may walk back-and-forth the two shelves for a long time. Many 38 
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people will start by examining the product around the entrance of the shop, but choose the one 39 

near the checkout counter eventually to save some effort. This daily example suggests that our 40 

decisions are not solely shaped by the relative values of the alternatives, but also other factors 41 

including the motor effort related to the sampling and the action execution processes. 42 

However, sensorimotor aspects have not been integrated into decision-making studies 43 

until recently. It is still an on-going controversy whether action is part of decision-making: 44 

According to the Embodied Choice model, action execution is part of the decision-making 45 

process rather than merely a means to report the decision; in other words, action can feedback 46 

into the decision-making process [1]. Researchers have also studied decision-making by 47 

analyzing movement patterns [2] and sought neural imaging evidence for the involvement of 48 

the sensorimotor system during decision-making [3]. 49 

Meanwhile, Aczel et al. [4] argued that the observed decision bias was not caused by 50 

the movement toward one of the options, as the Embodied Choice model proposed, but rather 51 

the difference in the required motor effort during action. Other studies also reported the 52 

influence of motor effort during action upon decision-making: For example, perceptual 53 

decisions have been observed to be biased by the difference in the motor cost to make the 54 

response [5]. Moreover, the exposure to the unequal motor cost also biased the subsequent 55 

decisions even when they were vocally reported, indicating that motor effort can affect 56 

decision-making at a stage earlier than action execution [6]. De Lange and Fritsche [7] 57 

suggested that motor cost can influence decision-making similarly to rewards. Besides, motor 58 

effort can also affect changes of mind during decision-making [8]. 59 

Apart from action, the sampling behavior can be accompanied by motor effort as well, 60 

especially when the items to choose from are spatially separated. However, no investigation 61 

has focused on the influence of motor effort upon sampling. Although in some paradigms two 62 

or more visual stimuli were present, the main form of movement involved during sampling 63 
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was the saccadic eye movement; unlike limb movements, energy costs are not a significant 64 

consideration in the planning for saccades [9]. 65 

Another issue following the separation of the options in space is the attention 66 

allocation during sampling. Typically, the decision-maker switches the attention (by the 67 

behavior of switching the gaze) between the options at least once, sometimes multiple times. 68 

What is the relationship between attention and decision-making? Several results showed that 69 

manipulation of attention biased the decision [10-14]. Under the assumption that attention can 70 

influence value integration during decision-making, Krajbich et al. [15] proposed the 71 

attentional drift-diffusion model (aDDM). Unlike the traditional drift-diffusion model where 72 

the relevant evidence accumulates at a constant rate (the drift rate) within one decision, the 73 

aDDM allows the drift rate to change with attention: the option currently being attended 74 

(gazed at) shall receive more evidence. Such a model has successfully explained the gaze 75 

patterns and several gaze-related biases in preferential and perceptual decisions performed by 76 

human subjects [15-17]. 77 

Specifically, the aDDM assumes that attention or gaze switches between the options 78 

randomly. In fact, there is rare evidence supporting that temporary choices can influence 79 

attention allocation. Shimojo et al. [18] reported the gaze cascade effect that gaze was biased 80 

toward the finally chosen item during preferential decision-making, yet Krajbich [19] argued 81 

that the phenomenon was readily explained by the aDDM and suggested that gaze or attention 82 

has a causal effect on choice, but not vice versa. 83 

Under natural circumstances, humans gather information and sample relevant cues 84 

with attention and active sensing behaviors (shift of gaze and assisting limb/body movement) 85 

[20]. Sampling behavior itself can be regarded as a low-level decision-making process about 86 

what information to acquire, as well as where and when [21]. In the current study, we aim to 87 

figure out the factors influencing sampling patterns during a basic perceptual decision-making 88 
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task, especially how sampling behavior adapts to the expected motor effort given the specific 89 

environment of the task. We designed a paradigm in which motor effort was bind to the 90 

sampling and action execution processes, and manipulated the expected motor cost to 91 

examine corresponding changes in the sampling patterns. Additionally, we tested the causal 92 

relationship between the temporary decision and the attention allocation strategy during 93 

sampling by analyzing a Bayesian Network model and simulating an aDDM.  94 

 95 

Methods 96 

Paradigm and stimuli 97 

The paradigm was based on a two-alternative perceptual decision-making task in 98 

which subjects were asked to decide which of the two groups of black and white dots 99 

contained more white ones. Two imaginary circles (diameter 3.5 cm) were located 100 

horizontally apart on the upper half of the screen (20 cm between their centers), each 101 

containing 100 dots. The dots were either black or white on a 50% gray background. In each 102 

trial, we randomly set the proportions of white dots in each group with the following method: 103 

First, we separately drew an average proportion A from [0.4, 0.6] and a distinction proportion 104 

D from [0, 0.3]. The proportions of white dots in the two groups would be A ± 0.5D. Then, we 105 

randomly assigned the two calculated proportions to the left and right group, making sure that 106 

in 50% trials there were more white dots in the left group. 107 

To bind motor effort to the sampling process, we applied an artificial rule that the 108 

sampling quality is in proportion to the distance between the agent and the stimulus. In natural 109 

circumstances, it is interpreted as ‘the closer one gets to look at an object, the more details 110 

will be seen’, and ‘getting closer’ needs motor effort. In our paradigm, the position and color 111 
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of each dot were fixed within the trial, but in each frame (frame rate 60 fps) a different set of 112 

randomly selected dots were made invisible so that the dots were ‘blinking’ with varying 113 

phase and rate. The number of invisible dots in each frame was in proportion to the current 114 

distance between the mouse cursor and each dot stimulus, thus the closer the cursor was to the 115 

stimulus, the more dots were visible in a certain period (Fig 1B). When the cursor was moved 116 

to the leftmost, the left group of dots would become completely visible and static, while the 117 

right group would be completely invisible. Therefore, to get better sampling quality, subjects 118 

must make some motor effort to move the cursor closer to the stimulus they want to examine. 119 

 120 

Fig 1. Illustration of the paradigm. (A) A fixation (1000 – 1500 ms) on the start position 121 

with the mouse cursor was necessary to trigger each trial. After that, subjects moved the 122 

cursor to the stimuli alternatively to sample them. Finally, subjects clicked on the 123 

corresponding button to report which stimulus contained more white dots. (B)  The number of 124 

invisible dots per frame was in proportion to the distance between the cursor and the stimulus. 125 

Subjects must move the cursor close to the stimulus to get better sampling quality. 126 

 127 

At the beginning of each trial, a start position was randomly drawn within the central 128 

80% range between the boundaries of the two stimuli, marked by a small white square on the 129 

screen. Subjects should drag the computer mouse cursor onto the square and stay fixed for a 130 

short time (1000 – 1500 ms randomly) to trigger the trial. After the fixation period, the two 131 

stimuli would appear, and the subject could start to sample them. Subjects were told to avoid 132 

pausing the cursor in the middle of the screen while looking sideways at the stimuli. We set 133 

two sampling modes: In the one-switch mode, subjects should and could only make one 134 

switching movement between the stimuli, which means they had only one chance to sample 135 

each of the alternatives. When the cursor was moved close enough to the stimulus (visible 136 
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dots more than 90% per frame) and then left, that stimulus would be masked and could not be 137 

examined again in the current trial. Subjects were instructed not to move their mouse to an 138 

already masked stimulus. The length of time to examine each stimulus was not limited. In the 139 

unlimited sampling mode, subjects could make as many switches and check each stimulus for 140 

as many times as they needed. 141 

The motor effort during the action stage took the form of moving the cursor to the 142 

corresponding choice button and clicking on it to report the final choice. The choice buttons 143 

were two small white squares displayed on the lower half of the screen, vertically 7 cm from 144 

the centers of the stimuli. We set two types of trials differentiated by the location of the 145 

choice buttons: In the first type, the buttons were horizontally centered, so the motor effort 146 

(measured by the moving distance) to drag the cursor from the two stimuli to the buttons was 147 

approximately the same. In the second type, the buttons were placed under the right stimulus, 148 

so that the required motor effort would be less if the subject sampled the right stimulus last 149 

and started from there to reach for the buttons. 150 

The display screen size was 28.5 × 18 cm, resolution 1280 × 800 pixels, refresh rate 151 

60 Hz. The screen was placed 50 – 70 cm in front of the subjects. System mouse acceleration 152 

was disabled to make the cursor movement on the screen linearly map the actual movement of 153 

the mouse. Subjects were told not to pick up the mouse from the surface of the desk amid 154 

each trial. Mouse trajectory was recorded from the moment the trial was triggered to when a 155 

button was clicked (sampling rate 60 Hz). We also recorded the final decision in each trial. 156 

The stimuli and mouse tracking codes were programmed in MATLAB Psychtoolbox-3. 157 

 158 

Participants and procedure 159 
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 A total of 24 subjects participated in the study (13 females, age 20 – 30); all of them 160 

were university students. Subjects wore glasses for vision correction if needed. The research 161 

was approved by the institutional ethics committee of Eotvos Lorand University, Hungary. 162 

All subjects provided informed written consent, and none declared any history of neurological 163 

diseases. 164 

 To avoid previous experimental processes interfering with later sampling patterns, we 165 

divided the subjects into 3 groups, each containing 8 subjects, and each group of subjects only 166 

performed in a single experimental condition (Table 1). After 10 practice trials to get familiar 167 

with the paradigm, each subject performed 2 blocks of 60 trials. A short break (5 – 10 168 

minutes) took place between the blocks. The complete experiment took approximately 40 – 169 

60 minutes per subject. 170 

Table 1. Details of the experimental condition settings. 171 

Condition Sampling Mode Choice Button Position Female Subjects Mean Age 

Control unlimited switches horizontally centered 4 / 8 25.9 

Right-Biased unlimited switches under the right stimulus 5 / 8 26.1 

One-Switch one switch only horizontally centered 4 / 8 24.9 

 172 

Data analysis 173 

Sampling patterns 174 

Decision time for a trial was defined as the elapsed time from the onset of the stimuli 175 

to when the final decision was made, excluding the time of action execution. The dividing 176 

line between the sampling stage and the action stage was the moment when a downward y-177 

axis component of the cursor velocity exceeded the threshold. 178 

Horizontal moving distance during sampling was defined as the total moving distance 179 

of the cursor on the screen along the x-axis within the sampling stage of a trial. 180 
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To test the linear relationship between the variables depicting sampling patterns, we 181 

performed linear mixed-effects regressions with random effects for subject-specific intercepts 182 

and slopes. 183 

Psychometric curves 184 

Psychometric curves were fitted to the data pooled across all subjects within each 185 

group or all simulation trials in the same condition using the generalized linear model (GLM) 186 

with the logit link function. 187 

Comparing lines and curves 188 

To compare two regression lines, we used a generalized ANCOVA allowing different 189 

slopes and intercepts: 190 

 0 1 2 3( )Iβ β β β= + + +Y X X   (1) 191 

where β0, β1, β2 and β3 were free parameters, X was the predictor variable, and I was the 192 

indicator variable whose value was 0 for the reference group and 1 for the other group.  193 

To compare two psychometric curves, we fitted the data to the following logistic 194 

function: 195 

 
0 1 2 3( ( ))

1

1 Ie β β β β− + + +=
+ X XY   (2) 196 

Then, we tested the null hypotheses β2 = 0 and β3 = 0 with the two-tailed one-sample t-test to 197 

compare the intercepts and slopes (steepness) of the two curves. 198 

 199 

Bayesian Network modeling 200 
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 We listed all three possible Bayesian Network models for different hypotheses 201 

regarding the causal relationship between the decision variable before the last sampling, the 202 

last sampled item and the final choice in the trial. The conditional probability of choosing the 203 

right item given that it is last sampled was calculated under each hypothesis and compared 204 

with the empirical results. 205 

For mathematical details of the models, see S1 Supporting Information. 206 

To calculate the conditional probability p(right chosen | right last sampled) from the 207 

behavioral data, we first fitted a psychometric choice curve (probability of choosing the right 208 

item vs. difference between the proportions of white dots in the stimuli) to the trials in which 209 

the right item was sampled last for each subject individually, and then marginalized the 210 

difference between the stimuli. The mean p(right chosen | right last sampled) across the 211 

subjects in each group was compared with the value 0.5 (the probability without bias) using 212 

the one-tailed one-sample t-test. The One-Switch group and the Right-Biased group were 213 

compared with the Control group using Dunnett’s test after a one-way ANOVA. 214 

 215 

aDDM simulation 216 

We built our aDDM following Krajbich et al. [15]. We set the relative value (rleft and 217 

rright) to the proportion of white dots in each stimulus. The range of rleft and rright in the 218 

experiment was [0.25, 0.75]. The decision variable (DV) started from 0 in each simulation 219 

trial, and the decision barriers were –1 for the left stimulus and +1 for the right stimulus. We 220 

applied the multiplicative model [22]. The drift rates (v) in the model were defined as: 221 

 left right

left right

( ), left attended

( ), right attended

v d r r

v d r r

θ
θ

= −⎧
⎨ = −⎩

  (3) 222 
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where d was the value scaling parameter, and θ was the multiplicative attentional discounting 223 

parameter. Specifically, during the first sampling, the unattended stimulus was assigned a 224 

mean value rmean = 0.5 instead of the real value because the subject had not sampled that 225 

stimulus yet. Let DVt denote the value of the decision variable at time t. For every time step 226 

∆t, 227 

 t t t tDV DV v t ε+Δ = + Δ +   (4) 228 

where εt was drawn from a zero-mean Gaussian distribution with standard deviation σ. We 229 

assumed that the first sampling falls on the left stimulus with a fixed probability (Control: 230 

0.59, One-Switch: 0.57, from empirical data), its duration drawn from a fixed gamma 231 

distribution. Each successive sampling epoch fell alternatively on the left and right stimulus 232 

and would continue until it reached a max time limit drawn from another fixed gamma 233 

distribution or until the decision variable reached one barrier. The parameters of the two 234 

gamma distributions were fitted with maximum likelihood estimation (MLE) to the empirical 235 

sampling time data in the Control condition. Time step ∆t was set to 10 ms. For human 236 

subjects in the Control group, the max number of switches in a single trial was 10, so we 237 

discarded simulations with more than 10 switches. 238 

 We fitted the three parameters in the model (θ, d and σ) to the empirical data pooled 239 

across all subjects: For each set of parameters, we ran a fixed number of valid simulations 240 

(240 for the coarse search and 960 for the finer search) and compared the results with 241 

behavioral data using the following error metric: 242 

 
2 2

' '
= a a n n

a n

y y y y
Err

y y

⎛ ⎞ ⎛ ⎞− −+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (5) 243 

where ya = 0.9042 and yn = 2.0698 were the accuracy and the mean number of switches 244 

calculated from the 960 trials pooled across the 8 subjects in the Control group, while ya’ and 245 
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yn’ were the accuracy and the mean number of switches across all simulations. We performed 246 

a grid search for the best fitting parameters: In the i-th iteration, we tested the parameter sets 247 

given by the cross product of {θi1, θi2, θi3}, {di1, di2, di3} and {σi1, σi2, σi3}. Let (θi, di, σi) 248 

denote the parameters that generated the smallest Err value, then in the (i+1)-th iteration we 249 

tested a finer grid given by the cross product of {θi – 0.5∆θi, θi, θi + 0.5∆θi}, {di – 0.5∆di, di, 250 

di + 0.5∆di} and {σi – 0.5∆σi, σi, σi + 0.5∆σi}, where ∆θi, ∆di and ∆σi were the step sizes used 251 

in the i-th iteration. The initial values were {0.1, 0.5, 0.9} for θ, {0.001, 0.005, 0.009} for d, 252 

and {0.01, 0.05, 0.09} for σ in the coarse search and {0.6, 0.7, 0.8} for θ, {0.004, 0.005, 0.006} 253 

for d, and {0.03, 0.04, 0.05} for σ in the finer search. We stopped the iterations when the step 254 

sizes became smaller than 0.5% of the parameter values. The final fitting results were θ = 255 

0.67, d = 0.0051 and σ = 0.038. 256 

 For the One-Switch condition, we used the same set of parameters (θ, d and σ) in the 257 

Control condition, but only two sampling epochs were allowed. The second sampling would 258 

continue until the decision variable reached one barrier. We discarded the simulations in 259 

which the second sampling exceeded 3000 ms, which was the max duration of the second 260 

sampling for 99.5% empirical trials in the One-Switch condition. The decision time for the 261 

simulations was calculated by adding the mean transition time (delay between the sampling 262 

epochs) measured from behavioral data to the total time length of the sampling epochs in the 263 

simulations. 264 

 We simulated the model for 960 valid trials (the same sample size as the empirical 265 

data pooled across all subjects in each condition) using the best fitting parameters above for 266 

the Control condition and the One-Switch condition separately and compared the results with 267 

human behavioral data. 268 

 269 
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Results 270 

General sampling patterns 271 

Firstly, we studied the general sampling patterns in the Control condition. We plotted 272 

the horizontal mouse cursor position recorded during the sampling stage against elapsed time 273 

in each trial. Fig 2 shows the time series of the cursor position from a single block performed 274 

by one subject: The 60 trials in the block were sorted by the start position. The horizontal 275 

positions between the two stimuli were linearly mapped to [0, 1] and shown in a red-blue 276 

color scale. The typical sampling pattern was to switch the cursor once or multiple times 277 

between the two stimuli. The cursor paused mostly at either the leftmost or the rightmost, 278 

meaning that only one of the stimulus was clearly visible at a time. Therefore, we can assume 279 

that the eye gaze and the attention of the subject switched between the stimuli together with 280 

the cursor, which enables the comparison between our paradigm and former sequential 281 

sampling tasks and models. 282 

 283 

Fig 2. Typical time series of the horizontal mouse cursor position during sampling. Data 284 

were from a single block (60 trials) performed by one subject in the Control group and sorted 285 

by the start position in each trial. Red color indicates that the current cursor position is closer 286 

to the right stimulus, while blue indicates that the cursor is closer to the left. 287 

 288 

If a subject made n switches in a trial, there would be n+1 sampling epochs 289 

alternatively assigned to the two stimuli. Assuming that each sampling period has 290 

approximately the same duration, the decision time should linearly correlate with the number 291 

of switches in each trial. Moreover, most of the motor effort during sampling was spent on 292 
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switching the cursor from one stimulus to the other, the distance between them fixed. 293 

Therefore, the total motor effort within a trial (measured by the horizontal moving distance of 294 

the cursor) should also linearly correlate with the number of switches. Fig 3A shows the 295 

histogram of the number of switches made in all 960 trials performed by subjects in the 296 

Control group: In 42.5% trials only one switch was made, and the percentage of the trials 297 

decreased as the switches made in them increased. Fig 3B and 3C show that the decision time 298 

(linear mixed-effects regression: slope = 1276.6 ms, P = 2.8×10–21; Pearson’s r = 0.78) and 299 

the horizontal moving distance (linear mixed-effects regression: slope = 17.8 cm, P = 2.6×10–
300 

54; Pearson’s r = 0.90) linearly correlated with the number of switches. 301 

 302 

Fig 3. Number of switches within each trial, and its correlation with decision time and 303 

horizontal moving distance. (A) Histogram of the number of switches. (B) Linear 304 

correlation between decision time and number of switches during the trials. Mixed-effects 305 

regression: slope = 1276.6 ms, P = 2.8×10–21; Pearson’s r = 0.78. (C) Linear correlation 306 

between horizontal moving distance and number of switches during the trials. Mixed-effects 307 

regression: slope = 17.8 cm, P = 2.6×10–54; Pearson’s r = 0.90. Data included 960 trials 308 

pooled across 8 subjects in the Control group. 309 

 310 

Influences of motor effort on sampling patterns 311 

 The total motor effort within one single trial consisted of three parts: first, to drag the 312 

cursor from the start position to the first sampled item; second, to switch between the items 313 

one or more times during sampling (each switch took approximately the same moving 314 

distance, as discussed previously); third and lastly, to drag the cursor from the last sampled 315 
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item to the choice buttons. We studied how motor cost in the different parts interacted with 316 

the decision-making process (Fig 4): 317 

 318 

Fig 4. Right-Biased condition vs. Control condition. (A) Psychometric choice curves. (B) 319 

Number of switches against trial difficulty, as measured by the absolute difference between 320 

the proportions of white dots in the stimuli. (C) Psychometric curves for the first sampled 321 

item. (D)  Psychometric curves for the last sampled item. Error bars show 95% confidence 322 

intervals. Data included 960 trials pooled across 8 subjects in each condition. 323 

 324 

 Fig 4A shows the psychometric choice curves in the Control and the Right-Biased 325 

conditions: There was no statistically significant difference between the two curves (intercept: 326 

P = 0.0958; slope: P = 0.1358), and the overall accuracy was also similar (Control: 90.4%; 327 

Right-Biased: 91.5%; unpaired two-tail t-test between individual subjects in the two groups: P 328 

= 0.4599). The difference in motor costs during the action phase did not bias the decisions of 329 

the subjects in our experimental paradigm. One possible reason is that the difference was not 330 

directly related to the final choice; another possibility is that explicit knowledge of the motor 331 

cost would help to avoid integrating irrelevant factors into the decision to maintain high 332 

accuracy [23]. 333 

 We plotted the number of switches made in the trials against trial difficulty (measured 334 

by the absolute difference between the proportions of white dots in the stimuli) in Fig 4B: In 335 

both conditions, the number of switches decreased with trial difficulty (significant slopes in 336 

mixed-effects regression: P = 4.8×10–10 for Control and P = 1.9×10–8 for Right-Biased). There 337 

was no significant difference between the two conditions (intercept: P = 0.5216; slope: P = 338 

0.8516). The motor cost during sampling correlated with the number of switches, therefore we 339 
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concluded that the more difficult the trials were, the more motor effort would be invested into 340 

the sampling process. 341 

 Next, we examined the influences of motor cost upon the first and the last sampled 342 

items. Fig 4C shows that the start position and the choice button position both affected the 343 

first sampled item: In the Control condition, subjects tended to sample the item closer to the 344 

start position, which would reduce the first part of the total motor cost. However, we observed 345 

a systematic bias to sample the left item first, which may be related to the cultural habit of 346 

dealing with items in left-to-right order (for example, people usually read from left to right). 347 

In the Right-Biased condition, subjects showed an extra tendency to go for the left item first 348 

(significantly different intercepts: P = 2.9×10–9). The subject was most likely to make only 349 

one switch (Fig 3A); in that case, starting from the left item would lead to taking the shorter 350 

path from the right item to the buttons, reducing the last part of the motor effort. In Fig 4D we 351 

plotted the probability of sampling the right item last against the difference between 352 

proportions of white dots in the two stimuli: Generally, subjects were more likely to sample 353 

the stimulus with more white dots last. In the Right-Biased condition, subjects preferred to 354 

sample the right stimulus last (significantly different intercepts: P = 2.9×10–6), which would 355 

reduce the motor cost during the action phase. 356 

 357 

Influences of the decision variable on sampling patterns 358 

The last-sampling bias is the phenomenon that subjects are more likely to choose the 359 

last sampled stimulus. Such a bias has been reported in several human decision-making 360 

studies of both preferential and perceptual decisions [15, 17]. However, the causal 361 

relationship behind the last-sampling bias is not completely clear: Do subjects tend to choose 362 

a stimulus because it is the last sampled one, or do they tend to sample the particular stimulus 363 
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last because they already want to choose it, or both? According to the aDDM, the evidence 364 

accumulation rate for the stimulus not being sampled is discounted, so the decision variable 365 

will be more likely to reach the barrier at the last sampled side [15]. Otherwise, the aDDM 366 

assumes that the current decision variable has no backward influence upon sampling patterns. 367 

There is rare evidence supporting that the temporary decision has a causal effect on the 368 

allocation of attention during sampling [19]. 369 

Bayesian Network modeling 370 

To study the causal relationship between the last sampled item and the decision, we 371 

built a Bayesian Network model quantifying the size of the last-sampling bias. Fig 5 displays 372 

the graphical models for the networks: Naturally, the final decision depends on the decision 373 

variable. In the One-Switch condition, the last sampled item is the alternative of the first 374 

sampled one, which in turn depends on the motor cost measured by the distance from the start 375 

position to the stimulus. In the Right-Biased condition, the last sampled item depends on the 376 

motor cost in the action stage. Apart from the common dependency structures described 377 

above, there are three possible models with different hypotheses on whether the last sampled 378 

item depends on the decision variable and whether the final choice depends on the last 379 

sampled item: 380 

 381 

Fig 5. Causal relationship for the last-sampling bias. Graphical models for possible 382 

hypotheses regarding the conditional dependency relationship between the decision variable 383 

before the last sampling, the last sampled stimulus and the final choice. Arrows show 384 

dependency between the events or variables, and dashed arrows show dependency assumed to 385 

exist generally but absent in the specific experimental condition. 386 

 387 
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Model (a) 388 

Like the aDDM, the first model assumes that the final decision depends on the last 389 

sampled item, but the last sampled item is independent of the decision variable. Therefore, in 390 

the Control condition we have: 391 

 
p right chosen right last sampled( )
= p right chosen DV ,right last sampled( ) p DV( )∫ dDV

  (6) 392 

where DV is the value of the decision variable exactly before the last sampling epoch starts. 393 

p(right chosen | right last sampled) measures the size of the last-sampling bias. The bias is due 394 

to the term p(right chosen | DV, right last sampled), which can be regarded as a function of 395 

DV: For each given value of DV, p(right chosen | DV, right last sampled) > p(right chosen | 396 

DV). In the aDDM, p(right chosen | DV, right last sampled) is the probability for the decision 397 

variable to drift to the right boundary at the end of the last sampling, decided by the aDDM 398 

parameters (d, σ and θ) and the relative values for the two stimuli. 399 

In the One-Switch condition, the dependency structure between DV, the last sampled 400 

item and the final choice remains the same, but the following analysis explains why the size 401 

of the last-sampling bias will increase (see our aDDM simulation results): At the beginning of 402 

each trial, the decision variable is set to 0; as the sampling time elapses, more drift steps (v∆t 403 

+ εt) are added to the decision variable, so its variance increases. When only two sampling 404 

epochs are allowed, the elapsed time before the last sampling is shorter, thus p(DV) will have 405 

a narrower variance. In that case, the product of a biased p(right chosen | DV, right last 406 

sampled) and p(DV) will be larger than that in the Control condition. 407 

In the Right-Biased condition, the value of p(right chosen | right last sampled) will not 408 

change because no term in Equation (6) depends on the motor cost to reach for the buttons. 409 

Model (b) 410 
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On the contrary, the second model assumes that the last sampled item depends on DV, 411 

but the final decision is independent of the last sampled item. Therefore, in the Control 412 

condition, 413 

 

(right chosen | right last sampled)

(right last sampled | )
(right chosen | ) ( )

(right last sampled)

p

p
p p d

p
= ∫

DV
DV DV DV

  (7) 414 

Under that hypothesis, the last-sampling bias is due to the term p(right last sampled | DV), 415 

which is also a function of DV: When DV > 0, p(right last sampled | DV) > p(right last 416 

sampled); when DV < 0, p(right last sampled | DV) < p(right last sampled). 417 

In the One-Switch condition, the last sampled item no longer depends on DV, so: 418 

 (right chosen | right last sampled) (right chosen | ) ( )p p p d= ∫ DV DV DV   (8) 419 

Thus p(right chosen | right last sampled) will fall back to 0.5. 420 

In the Right-Biased condition, subjects tend to sample the right item last. We assumed 421 

that such a tendency is independent of DV, so the probability p(right last sampled | DV) and 422 

p(right last sampled) will rise by the same additive amount. Compared with the Control 423 

condition, the term p(right last sampled | DV)p(right last sampled)–1 will become smaller 424 

when DV > 0 and larger when DV < 0, resulting in a decreased size of the last-sampling bias. 425 

Model (c) 426 

This model shows a third possibility that the last sampled item depends on DV, and 427 

the final decision also depends on the last sampled item. In the Control condition: 428 

 

(right chosen | right last sampled)

(right last sampled | )
(right chosen | , right last sampled) ( )

(right last sampled)

p

p
p p d

p
= ∫

DV
DV DV DV

  (9) 429 
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In Equation (9), the total bias in p(right chosen | right last sampled) has two sources: p(right 430 

chosen | DV, right last sampled) and p(right last sampled | DV). The last sampled item is more 431 

likely to be chosen, and the temporarily winning item is more likely to be sampled last. 432 

Under such assumptions, the last-sampling bias should remain in the One-Switch 433 

condition because the term p(right chosen | DV, right last sampled) is biased, but the size will 434 

decrease because the term p(right last sampled | DV) now disappears. 435 

In the Right-Biased condition, p(right chosen | right last sampled) will also become 436 

smaller similar to that in Model (b). 437 

Model predictions vs. empirical results 438 

Let pControl, pOne-Switch and pRight-Biased denote p(right chosen | right last sampled) in each 439 

specific experimental condition. We summarized different model predictions and the 440 

empirical results in Table 2: Among the three hypotheses, only Model (c) correctly predicted 441 

the behavioral data. Therefore, we concluded that the causal relationship between sampling 442 

patterns and the decision is bidirectional. 443 

 444 

Table 2. Summary of different model predictions about the last-sampling bias and the 445 

empirical results. 446 

Model Predictions 

E
m

pi
ri

ca
l R

es
ul

ts
 

pControl > 0.5*** 

(a) 

pControl > 0.5 (one-sample t-test, P = 2.0×10–5) 

pOne-Switch > pControl (×) pOne-Switch > 0.5** 

pRight-Biased = pControl (×) (one-sample t-test, P = 0.0018) 

(b) 

pControl > 0.5 pOne-Switch < pControl*** 

pOne-Switch = 0.5 (×) (Dunnett’s test, P = 5.9×10–4) 

0.5 < pRight-Biased < pControl pRight-Biased > 0.5** 

(c) 

pControl > 0.5 (one-sample t-test, P = 0.0037) 

0.5 < pOne-Switch < pControl pRight-Biased < pControl** 

0.5 < pRight-Biased < pControl (Dunnett’s test, P = 0.0018) 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2019. ; https://doi.org/10.1101/637017doi: bioRxiv preprint 

https://doi.org/10.1101/637017
http://creativecommons.org/licenses/by/4.0/


 447 

pControl, pOne-Switch and pRight-Biased denote p(right chosen | right last sampled) in each 448 

experimental condition. The conditional probability measures the size of the last-sampling 449 

bias, and a value of 0.5 means that there is no bias. **P < 0.01, ***P < 0.001. The cross (×) 450 

marks that the prediction contradicted empirical results. 451 

 452 

aDDM simulation 453 

 On top of the theoretical Bayesian Network analysis, we also ran an aDDM simulation 454 

to test whether the decision variable can feedback into the sampling patterns. In our 455 

simulations, each sampling epoch was focused alternatively on the two stimuli until it reached 456 

a time limit randomly drawn from a distribution fitted to the empirical data. In the One-457 

Switch condition, only one switch of attention was allowed. Each simulation ended when one 458 

of the decision boundaries was reached. Therefore, the allocation of attention in the aDDM 459 

was independent of the current decision variable. Fig 6 shows the comparison between 460 

simulated and empirical results: 461 

 462 

Fig 6. aDDM simulation results vs. empirical data. (A) Psychometric choice curve in the 463 

Control condition. (B) Number of switches in the Control group against trial difficulty, as 464 

measured by the absolute difference between the proportions of white dots in the stimuli. (C) 465 

Last-sampling bias in the Control group. The horizontal axis shows the difference between the 466 

proportions of white dots between the last sampled stimulus and the other, while the vertical 467 

axis shows the probability of choosing the last sampled stimulus. (D) Psychometric choice 468 

curve in the One-Switch condition. (E) Decision time in the One-Switch group against trial 469 

difficulty. (F) Last-sampling bias in the One-Switch group. Error bars show 95% confidence 470 
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intervals. Empirical data included 960 trials pooled across 8 subjects in each condition; 471 

simulated data included 960 trials in each condition. 472 

 473 

 Firstly, we compared the psychometric choice curves: There was no statistically 474 

significant difference between the psychometric choice curves for the simulations and the 475 

human subjects (intercept: P = 0.0679; slope: P = 0.0610) in the Control condition (Fig 6A). 476 

In the One-Switch condition, there was no significant difference between the intercepts of the 477 

curves (P = 0.7116), but the slope (steepness) for the simulated data was significantly smaller 478 

than that of the empirical data (P = 3.2×10–4), meaning that the overall accuracy in the 479 

simulations was lower (Fig 6D). When only one switch was allowed, the choice accuracy of 480 

the simulations reduced from 90.1% to 84.4%, while for the human subjects there was no 481 

significant reduction (unpaired one-tail t-test between individual subjects in the two groups: P 482 

= 0.8082). 483 

 Next, we compared the number of switches in the Control condition (Fig 6B): There 484 

was no statistically significant difference between the simulated and empirical results 485 

regarding the number of switches against trial difficulty (intercept: P = 0.2690; slope: P = 486 

0.2384). In the One-Switch condition, we compared the decision time instead of the number 487 

of switches (for it is constantly 1): There was no significant difference between the simulated 488 

and empirical results regarding the decision time against trial difficulty ((Fig 6E, intercept: P 489 

= 0.6125; slope: P = 0.2257). 490 

 Finally, we focused on the last-sampling bias: In Fig 6C and 6E, we plotted the 491 

probability of choosing the last sampled item against the difference between the proportions 492 

of white dots between the last sampled stimulus and the other. All the curves had an intercept 493 

larger than 0.5, showing a tendency to choose the last sampled item, but the sizes of the bias 494 

were different: The curve intercept for the simulations was significantly lower than empirical 495 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2019. ; https://doi.org/10.1101/637017doi: bioRxiv preprint 

https://doi.org/10.1101/637017
http://creativecommons.org/licenses/by/4.0/


(P = 5.8×10–4) in the Control condition and significantly higher than empirical (P = 0.0166) in 496 

the One-Switch condition. Denying that subjects would switch back to sample the winning 497 

item but assuming random switches all the while, the aDDM underestimated the last-sampling 498 

bias in the Control condition and overestimated it in the One-Switch condition. The 499 

simulation results matched our Bayesian Network analysis and implied that the current 500 

decision had a causal effect on the sampling patterns. 501 

 502 

Discussion 503 

 In summary, the adaptive sampling behavior during perceptual decision-making 504 

exhibited the following patterns: First, the number of switches between the alternatives 505 

correlated with the difficulty of the task: the more difficult the task was, the more times the 506 

stimuli were resampled. Second, the sampling sequence was decided considering the start 507 

position and the choice button position in an attempt to minimize the total motor effort. Third, 508 

attention was biased to the eventually chosen item during the last sampling epoch. Combining 509 

the modeling results, we concluded that both motor cost and the temporary decision have a 510 

causal influence upon the pattern of attention allocation during sampling. 511 

 Having reviewed recent computational models, behavioral studies and neural 512 

recording results, Wispinski et al. [24] concluded that decision-making is a continuous 513 

process from the presentation of behaviorally relevant options until movement completion. 514 

Previous studies suggested that motor effort related to the action phase can influence the 515 

decision [4-6, 8], and our results provided an extended conclusion that sampling behavior was 516 

also influenced by the motor effort in different stages of the decision-making process. It 517 

supported the idea that sensorimotor aspects should be considered as an actively integrated 518 

part of the decision-making process. Further, several studies focused on the representation of 519 
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motor effort and how it is related to cost minimization in decision-making as well as motor 520 

control [25, 26]; future studies may quantify the effect of motor cost on sampling behavior 521 

with similar methods. 522 

The relationship between attention and eye movement during decision-making has 523 

been studied abundantly [27], but researches highlighting limb and body movements during 524 

the sampling process are rare, even though in naturalistic circumstances such movements 525 

usually cooperate with eye movements to sample relevant information better. In our research, 526 

we designed a paradigm based on computer mouse tracking in which both gaze shift and hand 527 

movement (moving the mouse) were necessary to switch attention between the options. 528 

Although mouse tracking and eye tracking are both commonly applied process tracking 529 

methods in decision-making research, their original purposes are slightly different: While eye 530 

tracking mostly target on attention and information searching strategies, mouse cursor 531 

tracking data reflect more about indecision and momentary preference [28]. In our paradigm, 532 

however, subjects must move the cursor closer to get a better view of each stimulus, as if 533 

approaching a real object to have a better look. In this way, the mouse trajectory can reflect 534 

attention during sampling as eye traces did in previous studies. Moreover, our paradigm can 535 

be applied to study eye-hand cooperation and coordination during decision-making as well. 536 

Traditionally, sequential sampling models assume that during decision-making, 537 

subjects sample their options continuously until the relative evidence for one option reaches a 538 

predetermined threshold, and such models capture the speed-accuracy trade-off phenomenon 539 

well [19, 29, 30]. Interestingly, our results showed that subjects would make extra sampling 540 

epochs during which the accuracy of the decision has not been improved significantly. One 541 

possible explanation is that subjects were switching back to the previously sampled stimuli 542 

again to verify their preliminary decision [31]. Similar to other studies [18, 32, 33], we 543 

observed an attentional bias to the finally chosen option during the later sampling epochs. 544 
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Mullett and Stewart [32] suggested that such a bias may be due to a relative instead of 545 

absolute stopping rule. According to Krajbich [19], even as the decision variable evolves and 546 

one option emerges as the winning one, it is still optimal to continue sampling information 547 

randomly instead of favoring the leading option, since the information from both the winning 548 

and losing options are of equal importance. However, the accuracy of the decision will not 549 

necessarily decrease if the attentional bias happens at the later stage of sampling when the 550 

main task is to validate the decision. This validating phase may be longer for perceptual 551 

decisions, for people tend to respond with more caution in perceptual decisions than in 552 

preferential decisions, especially when the stimuli are ambiguous [34]. Meanwhile, how the 553 

sub-thresholds within the preliminary decision phase and the validating phase are determined 554 

remains to be discussed. 555 

Finally, our study provided evidence for the bidirectional causal relationship between 556 

attention and decisions by Bayesian Network modeling. Bayesian Networks have been 557 

customarily applied for probabilistic causal dependence assessment and inference in a wide 558 

range of areas [35], including life science researches [36, 37]. It is capable of depicting and 559 

predicting the conditional dependences between experimental variables through observed 560 

data, thus becomes a beneficial tool for psychological studies. In our study, we listed all 561 

possible network structures corresponding to different hypotheses on the causal relationship 562 

between the last sampled item, the decision variable and the chosen item. Then, we compared 563 

the predicted conditional probability of choosing the last sampled item with empirical data. 564 

Contrary to previous literature [19], our results imply that rather than randomly switching 565 

between the options, attention is drawn to the winning item during sampling. This finding 566 

may lead to some modification to the basic assumptions of the aDDM in the future. 567 

 568 
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