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Abstract

Vascular disease is a leading cause of death world wide and therefore the treatment
thereof is critical. Understanding and classifying the types and levels of stenosis can
lead to more accurate and better treatment of vascular disease. Some clinical techniques
to measure stenosis from real patient data are invasive or of low accuracy.

In this paper, we propose a new methodology, which can serve as a supplementary
way of diagnosis to existing methods, to measure the degree of vascular disease using
topological data analysis. We first proposed the critical failure value, which is an
application of the 1-dimensional homology group to stenotic vessels as a generalization
of the percent stenosis. We demonstrated that one can take important geometric data
including size information from the persistent homology of a topological space. We
conjecture that we may use persistent homology as a general tool to measure stenosis
levels for many different types of stenotic vessels.

We also proposed the spherical projection method, which is meant to allow for future
classification of different types and levels of stenosis. We showed empirically using the
spectral approximation of different vasculatures that this projection could provide a new
medical index that measures the degree of vascular disease. Such a new index is
obtained by calculating the persistence of the 2-dimensional homology of flows. We
showed that the spherical projection method can differentiate between different cases of
flows and reveal hidden patterns about the underlying blood flow characteristics, that is
not apparent in the raw data. We showed that persistent homology can be used in
conjunction with this technique to classify levels of stenosis.

The main interest of this paper is to focus on the theoretical development of the
framework for the proposed method using a simple set of vascular data.

Introduction 1

Topological data analysis (TDA) has been proven to provide a new perspective and a 2

new analytic tool in data analysis, inspiring researchers in various applications [4,27,28]. 3

The analysis with TDA is based on persistent homology driven by the given topological 4

space. Various forms of data from various applications are actively being used by 5

researchers via TDA for possibly finding new knowledges out of the given data set. 6

The work described in this paper is motivated by the clinical problem of the 7

diagnosis of vascular disease. In this paper we explored how TDA could be used to 8

understand the complexity of complex flows, particularly vascular flows and proposed 9
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and developed a theoretical framework of the new method that could characterize and 10

classify the vascular flow conditions. 11

As the degree of vessel deformation increases, the complexity of vascular flows also 12

increases. As the complexity increases it becomes difficult to fully characterize the flow 13

behaviors. In this paper we are mainly interested in stenotic vascular flows. Stenotic 14

vessels can predispose to angina, strokes, transient ischemic episodes and flow limitation 15

causing serious vascular disease and it is crucial to understand the complexity of 16

stenotic flows for proper treatments. 17

Vascular disease is the primary cause of human mortality in the United States and 18

worldwide. Coronary heart disease is the single leading cause of death in America 19

today [2]. Each year about 1 million people die of heart disease (one in three deaths and 20

another 17 million are at risk for heart attacks. That is, 1.3 million undergo coronary 21

interventions, either a bypass (∼ 500,000), or angioplasty and/or stenting (∼ 1.3 22

million) [1]. About 23.6 million deaths of cardiovascular disease are expected by 2030. 23

Nearly 787, 000 people in the US died from heart disease, stroke and other cardiovascular 24

diseases in 2011 (one of every three deaths in America) – 2, 150 Americans die each day 25

from these disease, one every 40 seconds. Heart disease – once every 90 seconds. Direct 26

and indirect costs of cardiovascular diseases and strokes are total more than $320.1 27

billon [2]. As these statistics imply, accurate diagnosis for the prediction and treatment 28

of vascular disease is crucial. Increasing the diagnosis success rate even by a few percent 29

would result in saving a significant number of human lives. For this reason, a great deal 30

of manpower and funding are used up for vascular research each year in the US. 31

In the following, we first briefly explain those two main methodologies used clinically 32

today. We proposed, in this paper, a new additional diagnosis methodology using TDA. 33

The proposed new method can be used with the existing methodology to increase the 34

diagnosis accuracy. 35

0.1 Existing Methodologies 36

There are several methodologies used for the diagnosis of vascular disease such as the 37

electrocardiogram, ultrasound, exercise stress test, chest x-ray, cardiac catheterization 38

and coronary angiogram. These methodologies are roughly categorized into two 39

approaches: 1) anatomical approach and 2) functional approach. 40

0.1.1 Anatomical approach 41

The most intuitive diagnosis method is the anatomic or geometric approach. This 42

approach is easy to practice and minimally invasive. As an anatomical approach, in 43

angioplasty and stenting, the interventional cardiologist usually acquires multiple 44

angiographic sequences, in an attempt to have one or more with the vessel in a 45

minimally foreshortened presentation with minimal overlap. He/she then attempts to 46

determine the extent of the disease involvement, using percent stenosis and length of the 47

stenotic region from these angiograms. The degree of deformation is measured by the 48

percent stenosis. The established clinical norm is roughly as follows – the vessel is 49

diagnosed to be diseased and needs an intervention if the percent stenosis is more than 50

70% but the intervention is usually not recommended if less than 50%. However, these 51

estimates are frequently made by naked eyes during the intervention, with potential 52

errors being introduced, e.g., incorrect lengths due to foreshortening of the vessel, sizing 53

errors due to improper estimates, improper calibration of the vessel magnification 54

and/or inaccurate estimates of the extent of the plaque. These errors result in stents 55

being incorrectly sized and/or too short, such that additional stents are required 56

increasing cost, procedure time and risk to the patient [26]. 57

April 27, 2019 2/41

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/637090doi: bioRxiv preprint 

https://doi.org/10.1101/637090
http://creativecommons.org/licenses/by/4.0/


0.1.2 Functional approach 58

Hemodynamics analysis and functional measurements combined as a functional 59

approach, though, yield a better approach than the angiographic analysis. In the 60

assessment and treatment of vascular disease, interventional clinicians evaluate the 61

status of a patient vascular system via an angiography, intravascular ultrasound and, 62

more recently, flow wires. While vessel geometry relates to functional status [12], flow 63

rates are more closely related to the functional significance of the vascular 64

abnormality [20]. For this reason, a flow wire has been widely used to assess the 65

functional significance of a stenosis via the fractional flow reserve (FFR) [8, 13,24,25]. 66

Functional measurements of FFR using a flow wire yield a direct evaluation of the 67

pressure gradient, providing a way of clinical judgment with accuracy. Despite the extra 68

cost and risk [10,17], the FFR combined with the angiography serves as a more accurate 69

functional index for the pre-intervention than the geometric factors determined by the 70

angiography alone. 71

The FFR is defined as the ratio of the maximum attainable flow in the presence of a 72

stenosis to the normal maximum flow, which is uniquely given by the measure of the 73

pressure gradient around the single lesion. The FFR as a functional index is then 74

defined by the ratio of the proximal pressure to the distal pressure at maximum 75

coronary vasodilation as shown in the left figure in Figure 1: 76

FFR =
Pp − Pv
Pd − Pv

, (1)

where Pp, Pd, Pv are the proximal, distal and vasodilation pressures, respectively. In 77

most cases, Pv is not elevated and considered Pv ∼ 0. Thus the FFR becomes 78

FFR =
Pp
Pd
. (2)

The FFR analysis of today is based on the following assumptions: 1) the pressures 79

Pp and Pd used for the evaluation of the FFR are evaluated simultaneously by the flow 80

wire, 2) the obtained FFR value represents the functional index for a single stenosis and 81

3) the interaction of the flow wire device with the local flow movements is negligible in 82

the measurements of Pp and Pd. 83

Fig 1. Left: The proximal (Pp) and distal pressures (Pd) near the stenosis. Middle: A
flow wire measuring Pp before the stenosis. Right: A flow wire measuring Pd after the
stenosis. The diameter of the flow wire is 0.014 inch (Volcano FloWire Doppler Guide
Wire [3]).

The clinical norm of the FFR as an immediate functional index is roughly as follows: 84

FFR <∼ 0.75(0.8) implies that the lesion is functionally significant requiring 85

intervention and FFR ≥∼ 0.85(0.9) implies that the lesion is functionally not 86

significant. Measurement of the FFR is not required for a stenosis of emergent severity 87

(> 70% stenosis). However, for the lesion of intermediate severity the FFR plays a 88

critical role because the geometry of the stenosis alone does not deliver enough 89

information of the functional significance. Figure 1 shows the catheterization with a 90

flow wire for the determination of the FFR before (middle) and after (right) the 91
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stenosis. The main advantage of using the FFR is its ability to measure the pressure 92

gradient inside the stenotic region directly. 93

Despite such an advantage, it requires additional costs and risk because it is more 94

invasive. Furthermore, the functional analysis using FFR does not fully utilize the 95

functional information of vascular flows because it measures the pressure drop only 96

throughout the stenotic vessel. For this reason not every value of FFR provides a direct 97

interpretation of the vasculature. Alternatively there have been investigations that use 98

computational fluid dynamics (CFD) solutions to measure the FFR using the 99

patient-specific CFD solutions [19]. Even with this approach, the FFR is only derived 100

while other functional variables computed by CFD are not used. Thus the CFD 101

approach also has the same degree of ambiguity in interpreting the obtained value of 102

FFR. These illustrated limitations of the anatomical and functional analysis are the key 103

motivation of our proposed research. 104

0.2 Proposed method 105

As shown in the previous section, the anatomical analysis and the functional analysis or
their combinatorial approach are widely used and useful, but they yet may carry
debatable diagnosis results for some vascular situations, particularly for the
intermediate situations. Thus more refined analysis is still demanded that could deliver
more functional measures than the percent stenosis and/or FFR of the pressure drop
and that could predict the future development of stenosis. The ideal method is to use
the complete knowledge of how all the hemodynamic variables are related, which can be
given by a master function, f

f = f(vx, vy, vz, P, µ, ω, · · · ),

where vx, vy, vz are the velocity fields, P the pressure, µ viscosity and ω vorticity. 106

However, it is not even possible to relate every variable into a single numeric measure. 107

The proposed research is to investigate how the information of f can be extracted 108

through TDA. This is a new approach and can be used to reveal the clinical difference 109

between two vasculatures which have similar FFR and/or percent stenosis. 110

Our primary approach to this problem is to attempt to use the relatively recent 111

concept of TDA based on persistent homology. In this paper we explore the applications 112

of persistent homology to the problem of stenotic blood vessels based on the preliminary 113

work of [21]. In this paper we will first explain the concepts of simplicial complexes and 114

simplicial homology, followed by persistent homology. We then apply 1-dimensional 115

persistent homology to a geometric model of a stenosed vessel’s boundary, the vascular 116

wall, to estimate the stenosed radius of the vessel using what we call the critical failure 117

value of the vessel. We show that this critical failure has a close relationship with the 118

disease level of the vessel. While the homology of a topological space is unaffected by 119

how the space is stretched and deformed, we see that the persistent homology captures 120

size information about an underlying space, as well as homology data. We also 121

conjecture at additional applications of this approach to other problems, such as 122

measuring aneurysms. 123

A second application of persistent homology uses velocity data generated using a 124

three dimensional spectral method projected onto the unit 2-dimensional sphere, S2, to 125

quantify the stenosis level and type of the given stenotic vascular flows – defined as the 126

fundamental projection in this paper. This approach is based on 2-dimensional 127

persistent homology. The justification for this approach is that considering both spatial 128

and velocity data requires understanding of high dimensional data. Instead we see that 129

restricting ourselves to only the direction of velocity while ignoring both spatial data 130

and speed allows us to find otherwise hidden trends. We show empirically that this 131
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spherical projection yields different topological properties for differing levels of stenosis. 132

We also observe that this spherical projection has apparently differing geometric 133

properties for symmetric stenosis compared to asymmetric stenosis. We go on to 134

conjecture that applying these techniques to larger and more varied data sets may allow 135

for partial or complete classification of stenosis, which will be investigated in our 136

following paper. We further conjecture that these techniques may allow to understand 137

the advantages of different designs of stents. 138

In our preliminary research, we found that it is possible to reveal the topological 139

difference between the two vasculatures, the difference that can not be seen with the 140

current anatomical and functional approaches. We further found that such a difference 141

can be measured in a single numeric index through TDA if the data is presented in a 142

proper way. This new functional analysis for the stenotic vascular flows will significantly 143

improve the existing analysis. 144

The paper is composed of the following sections. In Section 2, we briefly explain 145

hemodynamic models and numerical approximation methods that we use for this 146

research. In Section 3, we will explain some basic concepts of simplicial homology. 147

Using simplicial homology, we will explain persistent homology, which is the key to our 148

research, in Section 4. In Section 5, we will explain the first proposed research, the 149

critical failure value analysis, which is the generalization of the percent stenosis. In 150

Section 6, we propose the n-spherical projection. If the first three velocity variables are 151

used for the projection, we will define such a projection as a fundamental projection. In 152

Section 7, we will provide a brief summary and explain briefly about our future research. 153

1 Hemodynamic modeling 154

1.1 Spectral approximations of 3D stenotic blood flows 155

In this section, we briefly describe the governing equations of vascular flows and the 156

spectral method used for approximating those equations. This is the data used in the 157

calculations of Section 5. 158

1.1.1 Governing equations 159

To model the stenotic vascular flows, we use the incompressible Navier-Stokes equations. 160

We also use the no-slip boundary conditions at the blood vessel walls. A more precise 161

description needs to consider the compressibility and more general types of boundary 162

conditions such as Navier boundary conditions and boundary conditions based on the 163

molecular model. However, as the main focus of this paper is more in the global 164

behavior of stenotic vascular flows, the incompressible equations with no-slip boundary 165

conditions suffice to consider. 166

To introduce the governing equations we consider in this paper, let ρ = ρ(x, t) be the 167

density, P = P (x, t) the pressure, u = (u, v, w)T the velocity vector for the position 168

vector x = (x, y, z)T ∈ Ω and time t ∈ R+. Here Ω is the closed domain in R3. We 169

assume that the blood flow we consider is Newtonian. From the mass conservation we 170

have the following equations 171

ρut + (u · ∇)u− µ∇u− (3λ+ µ)∇(∇ · u) +∇P = f

ρt +∇ · (ρu) = 0, (3)

where µ ∈ R+, the kinematic viscosity, and λ ∈ R is the bulk viscosity constant, and f 172

be the external force. Further we assume that the pressure is homogeneous in x and t 173
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and is incompressible. Then the above equations are reduced to 174

ρut + ρu · ∇u− µ∇u +∇P = 0

∇ · u = 0, (4)

where we also assume that there is no external force term f . For the actual numerical
simulation we use the normalized equations. For example, the length scale is xo = 0.26,
the baseline velocity is uo = 30, the time scale to = 6.7× 10−3, the unit pressure
Po = 900, the unit density ρo = 1 and the unit kinematic viscosity µ = 0.0377 (all in cgs
units) [18]. For the incompressible Navier-Stokes equations, we need to find the
unknown pressure P . In this paper, we used the Chorin’s method, i.e. the artificial
compressibility method [5, 6]. For the Chorin’s approach, we seek a steady-state solution
at each time such that

ut → 0, Pt → 0, t > ts

for ∇ · u→ 0. Then for the artificial compressibility, we introduce an auxiliary equation
for p such that

pτ + c∇ · u = 0

where τ is the pseudo-time. The pseudo-time is the time for which we solve the above 175

equation for the given value of t until ∇ · u→ 0 at each t. 176

1.1.2 Spectral method 177

To solve the governing equations numerically, we adopt the spectral method based on 178

the Chebyshev spectral method. We use a total of Nt elements. Each element is a linear 179

deformation of the unit cube, Ωc = [−1, 1]3. We expand the solution in each domain as 180

a Chebyshev polynomial. Let ξ be ξ ∈ [−1, 1] and Tl(ξ) be the Chebyshev polynomial of 181

degree `. Then in each element, the solution u is given by the tensor product of Tl(ξ). 182

To explain this further, we consider the 1D Chebyshev expansion. The 3D is simply
a tensor product of the 1D expansion. The 1D Chebyshev expansion is given by

uN (ξ, t) = PNu(ξ, t) =
N∑
`=0

û`(t)T`(ξ),

where PN is the projection operator which maps the solution u(ξ, t) to the polynomial
space of degree N and û` are the expansion coefficients. Once the expansion coefficients
are found, the solution is obtained as a linear combination of the Chebyshev polynomials
with the expansion coefficients. For the spectral methods, we adopt the spectral
collocation method so that the expansion coefficients are given by the individual
solutions at collocation points. For the collocation points, we use the Gauss-Lobatto
collocation points. That is, for the collocation points, ξi for the degree N , we have

ξi = − cos(iπ/N), i = 0, 1, · · · , N.

We solve the incompressible Navier-Stokes equations on x(ξi) and the expansion
coefficients are given by the quadrature rule based on the Gauss-Lobatto quadrature

û`(t) =
2

c`N

N∑
i=0

1

ci
u(x(ξi), t)T`(x(ξi)),

where cn = 2 if n = 0 and cn = 1 otherwise [16]. 183

The 3D Chebyshev approximation is given by a tensor product of the 1D Chebyshev 184

expansion. Figure 2 shows some vessels we use for the numerical simulation. The left 185
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figure shows symmetric stenotic vessels where the percent stenosis, the inflow velocity, 186

the diameter of the vessel and the length of stenosis are parameterized. The middle 187

figure shows vessels with the stent installed for which the type of stent (circular stent, 188

e.g.) and the length of the stent are parameterized. The right figure shows the variation 189

of the bifurcating vessels. 190

Fig 2. Parameterization: A simple illustration of variation of symmetric straight stenotic vessels
(left) and the vessel configuration after the insertion of stent (middle) and variation of the bifurcating
vessels (right).

Figure 3 shows some numerical simulations of the stenotic vessel (left) and vessels 191

with stent installed (right). The left figure shows the numerical solution of 70% stenotic 192

vessel. As shown in the figure, we observe that the flow is turbulent.

Fig 3. High-order spectral simulations of stenotic vessels. Left: Stenotic vessel. Right:
Numerical simulation with stent installed.

193

2 Simplicial homology 194

In this section, we briefly explain simplicial homology that is applied to the CFD data 195

obtained by the spectral method described in the previous section. We refer [4, 7, 9] for 196

details. To understand persistent homology we must understand homology. In this 197

paper we will be mainly concerned with the simplicial homology of a simplicial complex. 198

This concept of a simplicial complex is fundamentally tied to the concept of persistent 199

homology and thus we must first understand what a simplicial complex is. 200

2.1 Simplicial complexes 201

Definition 2.1. A Simplicial Complex is a set of simplices S such that: 202

1. If s is an element of S, then all faces of s are also in S. 203

2. If s1 and s2 are in S, then s1
⋂
s2 is either the empty set or a face of both. 204

Speaking informally, a simplicial complex is topological space made of vertices, edges, 205

triangles, tetrahedrons and higher dimensional equivalents attached to one another by 206

their edges, vertices, faces and so on. Generally speaking, simplicial complexes are a 207

tool for building simple topologies. As we shall see later, a simplicial complex is simple 208

enough that certain important topological features can be calculated numerically, 209

namely the homology. 210

In the left figure of Figure 4 we see three edges and three vertices. In the middle, we 211

have filled in the hole from the left figure with a triangle. Therefore we have one two 212

simplex (triangle), three one simplexes (edges) and three one simplexes (vertices). In 213

the right figure, we have a tetrahedron ABCD. This is the three dimensional equivalent 214

to a triangle. It has four triangles as faces, six edges and four vertices. 215
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Fig 4. Examples of simplicial complex. Left: Three 0-simplices (vertices) and three
1-simplices (edges). Middle: Three 0-simplices (vertices) and three 1-simplices (edges).
Right: A 3-simplex is a tetrahedron. (This picture shows a hollow tetrahedron but a
3-simplex should be filled in.)

2.2 Simplicial homology 216

The basic idea of homology is that homology describes the holes in a topological space. 217

We shall see this clearly after we give a precise definition. To define homology we will 218

need to define some intermediate objects. 219

Definition 2.2. Let S be a simplicial complex, k,N ≥ 0 be integers and R be a ring
with unit. A simplicial k-chain is a formal sum

N∑
i=1

cisi,

where the ci are elements of R and the si are k-simplices of S. 220

When referring to a simplex, one specifies the simplex and an orientation of that 221

simplex. This is done by specifying the vertices and an ordering of those vertices. 222

Permuting the vertices represents the same simplex multiplied by the sign of that 223

permutation. 224

Definition 2.3. The free R-module Ck(S,R) is the set of all k-chains. 225

For technical reasons, we take C−1(S,R) to be the trivial module. We will write 226

Ck(S,R) as simply Ck for this paper out of convenience. There is a natural map 227

between these R-modules called the boundary map. Speaking imprecisely, the boundary 228

map takes a simplex to its boundary. The precise definition follows: 229

Definition 2.4. The boundary map

δk : Ck → Ck−1

is the homomorphism defined by

δ(v0, . . . , vk) =
k∑
i=0

(−1)i(v0, . . . , vi−1, vi+1, . . . , vk).

We take δ0 to be the trivial map. It is not difficult to verify that δk−1 ◦ δk = 0 for all 230

k. Therefore the kernel of δk−1 contains the image of δk. This leads to the definition of 231

homology. 232

Definition 2.5. The kth homology module Hk(S,R) with coefficients in R is 233

ker(δk−1)/Im(δk) [15]. 234
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While it is true that Hk is a module, we will simply refer to them as groups for
convenience. As an example, let us take the simplicial complex X in the left figure of
Figure 4 with the vertices labelled from left to right v1, v2 and v3. We shall take our
ring R to be the rational numbers, Q. The module C0 is the set:

C0 = {av1 + bv2 + cv3|a, b, c ∈ Q}

For C1 we must choose an orientation for our edges and will therefore orient them
according to the index of their vertices. Thus we have that C1 is given by

C1 = {a(v1, v2) + b(v1, v3) + c(v2, v3)|a, b, c ∈ Q}.

We have no higher dimensional simplices and thus Ck = 0 for k ≥ 2. The boundary
map δk is necessarily the zero map for k 6= 1. The boundary map δ1 is defined by

δ1(vi, vj) = vi − vj , 1≤ i < j ≤ 3.

Thus we have that

H0 = C0

/
< v1 − v2, v1 − v3, v2 − v3 >∼= {av1 + bv2 + cv3|a, b, c ∈ Q}

/
< vi − vj > .

Simple algebra reveals that

H0 = {(a+ b+ c)v1|a, b, c ∈ Q} ∼= Q.

It is easy to see that the kernel of δ1 is the submodule generated by
(v1, v2)− (v1, v3) + (v2, v3) and the image of δ2 is trivial. Thus

H1 =< a((v1, v2)− (v1, v3) + (v2, v3))|a ∈ Q >∼= Q.

Finally it is easy to see that all other homology modules are trivial. 235

We need to understand what homology represents. As mentioned earlier, the 236

homology groups represent holes. If our ring R is not a field, then the homology groups 237

may have torsion. In this work, we will always calculate homology relative to a field, 238

namely the rational numbers, Q. Therefore the homology groups will be isomorphic to 239

the product of some number of copies of R. 240

Let us determine the homology of the complex in Figure 5 with coefficients in Q. 241

Fig 5. Example topological space, X.

The zeroth dimensional homology group describes the number of connected 242

components. In the figure we have two; the top component and the bottom component. 243

Each connected component gives the zeroth homology a copy of the ring R, in our case, 244

Q. Thus H0(X,Q) = Q2. The first dimensional homology group describes the number 245

of one dimensional holes, i.e. holes like the center of a circle. This figure has three. Each 246
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hole will give the homology group a copy of our ring R. Thus H1(X,Q) = Q3.There are 247

no higher dimensional simplices and thus the higher homology groups are trivial. 248

If we fill in one of the holes with a triangle, Figure 6, then we now have only two 249

holes. This new space, Y , has H1(Y,Q) = Q2. 250

Fig 6. The space X with a hole filled in is the space Y .

Fig 7. A torus1 has one hollow portion and two circles.

We can also think of the first dimension homology as representing the number of 251

loops that can be drawn in the topological space that cannot be pulled closed. The 252

torus has two. Thus the first homology group of the torus would be Q2. The second 253

dimensional homology group describes the number of two dimensional holes, i.e. holes 254

like the interior of a sphere. Each hollow of a topological space gives the second 255

homology group a copy of our ring R. This torus has one hollow, thus its second 256

homology group is Q (see Figure 7). 257

In general, the nth homology group measures n dimensional holes, i.e. holes similar 258

to the interior of the n dimensional sphere. In this work we will not go higher than 259

second dimensional homology because our analysis in this paper does not require higher 260

dimensions. 261

Definition 2.6. The kth Betti number for a topological space X, βk, is the rank of the 262

kth homology group. 263

As we have seen above, for each n dimensional topological space there is a copy of 264

the ring R in our homology group. The Betti numbers therefore represent the number 265

of holes in each dimension. 266

1https://en.wikipedia.org/wiki/Torus
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3 Persistent homology 267

The primary topological feature we explore is that of persistent homology [4]. We will 268

first give a brief overview of this concept. Given some point data, called a point cloud, 269

that are points on some surface or other manifold, we generate a complex that is 270

hopefully a reasonable approximation of the original manifold. Given the points, we will 271

assign edges and triangles (and higher order simplices) to pairs, triples, etc. of the point 272

cloud. Roughly speaking, if a pair of points are close to each other, we add an edge 273

between them and similarly for faces. To assign edges and higher order simplices, we 274

introduce a parameter t, called the filtration value. This t is the length of the largest 275

edge that may be included in our simplex. We will let t vary and at each value we will 276

create the complex, calculating the homology of the complex at each t value. 277

There are, generally, at least three strategies to make use of this parameter to assign 278

simplices. The Vietoris-Rips strategy [11] places an edge between two points if their 279

distance is less than t and a face between three points if their pairwise distance is less 280

than t and so on. This strategy is fine, but computationally expensive. The next 281

strategy is the witness strategy [22] which takes two subsets of the points, called 282

landmark points and witness points. The landmark points serve as vertices of our 283

complex. We will place an edge between two landmark points if there is a witness point 284

within distance t of both points, a face if there is a witness point within t of all three 285

points and so on. Usually all of the points in the point cloud are used as witnesses. The 286

last strategy is the lazy-witness strategy [22], where edges are assigned identically to the 287

witness strategy, however faces and higher simplices are assigned anywhere there are n 288

points that are all pairwise connected with edges. We will be using the lazy-witness 289

streams for our computation due to the reduced complexity of the calculation. 290

It is also worth noting that in the witness and lazy witness methods, there is 291

sometimes an extra mechanism used to help decrease noise. For this mechanism, rather 292

than compare distances to t, we compare distances to t+ ηn(p) where ηn(p) is the 293

distance from p to its nth nearest neighbor and p is the witness point being considered. 294

This tends to remove some noise for low t values. 295

Let us see an example. Consider the following point cloud (Figure 8): 296

Fig 8. Example point cloud with 100 points.

Let us construct the Vietoris complex for this point cloud at various values of t. At 297

time t = 0 there are no edges to add. (Figure 8) 298
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Fig 9. Vietoris complex at t = 0.25. Five arrows are included to point out five holes.

We see the same point cloud at t = .25 (Figure 9). It is important to understand 299

that although the points all lie on a plane, the edges and triangles should be considered 300

to pass through higher dimensions so as to not intersect, except at their common faces. 301

In this figure, we have added arrows to indicate the five obvious holes that are present. 302

It is conceivable that there may be more holes hidden, but we will see that this is not 303

the case. 304

In Figures 10 thorugh 12, we see that the point cloud now is topologically the same 305

as an annulus, with only the middle hole present. It is also worth observing that as t 306

increases, the central hole is gradually becoming smaller and will eventually be closed 307

with a large enough t value. 308

Fig 10. Vietoris complex at t = 0.5.

Fig 11. Vietoris complex at t = 0.75.
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Fig 12. Vietoris complex at t = 1.

Of interest to us in the context of persistent homology are the Betti numbers. We 309

saw previously that the zeroth Betti number is the number of connected components, 310

the first is the number of one dimensional holes, the second is the number of two 311

dimensional holes and so on. Because we are looking at homology relative to this 312

parameter t, we have Betti numbers for each individual value of t. Thus, instead of 313

simple Betti numbers, we will have Betti intervals. The graphs of these intervals will 314

make up what is called a barcode. For these calculations, we have used the Javaplex 315

software package from [23]. 316

Fig 13. Barcode for point cloud using Vietoris-Rips method. The five intervals in
dimension one present at t = .25 are boxed.

In Figures 13, 14 and 15, the horizontal axis is the filtration value t. Vertically we 317

have multiple stacked intervals graphed that correspond to individual generators of the 318

homology groups. In the zeroth dimension we see many generators that correspond to 319

many disconnected components when t is small, which eventually are connected into a 320

single component when t is larger. In the first dimension we see a number of small 321

circles that are quickly closed up and one circle that lasts a long time corresponding to 322

the one large hole in the center of the annulus. We have placed rectangles about the five 323

intervals that are present at t = .25 that correspond to the five holes seen in Figure 9. 324

We have only generated barcodes for the zeroth and first dimensions. It is 325

conceivable that there may be interesting topology in higher dimensions, but because 326

this example is meant to illustrate, we see no reason to include the higher dimensions. 327

While there may be higher dimensional homology occurring, such homology would only 328

be noise, because we have started with a two dimensional topological space. 329

Comparing this barcode to our Figures 8 through 12, we can see how the barcode 330

compares with our intuition. At t = 0, we had no edges and only vertices, thus we had 331

April 27, 2019 13/41

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/637090doi: bioRxiv preprint 

https://doi.org/10.1101/637090
http://creativecommons.org/licenses/by/4.0/


many different connected components. We can count the Betti numbers at a particular 332

time t from the barcode by counting the number of intervals that overlap that value of t. 333

Because the zeroth dimension corresponds to connected components, if we look at t = 0 334

in the dimension zero portion of the barcode we see many intervals, one for each point. 335

At t = 0.25, we saw about 17 connected components and about 5 holes. If we look at 336

our barcode at t = 0.25, in the first dimension we see about 5 intervals and in the zeroth 337

dimension we see about 17. For t = 0.5 and greater, we saw only the center of the 338

annulus for a hole and only one connected component. If we look at the barcode at these 339

t values, we see only one interval in both the first and second dimensions. Finally, note 340

that at about t = 1.8, the last interval in the first dimension is gone. This represents the 341

center of the annulus being filled up and thus there are no more one dimensional holes. 342

Fig 14. Barcode for point cloud using witness method with 50 landmark points.

Fig 15. Barcode for point cloud using lazy witness method with 50 landmark points.

In Figures 14 and 15, we have witness and lazy witness barcodes. Because there is a 343

choice inherent in the witness and lazy witness methods, choosing the landmark points, 344

these are not unique. Performing these calculations a second time will generate a 345

different barcode. It is also worth pointing out that if an interval is shorter than the 346

minimum t step, then those intervals are not shown. In Figure 14, we have several 347

connected components at t = 0, which quickly become a single connected component at 348

approximately t = 0.1. We also see a number of one dimensional holes when t is small, 349

but by t = 0.2 there is exactly one hole left, the annulus center. In Figure 15, we see a 350

number of intervals in the zeroth dimension, but again we see that eventually we only 351

have one connected component. In the first dimension we only see one hole, which lasts 352

for a wide interval. This again corresponds to the central hole of the annulus. 353
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Fig 16. An example topological space.

All of these barcodes give essentially the same information. The individual points 354

are quickly connected and we eventually have a single connected component. There are 355

some small circles that quickly disapear and we are quickly left with one persistent 356

circle which lasts for a while and then is filled. 357

3.1 Calculating persistent homology 358

The complete algorithm for calculating persistent homology can be found in [28]. We
will briefly summarize the algorithm here. To compute the homology of a simplicial
complex, one must understand the boundary operator δ. Since we are looking at
homology relative to a field, the chain groups and homology groups, Ck and Hk, are
vector spaces. Therefore, one can consider δk to a linear map between vector spaces.
Because we are interested in homology, we are interested in the kernel of this map, as
well as the image. We may use the standard basis of the chain groups, specifically the
k-chains, as our basis. Let us use as an example the complex in Figure 16. The basis for
C1 is {a, b, c, d} and the basis for C2 is {bc, cd}. Here we are referring to the edges by
their endpoints. If we write the standard matrix for δ0, it would simply be the zero
matrix. If we write the matrix for δ1, relative to the bases in the order given above,
then we would get

δ1 =


0 0
1 0
−1 1

0 −1

 .

To compute the kernel of our matrix, we will transform the matrix into Smith normal
form. To do this, we use elementary row and column operations. Specifically, we may
swap two columns, add a multiple of one column to another and multiply one column by
a non zero constant. The row operations are similar. Each of these operations
correspond to a change of basis in either C1 or C0. If we add row two to row three and
then row three to row four, our new matrix will be

δ1 =


0 0
1 0
0 1
0 0

 .

Our new basis for C0 will be {a, b-c, c-d, d}. The basis for C1 is unchanged because we 359

used no column operations. 360

From this calculation, we see that the map δ1 has trivial kernel and a two 361

dimensional image. The image is the subspace generated by {b− c, c− d}. Because the 362
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kernel of δ0 is {a, b− c, c− d, d} and the image of δ1 is {b− c, c− d}, we have that H0 is 363

just the vector space spanned by {a, d}. We know our Hn is a vector space, because we 364

are calculating homology with coefficients over a field, thus the only important piece of 365

information is the dimension. We can simply read off the dimension by looking at the 366

number of pivot positions in δ1 and the number of non pivot columns in δ0. There are 367

four non pivot columns in δ0 and two pivot positions in δ1, therefore the first homology 368

group is H0
∼= Q2. Therefore, by simply transforming the matrix into Smith normal 369

form, we may simply read off the dimensions of kernels and images of the δk and simply 370

take their difference to find the dimensions of our homology group. 371

To calculate persistent homology is a harder task. For this we must have the
definition of a persistence module. In our case, we will receive as input a number of
complexes, all representing the same point cloud for different values of our filtration
variable t. Let us call the chain complex at the kth timestep Ckn. We will similarly call
the kernels and boundary groups Zkn and Bkn, respectively. For each Ckn, there is a
natural inclusion map

i : Ckn → Ck+1
n .

Definition 3.1. The persistence module associated to {Ckn} is the R[t] module

∞⊕
k=1

Ckn,

where
t(x1, x2, . . . ) = (0, i(x1), i(x2), . . . ).

Here, R is our field. 372

It is shown in the same paper that calculating the homology of this persistence
module is equivalent to calculating the intervals that appear in the barcode. Due to the
structure theorem [27], that every graded module M over a graded PID, R[t],
decomposes uniquely into the form(

n⊕
i=1

ΣαiR[t]

)
⊕

 m⊕
j=1

ΣγjR[t]/tnj

 ,

where Σα represents an upward shift in grading. Thus, our persistence modules Ckn, will 373

give rise to persistent homology groups Hk
n, which will decompose in the above manner. 374

It was shown in [27], that factors of the form ΣiR[t]/tj−i correspond to persistent 375

intervals of the form (i, j) in our barcode. Similarly, each free factor, ΣiR[t] corresponds 376

to an interval of the form (i,∞). Thus the crux of the problem comes down to finding 377

and decomposing the homology of our persistence modules. To accomplish this, we may 378

simply use row and column reduction as in the example above. The finer details, along 379

with some simplifications, are laid out in the original paper. 380

3.2 Persistence 381

One central idea of persistent homology is the concept of persistence. Referring to 382

Figure 13, we had only one interval in the zeroth dimension that that was rather long 383

and many shorter intervals. Similarly, in the first dimension we again had one long 384

interval and many shorter ones. By making use of our prior knowledge that the point 385

cloud was coming from an annulus, we see that the “real” features, namely one 386

connected component and one circle, correspond to the long intervals and the shorter 387

intervals are noise. It is reasonable to assume that this holds frequently (though not 388
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certainly) in general data sets. Usually longer intervals will correspond to ”real” 389

features and shorter intervals correspond to noise. How one interprets what is “real” 390

depends on one’s a priori knowledge of the underlying data structure. This leads us 391

readily to our next definition. 392

Definition 3.2. The persistence of an interval [a, b] is the length of the interval, b− a. 393

While we have not given any proof that longer intervals tend to be more important 394

than shorter intervals, in [4], there is an argument given that solidifies this mindset. 395

Speaking imprecisely, the various methods of building simplicial complexes out of point 396

clouds fall inside a hierarchy under inclusion. The lower methods (lazy witness and 397

witness) are easier to compute but less accurate. The higher methods (Vietoris-Rips 398

and other methods not discussed in this paper) are more complex to calculate, but more 399

accurate. If a barcode has an interval with sufficient length, then this guarantees a 400

corresponding interval in the higher complexity methods. We refer the reader 401

to [4, 7, 11] for more details. 402

4 Critical failure value 403

Our stated goal is to explore the applications of topological features and data to 404

understanding stenosed blood vessels. First we will use a simple model of a stenosed 405

vessel to explore the topological structure of a vessel. We will initially only consider the 406

exterior of a vessel, which topologically speaking is a cylinder. A stenosed blood vessel 407

is characterized by a narrowing of that vessel. 408

We shall consider the typical radius of our vessel to be r0 = rhealthy and will assume
that the stenosis takes the shape of a Gaussian distribution. We will also assume a
small amount of noise, in the form of a uniform random variable ε ∈ [0, 0.1]. We will
take rst to be the difference between the normal radius and the stenosed radius.
Therefore our model will be, in cylindrical coordinates

r = r0 + ε(z, θ)− rste−z
2

,−a ≤ z ≤ a, 0 ≤ θ ≤ 2π

where the stenosis is at z = 0 and r0 − rst is the radius of the cylinder at the stenosis.
Thus rst is a measure of how stenosed the vessel is, specifically the vessel has a stenosis
percentage of

100
r0 − rst
r0

.

When working with real data we will not have any equation that represents the surface 409

of the vessel, rather we will have point data approximating the surface. Therefore for 410

our model we will use some discrete points on the surface. To have an accurate picture, 411

the number of points should be high. In the left figure of Figure 17 we have an example 412

of the above model. The figure clearly shows the vessel narrowing near the origin, which 413

is the stenosed portion of the vessel. The points are colored according to their 414

y-coordinate to give depth. 415

4.1 A first example 416

For our first application example we will use 1500 points for our blood vessel model 417

above, with 100 landmark points. We use the lazy witness method described above. 418

The points are selected randomly on our surface and the landmark points are selected 419

using an algorithm that selects points uniformly according to pointwise distance. An 420

image of the point cloud with the landmark points circled in red is included in the right 421

figure of Figure 17, and points are colored to give depth. 422
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Fig 17. Left: Example of point cloud representing a 70% stenotic vessel. Right: Point
cloud with landmark points highlighted in red.

Fig 18. Barcode for Figure 17.

When we use the lazy witness strategy to graph the barcode for Figure 17, we get 423

Figure 18. As we saw above, each interval corresponds to a generator of the homology 424

in the corresponding dimension. We can see that the homology is for the most part the 425

homology of a cylinder. Initially there is some noise when t is small, but until about 426

t = 2.3 we have exactly one connected component and a single one dimensional hole. 427

This t value where the last one dimensional generator becomes trivial is what we call 428

the critical failure value below. 429

4.2 Critical failure value 430

We saw above that for large t values our complex no longer has any one dimensional 431

holes. The exact value where this occurs will be of particular importance to us. 432

Definition 4.1. Let B be a barcode, with intervals {(ai, bi)} in the first dimension. We 433

call the critical failure value (CFV) of B to be max(bi). 434

This definition should be fairly straightforward. For example, in Figure 18, the 435

critical failure value would be the largest right endpoint of an interval in the first 436

dimension. Thus the critical failure value for that barcode would be CFV = 0.23. 437

This critical failure value is of particular importance to us because we shall see that 438

it approximates the stenosis of the vessel. The critical failure value is a generalization of 439

percent stenosis. The exterior of the blood vessel is a cylinder. The ends of the cylinder 440

are open and thus we have a one dimensional hole, the hollow center of the cylinder. If 441

the ends were capped then we would have a two dimensional hole instead. We are using 442

persistent homology and thus we are approximating the point cloud with simplicial 443

complexes as described above. As t increases we add more and more edges and triangles 444
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to our complex. Eventually, as we saw in the annulus example above, we will have 445

triangles that span the hollow of our cylinder. When this occurs, our simplicial complex 446

no longer is a hollow cylinder and thus has different homology. 447

Definition 4.2. Suppose P is a point cloud with points chosen from the topological 448

space S. The principal critical failure value of P is the critical failure value of S. 449

Speaking generally, suppose we have a point cloud of data that is contained in a 2D 450

shape (or 3D solid, etc.) S with n points. We call this point cloud Sn. If n is very large, 451

and the points are more or less evenly spread out, then it is reasonable to expect that 452

CFV (Sn) ≈ CFV (S), assuming some reasonable conditions regarding S. In fact, it is 453

reasonable to write that limn→∞ CFV (Sn) = CFV (S), again assuming some 454

reasonable conditions about S and the method under which the points are chosen. 455

The critical failure value and principal critical failure values will depend heavily on 456

which method one uses to calculate the persistent homology. We will use subscripts to 457

indicate which method is being referred to. We mentioned that when calculating 458

persistent homology using the lazy witness method, sometimes one may choose to 459

include the complexity of considering the nth nearest neighbor for points when 460

constructing our simplexes. When one is constructing the persistent homology of a 461

topological space, rather than a point cloud, there will not usually be an nth nearest 462

neighbor, as any point will usually have infinitely many points arbitrarily near it. Thus, 463

when constructing the persistent homology of such a set, we will not include the nearest 464

neighbor complexity. 465

Theorem 1. For S a circle of radius R, CFVw(S) = CFVlw(S) = R. 466

Here the subscripts w and lw denote the witness and lazy witness methods, 467

respectively. 468

Proof: First, observe that in the zeroth and first dimensions, the complexes created 469

using the witness and lazy witness methods are identical, and therefore the principal 470

critical values for these two methods will be identical. 471

Let us consider a circle of radius R centered at the origin and an inscribed regular 472

hexagon, as pictured in Figure 19. The reader can verify that the distance between 473

neighboring vertices of the hexagon is R. Let us suppose that our parameter τ = t < R. 474

We will consider a two simplex on the circle that may be generated using the witness 475

and lazy witness methods under this setup. We will show that such a simplex does not 476

contain the center of the circle and therefore the first dimensional homology of our 477

complex is nontrivial. This will imply that the critical failure value of our circle is 478

greater than t. 479

Fig 19. Circle of radius R with inscribed hexagon.
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Let p and q be the vertices of the inscribed hexagon adjacent to (R, 0). We suppose 480

that we have a one simplex with vertices p′ and q′. We assume without loss of 481

generality that the witness point for p′ and q′ is (R, 0). If not, we may rotate the circle 482

until these two vertices straddle (R, 0) and then necessarily can take (R, 0) to be our 483

witness. Because τ < R, it must be the case that p′ and q′ lie between p and (R, 0) and 484

q and (R, 0), respectively. For the moment, we assume that the distance between p′ and 485

(R, 0) and q′ and (R, 0) is exactly t, as pictured in Figure 20. 486

Fig 20. The points p, q, p′, q′ and (R, 0).

We will label the distance between p and p′ as e > 0. Now, observe that, if one 487

starts at the point (R, 0) and steps around the circle counterclockwise in steps of size R, 488

one will reach the point (−R, 0) in exactly three steps. If one repeats this process but 489

now stepping in steps of size t, one will not reach as far as the point (−R, 0) in three 490

steps. Speaking precisely, one will be exactly three steps of length e away from the 491

point (−R, 0), call this point s. 492

If one starts at the point p′ and steps clockwise about the circle twice in steps of 493

length t, then one exactly reaches the point q′. We recall that any witness point 494

connecting p′ to another point must be within t distance of p′, and any landmark point 495

connected to p′ must be within t distance of that witness point. Thus the set of points 496

that may be connected to p′ to form a simplex under the witness and lazy witness 497

methods is precisely the arc connecting the point s to the point q′ containing the point 498

p′, as shown in Figure 21. 499
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Fig 21. The arc connecting the point s to the point q′ highlighted in blue.

Similarly, any point that may be connected to q′ to form a simplex would be 500

contained in a similar arc around q′. Any point that may be connected to both p′ and 501

q′ must be contained within both arcs. The intersection of these two arcs is precisely 502

the arc from p′ to q′, as pictured in Figure 22. However, any simplex with vertices p′, q′ 503

and a third vertex within this arc does not contain the origin. 504

Fig 22. The arc connecting the point p′ to the point q′ highlighted in purple.

Now suppose the points p′ and q′ have distance to (R, 0) less than t. Repeating the 505

above construction, the arc that surrounds p′ of points that may be connected to p′ is 506

simply rotated clockwise by the same amount that p′ has been rotated. Similarly the 507

arc about q′ is rotated counterclockwise the same amount that q′ has been rotated. 508

This rotation of these two arcs can widen their intersection, but still cannot generate a 509

simplex containing the origin. To see that this is true, notice that for a simplex to 510

contain the origin, the third vertex would need to be contained in the reflection of the 511

arc connecting p′ and q′ across the origin on the other side of the circle, pictured in 512

Figure 23. While the the arcs of points that may be connected to p′ and q′ may 513

intersect this region, they do not intersect inside this region. Further, moving p′ and q′ 514

closer to the point (R, 0) does not cause these two arcs to intersect within this region. 515
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Fig 23. The reflection of the arc connecting p′ and q′, in green.

In any case, we have shown that if τ < R, then there is no one simplex that contains 516

the origin and therefore the homology in the first dimension of our complex contains at 517

least one generator. 518

To see that the critical failure value is at most R, observe that if τ = R, then we 519

may construct a simplex with landmark points and witness points at alternating 520

vertices of the inscribed hexagon. This simplex includes the origin, and all other points 521

can easily be covered. Thus the critical failure value of a circle of radius R is R. 522

Corollary 2. Let S = {(r cos(θ), r sin(θ), z), r = r0 − rste−z
2

,−a ≤ z ≤ a}. Then 523

CFVw(S) = CFVlw(S)= r0 − rst. 524

To prove this, we will need two brief lemmas. 525

Lemma 3. Let C1 and C2 be two circles centered at the origin, with the radius of C1 = 526

r1 < r2 = radius of C2. Let p be the point (r1, θ1) and q be the point (r2, θ2) in polar 527

coordinates. Also let q′ be the point (r1, θ2). Then the distance from p to q is greater 528

than the distance from p to q′. 529

Fig 24. The points p, q and q′.

Proof: Let us calculate the distance between p and q using the law of cosines and the
triangle with vertices at p, q and the origin. By the law of cosines, if d1 is the distance
between p and q, then

d21 = r21 + r22 − 2r1r2 cos(γ)
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where γ is the angle ∠poq. If we rearrange slightly, we get

d21 = (r2 − r1)2 + 2r1r2(1− cos(γ)).

If we replace r2 with r1, we get d2, the distance between p and q′.

d22 = (r1 − r1)2 + 2r21(1− cos(γ)).

Observing that we have made one positive term zero and the second non-negative term 530

becomes either strictly smaller or remains zero, thus we have the lemma proven. 531

Lemma 4. Let C1 and C2 be two circles as above. Let p = (r2, θ1) and q = (r2, θ2). 532

Also let p′ = (r1, θ1) and q′ = (r1, θ2). Then the distance between p and q is larger than 533

the distance between p′ and q′. 534

Proof: Observe that the triangles 4poq and 4p′oq′ are similar and the result is 535

clear. 536

Fig 25. The points p, q, p′ and q′.

Proof of Corollary: To prove this, first observe that, due to Theorem 1, the circle at 537

z = 0 is filled in exactly when τ = r0 − rst. Thus the critical failure value of our set is 538

at most r0 − rst. Next we show that our critical failure value is at least r0 − rst. 539

First, suppose that τ = t and that our first homology group is trivial. It must be the 540

case that some simplex of our complex intersects the z axis. Let pi = (ri, θi, zi), 541

i = 1 . . . 6, be the landmark points and witness points of such a simplex. It is a 542

relatively simple exercise to show that replacing these six points with p′i = (ri, θi, 0) 543

does not increase any pairwise distance (though now these projections may not be 544

contained within S). Further, observe that the simplex with vertices given by these 545

projected vertices still intersects the z axis at the origin. 546

Next, notice that the closest our set S to the z axis is on the circle made up of the 547

intersection of S with the plane z = 0. We will call this circle C. Observe that, we 548

simply moved our original points vertically and therefore did not change their distance 549

from the z axis. Thus, our projected points are at least as far from the z axis as the 550

radius of C. Therefore we see that ri ≥ r0 − rst. Now, using our two lemmas repeatedly, 551

we see that replacing our points p′i with p′′i = (r0 − rst, θi, 0) does not increase any 552

pairwise distance. Further, the new simplex still intersects the z axis. Thus, we see that 553

these new points give us a simplex that fills in the center of C, with landmark and 554

witness points given by the p′′i . By the theorem, it is not possible for such a simplex to 555

exist if τ < r0 − rst, and therefore τ = t ≥ r0 − rst. 556
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The above corollary demonstrates that, without noise, if we have enough points on 557

the surface of our model, we expect that the critical failure value will give us our stenosis 558

radius almost exactly. To see empirically how well our estimate works with noise, we 559

will generate a point cloud on our model of a stenotic vessel, with noise, and calculate 560

the persistent homology as outlined above, many times. We will take r0 = 1, and rst a 561

random variable taking values from [0, 1] and will plot the critical values against rst. 562

For this experiment, in each iteration, we use a total of 1500 randomly chosen points 563

and 400 landmark points, approximately evenly spaced. We performed this experiment 564

a total of 80 times. The results of the experiment are pictured in Figure 26. 565

Fig 26. Critical failure value against the stenosis radius rst

From Figure 26, we can see, as expected, that the relationship between the critical
value and r0 − rst is approximately linear. There is some nonlinearity for large values of
rst. This is due to the minimal radius being approximately the same size as the noise,
which is caused by gaps in the model due to too few points. Our expectation is that as
the number of points and landmark points are increased the relationship between the
critical value and rst will be approximately

CFV = 1− rst.

This is due to our blood vessel having a normalized healthy radius of 1. For a general
vessel, we expect the critical value to be approximately

CFV = rhealthy − rst.

For different shapes of stenosis, we conjecture that this critical failure value would still 566

be a measure of stenosis, though the exact relationship between stenosis and CFV 567

would depend on the shape of the vessel. 568

We see from our above calculations that the critical failure value is related to the 569

minimal radius of the vessel, thus giving us an idea of the stenosis of the vessel that is 570

determined entirely by the point data of the vessel. This stenosis level can potentially 571

be calculated directly from the vessel without the use of this critical failure value in 572

some cases, and therefore the question of the usefulness of this critical failure value must 573

be considered in our future work. The critical failure value will be defined for 574

practically any shape of vessel, whether or not the stenosis is shaped like a Gaussian or 575

any number of other symmetric or asymmetric shapes. Further, this critical value does 576

not require exact knowledge of the location of the stenosis. In our model above, the 577

stenosis was at z = 0, but if we instead had it at z = 1, or any other height, these 578

calculations would generate the same results. This suggests that the critical value may 579

be useful in automating the diagnosis of stenosis. We also expect that the critical value 580

method may act as a sort of universal measurement for all different types of stenosis. 581
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We have demonstrated that size data is encapsulated within the barcodes. Not only 582

do the barcodes give the homology of a topological space, but also measurement data as 583

well. It is therefore reasonable to suggest that in this problem as well as many others, 584

reading off this size information may be critical. For example, we speculate that a 585

similar method may be used to measure the widening of vessels, aneurysms. 586

If we replaced our model above with a model that had Gaussian widening instead of 587

narrowing, thus modeling an aneurysm, then we would be interested in how wide the 588

widest portion of the vessel is. This could potentially be estimated by looking for the 589

largest t value where there is a second dimensional generator. To understand this 590

geometrically, we realize that at a relatively small time step the two ends of the vessel 591

will be capped off by triangles spanning their diameter, due to having a smaller radius 592

than the aneurysm. When these ends are capped, we will have a large hollow, namely 593

the interior of the vessel. This hollow will eventually be filled with tetrahedrons, and 594

therefore become trivial. The t value where this happens will depend on how wide the 595

vessel has become, and therefore that t value would be a measure of the wideness of the 596

vessel. 597

Because the definition of persistent homology depends on the distances between 598

points, the fact that persistent homology encapsulates not only homology information 599

but size and diameter information is reasonable. Taking radius and size data from 600

persistent homology can potentially have significant applications in many different real 601

world problems, not just in the context of stenotic vessels. 602

5 Spherical projection 603

In this section we propose the spherical projection and TDA with the spherical 604

projection based on the two dimensional homology. We will use vascular data calculated 605

using the incompressible Navier-Stokes equations as outlined in Section 1. The spectral 606

method used gives far more detailed results about the vessel, including pressure and 607

velocity data for the interior of the vessel. 608

Of particular interest to us is the velocity fields of blood flows moving in the vessel. 609

When the blood vessel is healthy one has essentially laminar flow. All of the blood is 610

moving in parallel in the same direction. When the vessel is diseased, we may see 611

turbulence. In this work, we propose to analyze the given data in the phase space. First 612

we investigate the data in the phase space with the first three velocity components. In 613

the left figure of Figure 27 the data is visualized in the phase space. Each axis is 614

corresponding to each velocity component. 615

Fig 27. Left: Velocity fields of 10% stenosis. Units are centimeters per second. Right:
Velocity fields of 70% stenosis. Units are centimeters per second.

The long axis is the y-axis, which is the direction of blood flow in the blood vessel. If 616

we compare this to the velocity field of a blood vessel stenosed 70% (the right figure of 617
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Figure 27), there is not a huge topological difference, at least in terms of homology. 618

There are no hollow portions or apparent significant circles that would give interesting 619

homology. Thus both would be topologically trivial. 620

To construct a meaningful topological space, we found that the projection of the raw 621

data onto the n-unit sphere - so-called an n-spherical projection is the key element of 622

TDA of vascular disease [21]. To understand why the projection approach works, we 623

consider the case of random fields where the 3D velocity and pressure are all randomly 624

generated. The left figure of Figure 28 shows the spherical projection of the random 625

velocity fields on S2. The right figure of Figure 28 shows the spherical projection of the 626

random velocity and pressure fields on S3. The right figure shows the pressure contour 627

on the velocity fields. The color represents the pressure distribution. Notice that the 628

sphere S2 in the left figure is hollow but the sphere in the right is not.
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Fig 28. n spherical projection. Left: Random velocity fields on S2. Right: Random
velocity and pressure fields on S3.

629

Figure 29 shows the corresponding barcode to the spherical projection of the random
velocity fields on S2 (left) and the spherical projection of the random velocity and
pressure fields on S3 (right). As shown in the figures, a hole appears at t ≈ 0.4 and
disappears at t ≈ 0.9 in the second dimension (left figure for S2) and in the third
dimension (right figure for S3). The interval where hole is existent in S2 (left) and in

Fig 29. Left: Barcode for data on S2. Right: Barcode for data on S3.

S3 (right) in the barcodes is significant and it represents the underlying topology well.
We define the persistence of an n-dimension interval, Πn as

Πn = b− a,

where a is the value of t when the hole starts to appear and b is t when the hole 630

disappears. In Figure 29, Π2 ≈ 0.5 for the left figure and Π3 ≈ 0.4 for the right. 631

The parameter, Πn serves as a measure of the complexity and we hypothesize that 632

Πn is directly related to the level of disease. 633
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Definition 5.1. Fundamental projection: Let ~v = (vx, vy, vz) be a non-zero
velocity vector. We first normalize ~v. The fundamental projection is the projection of
the normalized velocity fields onto the unit sphere,

< vx, vy, vz >→ (vx, vy, vz)/||v||,

where ||v|| is the norm of velocity fields, e.g. ||v|| =
√
v2x + v2y + v2z . 634

Definition 5.2. n-spherical projection: The n-spherical projection is the general
projection that involves more variables, including the velocity fields, such as the pressure,
P . If the pressure data is included, the spherical projection is done by

< vx, vy, vz, P >→ (vx, vy, vz, P )/
√
v2x + v2y + v2z + P 2.

The physical implication of the topological structure for the fundamental projection 635

seems obvious but the one for the general projection n ≥ 3 is not obvious and we need 636

to conduct a parameter study using the CFD solutions in our future work. 637

For the projection, any zero vectors are removed prior to the projection. Note that 638

all the velocity components on the vessel wall vanish due to the no slip boundary 639

condition. The results of the fundamental projection are shown in Figures 30. We have 640

colored the points according to their original norm, with red points having higher norm 641

and blue points having lower norm, although the majority of points are blue and only a 642

handful of points near the poles are red. 643

It is worth observing that our vascular data is of the form < ~s, ~U, P >, with ~s being 644

spatial data, ~U being velocity data and P being scalar pressure data. The fundamental 645

projection therefore reduces our topology from a seven dimensional space to a two 646

dimensional space, namely the surface of the sphere. An advantage of this projection is 647

that three dimensional data can be readily visualized – however, a lot of information 648

may be lost in this reduction. 649

Fig 30. Left: Spherical Projection of the normalized velocity field of the Blood Vessel
with 10% stenosis. Right: Spherical Projection of the normalized velocity field of the
Blood Vessel with 70% stenosis.

The difference between the left and right figures in Figure 30 is clear, one is a sphere, 650

the other is not. More precisely, the seventy percent stenosed projection has points all 651

over the sphere, whereas the ten percent stenosed projection only has points on the pole 652

of the sphere. To see the topological difference between these two, we can use our tool 653

of persistent homology. We expect the first to have no generators in the second 654

dimension and the second to have one. Our next section will go into this in detail. 655
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5.1 Persistent homology and spherical projections 656

The process of the proposed method should be clear already; take the velocity data 657

from a stenosed vessel and calculate its projection on the unit sphere, which we call its 658

spherical projection (fundamental projection as we use the first three velocity 659

components). Next we calculate its persistent homology. Because this calculation has 660

high complexity, we use a fraction of our points as in the earlier calculations. We use 661

the lazy witness strategy with 200 witness points and 150 landmark points. 662

We make a choice of points when we perform our computation, and therefore there is 663

a measure of imprecision inherent in our results. If we simply choose our points 664

randomly, there is a chance that we will choose badly. If we wrongly chose a set of 665

landmark points that were clustered together near a pole, we would make a poor 666

deduction as to the coverage of the sphere. Because the sphere is a fixed scale, it does 667

not take many points that are evenly spaced to properly cover the sphere. Therefore if 668

we make sure to choose our landmark points to be as evenly spaced as possible out of all 669

possible choices, we can be confident that we avoid this case. 670

In the following, we will show the unprojected velocity, the spherical projections and 671

the barcode associated with the persistent homology for various cases. Again we have 672

used the Javaplex package from [23] to calculate the barcodes. It is worth pointing out 673

that when calculating the barcodes using Javaplex, if there are no intervals calculated 674

above a certain dimension, then that dimension may not be graphed. 675

Fig 31. Barcode of blood vessel with 10% stenosis.

As we should suspect from the earlier Figure 30, the spherical projection for the 676

vessel with 10% stenosis has no meaningful homology in the higher dimensions. 677

Fig 32. Velocity field of vessel with 20% stenosis (left) and spherical projection of same
(right).
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From Figure 32, we see that again there is no meaningful homology for the spherical 678

projection of the vessel with 20% stenosis. 679

Fig 33. Barcode of blood vessel vessel with 20% stenosis, there were no generators in
the higher dimensions.

In Figure 33, our intuition is correct. There is no meaningful homology for this 680

spherical projection either. 681

Fig 34. Velocity field of vessel with 30% stenosis (left) and spherical projection of same
(right).

In Figure 34, the points have begun to spread across the sphere slightly, but there is 682

still no meaningful homology. 683

Fig 35. Barcode of blood vessel with 30% stenosis.

In Figure 35, we obviously see that there is no homology in the higher dimensions for 684

the spherical projection of the vessel with 30% stenosis. 685
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Fig 36. Velocity field of vessel with 40% stenosis (left) and spherical projection of same
(right).

In Figure 36, we now see that points have begun to cover the sphere. There are not 686

enough points across the sphere to result in a really good two dimensional hole, but we 687

expect we will eventually see one. We also expect that there will be a number of circles, 688

due to the gaps between points. 689

Fig 37. Barcode of Blood Vessel with 40% stenosis.

In Figure 37, our barcode matches our intuition. We see some small circles and some 690

two dimensional holes. It is worth observing that a vessel stenosed 40% is considered 691

diseased, whereas lesser stenosis levels are not. Therefore we have shown that the 692

spherical projection reveals a topological difference between diseased and undiseased 693

vessels. 694

April 27, 2019 30/41

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/637090doi: bioRxiv preprint 

https://doi.org/10.1101/637090
http://creativecommons.org/licenses/by/4.0/


Fig 38. Velocity field of vessel with 50% stenosis (left) and spherical projection of same
(right).

In Figure 38, we start to see the sphere become more uniformly covered due to the 695

increasingly chaotic blood flow. We expect to get a two dimensional hole and some 696

number of one dimension holes. 697

Fig 39. Barcode of Blood Vessel with 50% stenosis.

In Figure 39, we see exactly what we expect. There are a number of holes in the first 698

and second dimensions. 699

Fig 40. Velocity field of vessel with 60% stenosis(left) and spherical projection of same
(right).
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Table 1. Π versus percent stenosis.

% stenosis degree of disease Π2 (a new functional index)
10 healthy 0
30 healthy 0
40 healthy 0.24
50 intermediate/healthy 0.25
60 intermediate/diseased 0.5
70 diseased 0.55

In Figure 40, we now have the sphere is almost uniformly covered, except at the 700

poles. We therefore expect several one dimensional circles and one long lasting two 701

dimensional hole. 702

Fig 41. Barcode of blood vessel with 60% stenosis.

In Figure 41, we see many one dimensional circles and one long lasting two 703

dimensional hole. 704

Fig 42. Barcode of blood vessel with 70% stenosis.

Figures 31 through 42 show the velocity fields, spherical projections and barcodes for 705

vascular data with various levels of stenosis. Just visually it is easy to see a difference 706

between low stenosis and high stenosis in both the spherical projections and barcodes. 707

The vessels with low stenosis have no or very short generators in the second dimension. 708

The highly stenosed vessels have long intervals in the second dimension. 709

Table 1 shows the persistence in the second dimension, Π2 for various percent 710

stenosis as a summary of the previously shown barcodes. 711
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For all of these calculations we have used symmetric vascular data. By symmetric, 712

we mean radial symmetry of the vessel. We perform a similar calculation using 713

asymmetric data, those calculations are shown below in Figures 43 through 51. For 714

these calculations the vessel will be stenosed different amounts in the two directions 715

transverse to bloodflows. For example, the first vessel is 40% stenosed in the one 716

direction and 10% stenosed in the other direction. It is important to realize that an 717

asymmetric vessel may have more circulation that a symmetric vessel and therefore even 718

the less stenosed vessels will have circulation. 719

Fig 43. Velocity field of vessel with 40% by 10% stenosis (left) and spherical projection
of same (right).

In Figure 43, we see that already we have the sphere completely covered and there is 720

an additional feature in the form of a ring about the equator. This ring was not present 721

on the symmetric vessel cases and therefore immediately suggests that the spherical 722

projection may be useful in differentiating between different types of stenosis. 723

Fig 44. Barcode of blood vessel with 40% by 10% stenosis.

In Figure 44, we see a number of circles and one long two dimensional hole. This 724

should be expected based on the spherical projection. 725
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Fig 45. Velocity field of vessel with 20% by 40% stenosis (left) and spherical projection
of same (right).

In Figure 45, we again see significant circulation and an equatorial ring. We expect 726

that there will be a number of circles and a two dimensional hole. 727

Fig 46. Barcode of blood vessel with 40% by 20% stenosis.

In Figure 46, we see a number of circles and a long two dimensional hole. This 728

coincides with the spherical projection figure above. 729

Fig 47. Velocity field of vessel with 30% by 40% stenosis (left) and spherical projection
of same (right).

In Figure 47, we see many circles and one two dimensional hole. 730
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Fig 48. Barcode of blood Vessel with 40% by 30% stenosis.

In Figure 48, we notice that the two dimensional hole has a shorter interval than in 731

the previous barcode. This is apparently caused by a thinning of points near the north 732

and south poles of the sphere. Thus a larger value for t is required before the sphere is 733

completely covered. 734

Fig 49. Velocity field of vessel with 40% by 50% stenosis (left) and spherical projection
of same (right).

In Figure 49, we again observe an equatorial ring, along with a more uniformly 735

covered sphere. 736

Fig 50. Barcode of blood vessel with 40% by 50% stenosis.

In Figure 50, we see many circles and a long two dimensional hole. 737
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Fig 51. Velocity field of vessel with 40% by 60% stenosis (left) and spherical projection
of same (right).

Fig 52. Barcode of blood vessel with 40% by 60% stenosis.

In Figures 51 and 52, we again see many one dimensional circles, a two dimensional 738

hole and an equatorial ring. The two dimensional hole is very short due to a less 739

uniform covering of the sphere. 740

One feature that we easily observed is that the spherical projections of these 741

asymmetric spherical projections seem to have a denser ring of points about the equator. 742

This feature is not present on the projections of the symmetric vascular data and 743

therefore we presume is caused by the asymmetry. This feature may be important and 744

would likely not be difficult to detect. If the ring is present, a simple least squares or 745

least absolute values approximation of the points using a plane may be used to find the 746

ring. We suspect similar features may be present for differing types of asymmetry which 747

may allow for future classification of the types of asymmetry. 748

The above pictures also show a trend for the spherical projections, which can be seen 749

by looking at the uniformity of the points on the sphere. For the 10% by 40% vessel, 750

the sphere is relatively uniformly covered. For the 40% by 60% vessel, many of the 751

points on the sphere have migrated, with fewer points near the north and south poles. 752

This can be seen by looking at the spherical projections, or perhaps more clearly by 753

looking at the barcodes. In the barcode for the 40% by 60% vessel, there is a two 754

dimensional hole, but the length of that hole is short, because t must be large before we 755

cover the sphere due to the migration of points. 756

Another important feature that is in all of these asymmetrical vessels, as well as in 757

the high stenosis symmetric vessels, is a clusters of points near the positive and negative 758
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Fig 53. A blood vessel with a ring stent inserted. The velocity of the blood is also
shown.

y-direction poles. These represent the majority of blood flowing forward and a smaller 759

but significant amount of blood flowing backward. 760

As shown in [14], it is natural to develop asymmetry when the stenosis is being 761

developed. 762

We have also performed this analysis for a vessel with a ring stent (Figures 53 763

through 55). This ring stent constitutes a series of parallel rings implanted in the vessel 764

to keep the vessel open. It can be seen in Figure 53 that there is clear circulation. This 765

suggests that it may be possible to determine the best stent designs using purely 766

theoretical data through a similar analysis. 767

Fig 54. Velocity field of ring stented vessel (left) and spherical projection of same
(right).
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Fig 55. Barcode of a stented vessel.

In Figures 53 through 55, we see that there is much circulation of the blood in the 768

vessel and therefore there is a two dimensional hole. 769

5.2 Higher dimensional spherical projections 770

In the previous sections, we have focussed solely on velocity data. Velocity of blood flow 771

somewhat naturally maps to the unit sphere precisely because circulation naturally 772

corresponds to a spherical projection covering the unit sphere. However, there may be 773

useful data to be extracted from projecting some or all of the higher dimensional data 774

onto higher dimensional spheres, or even other topological spaces. This leads to the 775

n-spherical projection of an n-dimensional non-zero vector (Definition 5.2). 776

How useful this idea of higher dimensional spherical projections remains to be seen 777

and will be considered in our figure work. For example, one might consider the four 778

dimensional projection of velocity and pressure data onto the three-sphere. There may 779

be important information encoded here, but what that information is and how it is 780

encoded is less clear, in part because this higher dimensional projection is much less 781

natural than the fundamental projection. 782

Perhaps a more natural alternative would be to project velocity and pressure data 783

onto S2 × I, where I is an interval. Pressure is a scalar in our data and certainly 784

non-negative and therefore this projection may be more natural. Exploring the 785

information present within these higher dimensional projections is a topic for a later 786

paper; we merely include it here for completeness. 787

6 Concluding remarks 788

In this paper, we proposed to use the topological data analysis of vascular flows. The 789

key element of the proposed method is to use the patient-specific computational fluid 790

dynamics data and apply the topological data analysis to obtain meaningful medical 791

indices such as the critical failure value and the persistence of the considered vascular 792

flows. 793

In this paper, first we introduced the concepts of homology and persistent homology 794

and gave an example of their use. We applied this concept of persistent homology to the 795

geometry data of the exterior of the vessel thereby generating the so called critical 796

failure value. We demonstrated empirically that this critical failure value has a close 797

relationship with the stenosis level of a vessel and therefore may be used to measure 798

stenosis. This method may be used for various vessel shapes and therefore may help 799

serve as a general method of measuring stenosis. Further, this method demonstrates the 800
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potential general application of persistent homology to determine size information about 801

a topological object, which may have many applications. 802

We next developed the concept of the spherical projection to understand and 803

quantify vascular flow. We demonstrated that the spherical projection reveals important 804

information and patterns about the vascular flow that are not apparent to the naked eye. 805

We applied this method to a varied data set and demonstrated the differences thereof. 806

This concept of spherical projection may be critical to understanding and classifying 807

the different types and levels of stenosis. We applied this spherical projection to many 808

different sets of vascular data and showed clear differences between the barcodes for the 809

different stenosis levels and types. The barcodes for the vessels with high stenosis were 810

different compared to the less stenosed vessels. Additionally the asymmetric vessels 811

were different from the symmetric vessels in their spherical projections, due to the 812

presence of the equatorial ring. 813

A potential future application of both these concepts, spherical projection and 814

critical failure value, are to those cases of unusual vascular geometry, such as bifurcation 815

or curved vessels. The critical failure value should be able to determine stenosis level in 816

both these cases and the spherical projection would make sense as well. The spherical 817

projection would allow for better understanding of the underlying vascular flow in these 818

cases as well. 819

An important question to ask is how important is the persistent homology in the 820

spherical projection. In our above calculations, every important piece of information 821

given by the barcodes was readily observed from the spherical projections. In fact, the 822

persistent homology lost some information, because the persistent homology did not 823

reflect the equatorial rings. Therefore, while the persistent homology in three 824

dimensions may be less useful, due to being able to see the spherical projection, 825

persistent homology would be vital in these higher dimensional data sets. 826

The spherical projection may be generalized to data from higher dimensions. We 827

have only used the velocity data for our calculations, but we have pressure data as well. 828

Curvature may also be calculated from the vessel geometry, which could be another 829

useful piece of data. Projecting some or all of this data on a higher dimensional sphere 830

or other high dimension object and calculating the persistent homology of these 831

projections may give good results. The spherical projection is naturally physical since 832

much of the important information of velocity is in the direction, which this projection 833

preserves. However, simply projecting higher dimensional data onto a sphere may not 834

be the best projection to consider. Rather, we conjecture that the particular projection 835

used should be targeted, based on intelligent analysis and understanding of the data in 836

question. 837

In this paper, we focused on developing the theoretical framework of the proposed 838

method. And the data set of vascular flows is from the simple CFD calculations with 839

rather simplified vessel configurations. We applied the proposed method to real patient 840

data and obtained desired data, which will be presented in our upcoming paper. 841
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